
Chapter 56

GPU Acceleration of Dock6’s Amber Scoring

Computation

Hailong Yang, Qiongqiong Zhou, Bo Li, Yongjian Wang, Zhongzhi Luan,

Depei Qian, and Hanlu Li

Abstract Dressing the problem of virtual screening is a long-term goal in the drug

discovery field, which if properly solved, can significantly shorten new drugs’ R&D

cycle. The scoring functionality that evaluates the fitness of the docking result is

one of the major challenges in virtual screening. In general, scoring functionality in

docking requires a large amount of floating-point calculations, which usually takes

several weeks or even months to be finished. This time-consuming procedure is

unacceptable, especially when highly fatal and infectious virus arises such as

SARS and H1N1, which forces the scoring task to be done in a limited time. This

paper presents how to leverage the computational power of GPU to accelerate

Dock6’s (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25:

1157–1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical

Staff, Compute Unified Device Architecture – Programming Guide, NVIDIA

Corporation, 2008) (Compute Unified Device Architecture) platform. We also

discuss many factors that will greatly influence the performance after porting the

Amber scoring to GPU, including thread management, data transfer, and diver-

gence hidden. Our experiments show that the GPU-accelerated Amber scoring

achieves a 6.5� speedup with respect to the original version running on AMD

dual-core CPU for the same problem size. This acceleration makes the Amber

scoring more competitive and efficient for large-scale virtual screening problems.

Keywords Virtual screen � Dock � Amber scoring � GPU � CUDA

H. Yang (*)

Department of Computer Science and Engineering, Sino-German Joint Software Institute, Beihang

University, 100191 Beijing, China

e-mail: hailong.yang@jsi.buaa.edu.cn

H.R. Arabnia (ed.), Advances in Computational Biology,
Advances in Experimental Medicine and Biology 680,

DOI 10.1007/978-1-4419-5913-3_56, # Springer ScienceþBusiness Media, LLC 2010

497

http://dock.compbio.ucsf.edu/DOCK_6/

56.1 Introduction

One early stage of new drug discovery is focused on finding pharmacologically

active compounds from the vast number of chemical compounds. In order to reduce

the amount of wet-lab experiments, virtual screening is developed to search chemi-

cal compounds database for potentially effective compounds. Computer-assisted

virtual drug screening is a definite shortcut to develop new drugs. It can reduce the

amount of candidate compounds for biological experiments by thousands of times

and is very prospective in exploiting new drug candidates [4].

Identifying the interactions between molecules is critical both to understanding

the structure of the proteins and to discovering new drugs. Small molecules or

segments of proteins whose structures are already known and stored in database are

called ligands, while macromolecules or proteins associated with a disease are called

receptors [5]. The final goal is to find out whether the given ligand and receptor can

form a favorable complex and how appropriate the complex is, which may inhibit a

disease’s function and thus act as a drug.

Virtual screening can usually be roughly divided into two parts functionally:

l Routines determining the orientation of a ligand relative to the receptor, which

are known as docking;
l Routines evaluating the orientation, which are known as scoring.

Docking is the first step in virtual screening that needs a potential site of interest

on the receptor to be identified, which is also known as the active site. Within this

site, points are identified where ligand atoms may be located. In dock6, a program

routine called sphere center is to identify these points by generating spheres filling

the site. To orient a ligand within the active site, some of the spheres are “paired”

with ligand atoms, which are also called “matched” in docking.

Scoring is the step after docking, which is involved in evaluating the fitness for

docked molecules and ranking them. A set of sphere-atom pairs will be on behalf of

an orientation in receptor and evaluated with a scoring function on three-dimen-

sional grids. At each grid point, interaction values are to be summed to form a final

score. These processes need to be repeated for all possible translations and rota-

tions. There are many kinds of existing scoring algorithms, while amber scoring is

prevalent due to its fast speed and considerable high accuracy. The advantage of

amber scoring is that both ligand and active sites of the receptor can be flexible

during the evaluation, which allows small structural rearrangements to reproduce

the so-called induced fit. While the disadvantage is also obvious, it brings tremen-

dous intensive floating-point computations. When performing amber scoring, it

calculates the internal energy of the ligand, receptor, and the complex, which can be

broken down into three steps:

l minimization,
l molecule dynamics (MD) simulation,
l more minimization using solvents.

