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Abstract

An efficient deuteration process of β-amino C─H bonds in various N-alkylamine-based 

pharmaceutical compounds has been developed. Catalytic reactions begin with the action of Lewis 

acidic B(C6F5)3 and Brønsted basic N-alkylamine, converting a drug molecule into the 

corresponding enamine. The acid/base catalysts also promote the dedeuteration of acetone-d6 to 

afford a deuterated ammonium ion. Ensuing deuteration of the enamine then leads to the formation 

of β-deuterated bioactive amines with up to 99% deuterium incorporation.

Graphical Abstract

Deuterium-labeled pharmaceuticals are pivotal diagnostic tools in research aimed at 

determination of the corresponding biological outcomes and metabolites.1-6 Drugs 

containing C─D bonds have been prepared through multistep synthesis involving the 

reduction of unsaturated or halogenated intermediates.3 However, innovations in 

organometal-catalyzed C─H activation have enabled direct hydrogen isotope exchange 

(HIE) at C─H bonds for deuterium.4-6 In particular, HIE reaction targeting C(sp3)─H 

bonds of pharmaceuticals that contain an N-alkylamine unit is in high demand because these 

*Corresponding Author wasa@bc.edu.
‡Y. C. and A. Y. contributed equally to this paper.

The authors declare no competing financial interest.

Supporting Information Available: Experimental procedures and spectral data for all new compounds (PDF). This material is 
available free of charge via the Internet at http://pubs.acs.org.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2020 April 03.

Published in final edited form as:
J Am Chem Soc. 2019 September 18; 141(37): 14570–14575. doi:10.1021/jacs.9b08662.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/


entities constitute over 50% of the top-selling commercial drugs.7 The state-of-the-art 

processes include Beller’s α- and β-amino C─H deuteration of metoclopramide (A1) and 

two other structurally related drug molecules promoted by Ru-based Shvo catalyst (Figure 

1A).5 MacMillan’s photoredox-mediated α-deuteration and α-tritiation represents a notable 

strategy for isotopic labelling of a range of N-alkylamine-based drugs (Figure 1B).6 Still, 

development of methods for regioselective deuteration of poorly reactive β-amino C(sp3)

─H bonds of drugs containing Lewis acid- and base-sensitive functional groups with an 

inexpensive deuterium source and promoted by non-precious metal-based catalysts is a 

significant challenge.8,9 Regioselective deuteration of metabolically stable β-amino C─H 

bonds (vs more labile α-amino C─H bonds) is particularly attractive as it minimizes the 

loss of the label due to exchange.1-3

We began by contemplating a possible way to design a method for deuteration of 

biologically active compounds that contain an N-alkylamine unit (1) with readily available 

acetone-d6 2 as a source of deuterium (Figure 1C). We considered utilizing a combination of 

Lewis acid and Brønsted base catalysts that would function cooperatively.10-12 We 

envisioned that B(C6F5)3 could receive a hydride from an amine (1), generating a 

borohydride and an iminium ion (I).13-19 Subsequently, a Brønsted basic amine catalyst 

would deprotonate I, furnishing enamine II.13-16 Concurrently, the N-alkylamine could 

dedeuterate B(C6F5)3-activated acetone-d6 2, generating an enolate and a deuterated 

ammonium ion (III).20 Ensuing deuteration (IV) of the enamine II by III gives an iminium 

ion; subsequent borohydride reduction would afford β-deuterated product 3. Here, we report 

the development of a catalyst system for β-amino C─H deuteration of bioactive amines.

We first set out to identify a desirable combination of catalysts. We probed the ability of 

B(C6F5)3 and various Brønsted bases to catalyze the reaction between verapamil 1a and 

acetone-d6 2 (6.8 equivalent), generating 3a (Table 1). Treatment of 1a and 2 with 5.0 mol% 

B(C6F5)3 and 10 mol% NEt3, NBn3, or 1,2,2, 6,6-pentamethylpiperidine (PMP) afforded 3a 
in >90% yield (toluene, 125 °C, 1 h); 16-34% of β-amino C─H bonds were converted to 

C─D bonds (entries 1–3). With more Brønsted basic 1,8-diazabicyclo[5.4.0]undec-7-ene 

(DBU), no labeling was observed (entry 4). When the transformation was performed without 

a Brønsted base co-catalyst, 3a was generated with 35% and 21% deuterium incorporation 

(entry 5), suggesting that N-alkylamines 1a and/or 3a can promote deprotonation of the 

iminium ion (I, Figure 1C; NR3 = 1a and/or 3a). Deuterium incorporation diminished to 

<10% with 5.0 mol% of B(C6F5)3 and reaction temperature of 100 °C (entry 6), but when 

the reaction mixture was heated at 150 °C, 3a was obtained with >80% labeling (entry 7). 

With 10 mol% B(C6F5)3 there was only minor improvement (