498 H. Yang et al.

The computational complexity of amber scoring is very huge, especially in the

MD simulation stage. Three grids that individually have three dimension coordi-

nates are used to represent the molecule during the orientation such as geometry,

gradient, and velocity. In each grid, at least 128 elements are required to sustain the

accuracy of the final score. During the simulation, scores are calculated in three

nested loops, each of which walks through one of the three grids. Derived from vast

practical experiences, the MD simulation is supposed to be performed 3,000 times

until a preferable result is obtained. All above commonly means that the problem

size can reach as large as 3;000� 1283 � 1283 � 1283, which is computationally

infeasible in one single computer.

While many virtual screening tools such as GasDock [6], FTDock [7], and

Dock6 can utilize multi-CPUs to parallel the computations, the incapacity of

CPU in processing floating-point computations still remains untouched. GPU has

been widely used for general purpose computations because of its high floating-

point computation capability [8]. Compared with CPU, GPU has the advantages of

computational power and memory bandwidth. For example, a GeForce 9800 GT

can reach 345 GFLOPS at peak rate and has an 86.4 GB/s memory bandwidth,

whereas an Intel Core 2 Extreme quad core processor at 2.66 GHz has a theoretical

21.3 peak GFLOPS and 10.7 GB/s memory bandwidth. Another important factor

why GPU is becoming widely used is that it is more cost effective than CPU.

Our contributions in this paper include porting the original Dock6 amber scoring

to GPU using CUDA, which can archive a 6.5� speedup. We analyze the different

memory access patterns in GPU which can lead to a significant divergence in

performance. Discussions on how to hide the computation divergence on GPU

are made. We also conduct experiments to see the performance improvement.

The rest of the paper is organized as follows. In Sect. 56.2, an overview of

Dock6’s amber scoring and analysis of the bottleneck is given. In Sect. 56.3, we

present the main idea and implementation of the amber scoring on GPU with

CUDA, and details of considerations about performance are made. Then we give

the results, including performance comparisons among various GPU versions.

Finally, we conclude with discussion and future work.

56.2 Analysis of the Amber Scoring in DOCK6

56.2.1 Overview

A primary design philosophy of amber scoring is allowing both the atoms in the

ligand and the spheres in the receptor to be flexible during the virtual screening

process, generating small structural rearrangements, which is much like the actual

situation and gives more accuracy. As a result, a large number of docked orienta-

tions need to be analyzed and ranked in order to determine the best fit set of the

matched atom-sphere pairs.

56 GPU Acceleration of Dock6’s Amber Scoring Computation 499

In the subsection, we will describe the amber scoring program flow and profile

the performance bottleneck of the original amber scoring, which can be perfectly

accelerated on GPU.

56.2.2 Program Flow and Performance Analysis

Figure 56.1 shows the steps to score the fitness for possible ligand–receptor pairs in

amber. The program first performs conjugate gradient minimization, MD simula-

tion, and more minimization with solvation on the individual ligand, the individual

receptor, and the ligand–receptor complex, and then calculates the score as follows:

Ebinding ¼ Ecomplex� ðEreceptor� EligandÞ

The docked molecules are described using three-dimension intensive grids con-

taining the geometry, gradient, or velocity coordinate’s information. The order of

magnitude of these grids is usually very large. Data in these grids are represented

using floating-point, which has little or no interactions during the computation.

Perform conjugate gradient
minimization on geometry

grid

Perform MD simulation on
geometry, gradient and

velocity grid

Perform more minimization
considering solvation on

geometry grid

Generate receptor energy

Read receptor grids
along with certain parameters

Repeat N3
steps

Repeat N2
steps

Repeat N1
steps

Receptor Protocol

Read ligand grids
along with certain

parameters

Read complex grids
along with certain

parameters

Perform complex_energy–
receptor_energy–

ligand_enregy

Score results

Ligand Protocol

Complex Protocol

The same procedures as receptor

The same procedures as receptor

Fig. 56.1 Program flow of amber scoring

500 H. Yang et al.

In order to archive higher accuracy, the scoring operation will be performed

repeatedly, perhaps hundreds or thousands times.

Due to the characteristics of the amber scoring such as data independency and

high arithmetic intensity, which are exactly the sweet spots of computing on GPU,

it can be perfectly paralleled to leverage the computing power of GPU and gain

preferable speedup.

56.3 Porting Amber Scoring to GPU

56.3.1 Overview

To determine the critical path of amber scoring, we conduct an experiment to make

statistics about the cost of each step as shown in Table 56.1. We see that the time

spent in processing a ligand is negligible, because ligand in docking always refers to

small molecules or segments of protein whose information grids are small and can

be calculated quickly. We also observe, however, that MD simulation on receptor

and complex is the most time-consuming part, which takes up to 96.25% of the total

time. Either on receptor or on complex, MD simulation performs the same func-

tionality. Therefore, in our GPU-accelerated version, we focus on how to port the

MD simulation to GPU, which could accelerate the bulk of the work.

For simplicity and efficiency, we take advantage of the Compute Unified Device

Architecture (CUDA), a new parallel programming model that leverages the

computational power in NVIDIA G80-based GPUs. We find that the key issue to

utilize GPU fully is the high ratio of arithmetic operations to memory operations,

which can be achieved through refined utilization of memory model, data transfer

pattern, parallel thread management, and branch hidden.

Table 56.1 Runtime statistics for each step of amber scoring 100 cycles are performed for

minimization steps and 3,000 cycles for md simulation step

Stage Run time (s) Ratio of total (%)

Receptor protocol Gradient minimization 1.62 0.33

MD simulation 226.41 45.49

Minimization solvation 0.83 0.17

Energy calculation 2.22 0.45

Ligand protocol Gradient minimization �0 0

MD simulation 0.31 0.06

Minimization solvation �0 0

Energy calculation �0 0

Complex protocol Gradient minimization 8.69 1.75

MD simulation 252.65 50.76

Minimization solvation 2.69 0.54

Energy calculation 2.22 0.45

Total 497.64 100

56 GPU Acceleration of Dock6’s Amber Scoring Computation 501

56.3.2 CUDA Programming Model Highlights

At the core of CUDA programming model are three key abstractions – a hierarchy

of thread groups, shared memories, and barrier synchronization, which provide

fine-gained data parallelism, thread parallelism, and task parallelism. CUDA

defines GPU as coprocessors to CPU that can run a large number of light-weight

threads concurrently. The programming language of CUDA is a minimal set of C

language extensions based on a few low learning carve abstractions for parallel

computing. Threads are manipulated by kernels representing independent tasks

mapped over each sub-problem. Kernels contain the processing assignments that

each thread must carry out during the runtime. More specifically, same instruction

sets are applied on different partitions of the original domain by the threads in

SPMD fashion.

In order to process on the GPU, data should be prepared by copying it to the

graphic board memory first. Actually, the problem domain is defined in the form of

a 2D grid of 3D thread blocks. The significance of a thread block primitive is that it

is the smallest granularity of work unit to be assigned to a single streaming
multiprocessor (SM). Each SM is composed of eight scalar processors (SP) that
indeed run threads on the hardware in a time-slice manner. Every 32 threads within

a thread block are grouped into warps. At any time, there is only one warp active on

the SM and it will proceed to run until it has to stop and wait for something to

happen such as I/O operations. The hardware scheduler on the SM selects the next

warp to execute. Within a warp the executions are in order, while beyond the warp

the executions are out of order. Therefore, it does not matter if there are divergent

threads among different warps. However, if threads within a warp follow divergent

paths, only threads on the same path can be executed simultaneously.

In addition to global memory, each thread block has its own private shared

memory that is only accessible to threads within that thread block. Threads within a

thread block could cooperate by sharing data among shared memory with low

latency. Among thread blocks, synchronization can be achieved by finishing a

kernel and starting a new one. It is important to point out that the order of thread

blocks assigned to the SMs is arbitrary and non-deterministic. Therefore, sequential

semantics should not be fulfilled depending on the execution orders of the thread

blocks, which may lead to race condition or deadlock.

56.3.3 Parallel Thread Management

To carry out the MD simulation on GPU, a kernel needs to be written, which is

launched from the host (CPU) and executed on the device (GPU). A kernel is the

same instruction set that will be performed by multiple threads simultaneously. This

parallelism is implemented through the GPU hardware called Streaming Multi-

processor (SM). By default, all the threads are distributed onto the same SM, which

502 H. Yang et al.

cannot fully explore the computational power of the GPU or may cause launch

failure if the threads are more than what one SM can hold. In order to utilize the

SMs more efficiently, thread management must be taken into account.

We divide the threads into multiple blocks, and each block can hold the same

number of threads. These blocks will be distributed among SMs. There are two

kinds of IDs in CUDA named blockId and threadId, which are used to simplify the

memory addressing among threads. Blocks have their own blockId during the

kernel lifetime, and threads within the same block can be identified by threadId.

Therefore, we can take advantage of these two kinds of IDs to issue threads

computing on different partitions of the grids concurrently.

In the geometry, gradient, and velocity grids, 3D coordinates of atoms are stored

sequentially and the size of the grid usually reaches as large as 7,000. Calculation

works are assigned to blocks on different SMs; each thread within the blocks

computes the energy of one atom, respectively, and is independent of the rest

(see Fig. 56.2). We compose N threads into a block (N ¼ 512 is the maximum

number of threads per block in GeForce 9800 GT), which calculates N independent

SM

…

1 N-1…0 2

Block Id 0 Block Id 1
Thread

Id

Thread
Id

a

b
Block Id M/N

kernel

kernel

1 N-1…0 2 1 N-1…0 2

…

…
float x = input [threadID] ;
float y = func(x) ;
output[threadID] = y;
…

1 N-1…0 2
Block Id 0

1 N-1…0 2
Block Id 1 1 N-1…0 2

Block Id M/N -1

1 M%N-1…0

SM SM SM SM SM SM

SM SM SM SM SM SM SM

…
float x = input [threadID] ;
float y = func(x);
output [threadID] = y ;
…

…
float x = input [threadID] ;
float y = func(x) ;
output[threadID] = y;
…

…
float x = input [threadID] ;
float y = func(x) ;
output[threadID] = y;
…

…
float x = input [threadID];
float y = func(x) ;
output[threadID] = y;
…

…
float x = input [threadID];
float y = func(x) ;
output[threadID] = y;
…

Fig. 56.2 Threads and blocks management about processing molecule grids on GPU: (a) blocks

whose threads in the last block may calculate two atoms each (b) blocks whose threads in the last

block may have nothing to do

56 GPU Acceleration of Dock6’s Amber Scoring Computation 503

atoms in the grids. Assuming the grid size is M and M is divisible by N, there will
happen to be M/N blocks.

While in most cases the grid size M is not divisible by N, we designed two

schemes dealing with this situation. In the first scheme, there will be M/N blocks.

Since there is M%N atoms left without threads to calculate, we will rearrange the

atoms evenly to the threads in the last block. One more atom will be added to the

threads in the last block until no atoms are left, which is ordered by ascending

thread ID. The second scheme is to construct M/N þ 1 blocks. Each thread in the

blocks still calculates one atom; however, the last block may contain threads with

nothing to do.

Our experiment proves that the former scheme obtained better performance.

This is caused by underutilized SM resources and branch cost in the second scheme.

When there is a branch divergence, all the threads must wait until they reach the

same instructions again. Synchronization instructions are generated by the CUDA

complier automatically, which is time consuming. Furthermore, the redundant

threads have to wait for all the calculations to be done, while they take up the SM

computing cycles which cannot be utilized by other working threads and which

cause a waste of resources.

56.3.4 Memory Model and Data Transfer Pattern

The first step to perform GPU computations is to transfer data from host (CPU)

memory to device (GPU) memory since the receptor, ligand, and complex grids

need to be accessible by all SMs during the calculations. There are two kinds of

memory that can be used to hold these grids. One is the constant memory, which

can be read and written by the host but can only be read by the device. The other is

the global memory, which can be read and written by both the host and device. One

important distinction between the two memories is the access latency. SMs can get

access to the constant memory magnitude order faster than to the global memory.

While the disadvantage of the constant memory is also obvious, it is much smaller,

which is usually 64 KB compared to 512 MB global memory. Thus, a trade-off has

to be made on how to store these grids.

During each MD simulation cycle, the gradient and velocity grids are read and

updated. Therefore, they should be stored in global memory. While once entered in

the MD simulation process, the geometry grids are never changed by the kernel.

Hence, they can be stored in constant memory (see Fig. 56.3). Considering the out-

bound danger due to the limited capacity of the constant memory, we observed the

size of each geometry grid. The receptor and complex geometry grids usually

contain no more than 2,000 atoms each, while the ligand geometry grid contains

700 atoms, which totally requires 2,000 � 3 � 4 � 2 þ 700 � 3 � 4 bytes

(56.4 KB) memory to store them. Since it is smaller than 64 KB, the geometry

grids shall never go out-bound of the constant memory.

504 H. Yang et al.

The time to transfer molecule grids from the host to their corresponding GPU

memory is likewise a critical issue, which may degrade the benefit archived from

the parallel execution if not considered carefully [9]. For each MD simulation

cycle, we could transfer one single atom 3D coordinates in the geometry, gradient,

and velocity grids to device memory when they are required by the SMs. The other

solution is to transfer the entire grids into the GPU memory before the MD

simulation stage. When the simulation starts, these grids are already stored in

device memory, which can be accessed by simulation cycles performed on SMs.

Based on our experiment, we noticed that there was a significant performance

divergence between the two schemes. The former version turned out to be not

speedup but obvious slowdown. Before data transformation, a certain time is

required to get the PCIE bus and device ready. The data representing one atom

only takes up 12 bytes, which is very tiny compared to the 8-GB bandwidth of the

PCIE bus. Thus the time spent on real data transformation can be neglected, and

most of the time is wasted in frequent bus communications.

Significant performance improvements are obtained from the second scheme

since the molecule grids are transferred only once for all before the MD simulation.

Therefore, the SMs donot have to halt and wait for the grids to be prepared.

CPU

……

GPU
Global Memory

Constant Memory

Shared
Memory

Shared
Memory

Shared
Memory

CPU Atom
Results

Atom
Results

Atom
Results

……

………………

…………

………

T T

T T

T T

T T

T T

T T

T T

T T

T T

MD simulation
result

B
lo

ck

B
lo

ck

B
lo

ck

…… …… ……

Geometry Grid Gradient Grid Velocity Grid

Fig. 56.3 Memory model and data transfer pattern during the MD simulation cycles. Grids are

transferred only once before the simulation. Atom results are first accumulated in the shared

memory within the block. Then the accumulations per block are transferred into the host memory

and summed up

56 GPU Acceleration of Dock6’s Amber Scoring Computation 505

Generally, at least 3,000 MD simulation cycles are required for each molecular

stage to maintain accuracy, which means highly intensive floating-point calcula-

tions are performed on the same molecule grids with updated values in each atom.

Thus, the ratio of memory access and floating-point calculations should be pretty

high, which obviously speeds up the parallel execution of the MD simulations by

fully utilizing the SMs.

The MD simulations are executed parallelly on different SMs, and threads

within the different blocks are responsible for the calculation of their assigned

atoms of the grids. The traditional approach is to transfer all the atom results back to

the host memory where the accumulation is performed. In practice, this may be

inefficient since shared memory in GPU can be utilized to cut down the communi-

cation cost between the device and host. However, the limitation is that synchroni-

zation can only be applied within the block (see Fig. 56.3). Our solution is to

synchronize threads within the blocks, which generates atom results separately.

Then a transformation is performed to store the atom results from shared memory to

host memory in a result array. The molecule result shall be achieved by adding up

all the elements in the array without synchronization. The experiment has showed

that this solution has a significant impact on performance improvement as the

simulation size scales compared to the original approach without shared memory

synchronization.

56.3.5 Divergence Hidden

Another important factor that dramatically impacts the benefits achieved by

performing MD simulation on GPU is the branches. Original MD simulation

procedure involves a bunch of nested control logics such as bonds of Van der

Waals force and constrains of molecule energy. When the parallel threads comput-

ing on different atoms in the grids come to a divergence, a barrier will be generated

and all the threads will wait until they reach the same instruction set again. The

above situation can be time consuming and outweigh the benefits of parallel

execution; thus divergence must be hidden to the minimum.

We extract the calculations out of the control logic. Each branch result of the

atom calculation is stored in a register variable. Inside the nested control logic, only

value assignments are performed, which means the divergence among all the

threads will be much smaller; thus the same instruction sets can be reached with

no extra calculation latency. Although this scheme will waste some computational

power of the SMs since only a few branch results are useful in the end, it brings

tremendous improvements in performance. These improvements can be attributed

to that, in most cases, the computational power we required during the MD

simulation is much less than the maximum capacity of the SMs. Hence, the extra

calculations only consume vacant resources, which in turn speed up the executions.

The feasibility and efficiency of our scheme have been demonstrated in our

experiment.

506 H. Yang et al.

56.4 Results

The performance of our acceleration result is evaluated for two configurations:

l Two cores of a dual core CPU
l GPU accelerated.

The base system is a 2.7-GHz dual core AMD Athlon processor. GPU results

were generated using an NVIDIA GeForce 9800 GT GPU card.

We referred to the Dockv6.2 as the original code, which was somewhat optimized

in amber scoring. We also used the CUDAv2.1, whose specifications support 512

threads per block, 64 KB constant memory, 16 KB shared memory, and 512 MB

global memory. Since double precision floating point was not supported in our GPU

card, transformation to single precision floating point was performed before the

kernel was launched. With small precision losses, the amber scoring results were

slightly different between CPU version and GPU version, which can be acceptable.

Table 56.2 compares the original CPU version with the GPU-accelerated version

in runtime for various stages. The MD simulation performed comprises 3,000

cycles in each molecular stage, which clearly afford very high speedups due to

the utilizations of multi-blocks, one time data transfer pattern, shared memory and

divergence hidden. The overall speedup achieved for the entire amber scoring is

over 6.5�. One interesting phenomenon we noticed is not all the minimizations are

speeded up but ligand is slowed down. We find a reasonable explanation that the

ligand is generally a small molecule requiring a negligible amount of floating-point

calculations. When mapped on GPU, these calculations are insufficient to hide the

latency of data transformation and the time consumed to initial the device.

Figure 56.4 depicts the total speedups of different GPU schemes with respect to the

range of increasing MD simulation cycles. As mentioned in Sect. 56.3.3, the GPU

version with only one block did not speedup the process ofMD simulation but slowed

Table 56.2 CPU times, GPU times, and speedups with respect to 3,000 MD simulation cycles per

molecule protocol

Stage CPU GPU Speedup

Receptor protocol Gradient minimization 1.62 0.89 1.82

MD simulation 226.41 31.32 7.23

Minimization solvation 0.83 0.15 5.53

Energy calculation 2.22 1.21 1.83

Ligand protocol Gradient minimization �0 0.02 –

MD simulation 0.31 0.60 –

Minimization solvation �0 0.03 –

Energy calculation �0 �0 0

Complex protocol Gradient minimization 8.69 2.88 3.02

MD simulation 252.65 34.79 7.26

Minimization solvation 2.69 2.05 1.31

Energy calculation 2.22 1.47 1.51

Total 497.64 75.41 6.5

The CPU version was performed using dual core, while GPU version with all superior scheme

56 GPU Acceleration of Dock6’s Amber Scoring Computation 507

down, which should be attributed to the poor management of threads since each

block has a boundary of maximum active threads. The most significant performance

improvements are achieved by transferring the molecule grids only once during the

MD simulation in addition to the usage of multi-blocks. This scheme can greatly

diminish the overhead produced by duplicate transferring the molecule grids from

CPU to GPU, which dominates the time consumed during the MD simulation.

Figure 56.5 depicts the second speedup in performance obtained from the

utilizations of divergence hidden and synchronization on shared memory. Since

the branch calculations are extracted from the control logic and stored in temporary

variables, only one single instruction will be performed which assigns corres-

ponding values into the final result when divergences occur. While threads within

a block will accumulate atom simulation values into a partial result of a molecule on

shared memory, the result array transferred back to the host is very small. Perfor-

mance improvements are obtained when summing up the elements in the array to

form the molecule simulation result. We also notice that as the MD simulation

cycles scale up, the speedup becomes more considerable in our best GPU version.

56.5 Related Work

Studies on utilizing GPU to accelerate molecule docking and scoring problems are

rare, the only work that we find more related to our concern is in the paper of Bharat

Sukhwani [10]. The author described a GPU-accelerated production docking code,

2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
m

be
rS

co
re

T
im

e
(s

)

MD Simulation Cycles

Original Amber Score
GPU One Block
GPU Multi-Blocks(1)
GPU(1) Plus Data Transfer Once

Fig. 56.4 Shown is a comparison of amber scoring time between original amber and different

GPU versions whose speedup varies significantly as the MD simulation cycles increase from 3,000

to 8,000

508 H. Yang et al.

PIPER [11], which achieves an end-to-end speedup of at least 17.7�with respect to

a single core. Our contribution is different from the former study in two aspects.

First, we focus our energy on flexible docking such as amber scoring, while the

previous study mainly focuses on rigid docking using FFT. Thus our work is more

complex and competitive in the real world. Second, we noticed that the logic

branches in the parallel threads on GPU degraded the entire performance sharply.

We also described the divergence hidden scheme and represented the comparison

on speedup with and without our scheme.

Another attractive work that needs to bementioned is that byMichael Showerman

and Jeremy Enos [12] in which they developed and deployed a heterogeneous

multi-accelerator cluster at NCSA. They also migrated some existing legacy

codes to this system and measured the performance speedup, such as the famous

molecular dynamics code called NAMD [13, 14]. However, the overall speedup

they achieved was limited to 5.5�.

56.6 Conclusions and Future Works

In this paper, we present a GPU-accelerated amber score in Dock6.2, which

achieves an end-to-end speedup of at least 6.5� with respect to 3,000 cycles during

MD simulation compared to that of a dual core CPU. We find that thread manage-

ment utilizing multiple blocks and single transferring of the molecule grids

2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

A
m

be
rS

co
re

T
im

e
(s

)

MD Simulation Cycles

Original Amber Score
GPU Multi-Blocks and Data Transfer Once(1)
GPU(1) Plus Divergence Hidden(2)
GPU(2) Plus Shanred Memory

Fig. 56.5 Comparison of speedups among different GPU versions based on Fig. 56.4 in addition

to divergence hidden and shared memory

56 GPU Acceleration of Dock6’s Amber Scoring Computation 509

dominates the performance improvements on GPU. Furthermore, dealing with the

latency attributed to thread synchronization, divergence hidden, and shared mem-

ory can lead to elegant solutions, which will additionally double the speedup of the

MD simulation. Unfortunately, the speedup of Amber scoring cannot go much

higher due to Amdahl’s law. The limitations are as follows:

l With the kernel running faster because of GPU acceleration, the rest of the

Amber scoring takes a higher percentage of the run time.
l Partitioning the work among SMs will eventually decrease the individual job

size to a point where the overhead of initializing an SP dominates the application

execution time.

The work we presented in this paper only shows a kick-off stage of our

exploration in GPGPU computation. We will proceed to use CUDA acceleration

various applications with different data structures and memory access patterns, and

hope to be able to work out general strategies about how to use GPU more

efficiently. With greater divergences in architectural designs of CPU and GPU,

our goal is to find a parallel programming model to leverage the computation power

of CPU and GPU simultaneously.

Acknowledgment Many thanks to Ting Chen for thoughtful discussions and comments about our

implementation and paper work. This work was supported by the National High Technology

Research and Development Program of China under the grant No. 2007AA01A127.

References

1. Dock6: http://dock.compbio.ucsf.edu/DOCK_6/.

2. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. and Case, D.A. Development and testing

of a general Amber force field. Journal of Computational Chemistry 25, Pages: 1157–1174,

2004.

3. NVIDIA Corporation Technical Staff, Compute Unified Device Architecture – Programming

Guide, NVIDIA Corporation, 2008.

4. Sukhwani, B. and Herbordt, M. Acceleration of a production rigid molecule docking code. In

Proceedings of the IEEE Conference on Field Programmable Logic and Applications Pages:

341–346, 2008.

5. Kuntz, I., Blaney, J., Oatley, S., Langridge, R. and Ferrin, T. A geometric approach to

macromolecule–ligand interactions. Journal of Molecular Biology 161, Pages: 269–288,

1982.

6. Honglin Lia, Chunlian Lia, Chunshan Guib, Xiaomin Luob and Hualiang Jiangb. GAsDock: a

new approach for rapid flexible docking based on an improved multi-population genetic

algorithm. Bioorganic & Medicinal Chemistry Letters 14(18), Pages: 4671–4676, 2004.

7. Servat, H., Gonzalez, C., Aguilar, X., Cabrera, D. and Jimenez, D. Drug design on the cell

broadband engine. Parallel Architecture and Compilation Techniques, Pages: 16:425–425, 2007.

8. Kr€uger, J., Westermann, R. Linear algebra operators for GPU implementation of numerical

algorithms. ACM Transactions on Graphics 22(3) Pages: 908–916, 2003.

9. Govindaraju, N.K., Gray, J., Kumar, R. and Manocha, D. GPUTeraSort: High-performance

graphics coprocessor sorting for large database management. Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data.

510 H. Yang et al.

http://dock.compbio.ucsf.edu/DOCK_6/

10. Bharat Sukhwani and Martin C. Herbordt. GPU acceleration of a production molecular

docking code. In Proceedings of 2nd Workshop on General Purpose Processing on GPUs,

Pages: 19–27, 2009.

11. PIPER: http://structure.bu.edu/index.html

12. Michael Showerman, Wen-Mei Hwu, Jeremy Enos, Avneesh Pant, Volodymyr Kindratenko,

Craig Steffen and Robert Pennington. QP: A Heterogeneous Multi-Accelerator Cluster. In

10th LCI International Conference on High-Performance Clustered Computing, 2009.

13. NAMD: http://www.ks.uiuc.edu/Research/namd/.

14. James C. Phillips, Gengbin Zheng, Sameer Kumar and Laxmikant V. Kalé. NAMD: Biomo-

lecular Simulation on Thousands of Processors, Conference on High Performance Networking

and Computing, Pages: 1–18, 2002.

56 GPU Acceleration of Dock6’s Amber Scoring Computation 511

http://structure.bu.edu/index.html
http://www.ks.uiuc.edu/Research/namd/

	Chapter 56: GPU Acceleration of Dock6´s Amber Scoring Computation
	56.1 Introduction
	56.2 Analysis of the Amber Scoring in DOCK6
	56.2.1 Overview
	56.2.2 Program Flow and Performance Analysis

	56.3 Porting Amber Scoring to GPU
	56.3.1 Overview
	56.3.2 CUDA Programming Model Highlights
	56.3.3 Parallel Thread Management
	56.3.4 Memory Model and Data Transfer Pattern
	56.3.5 Divergence Hidden

	56.4 Results
	56.5 Related Work
	56.6 Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

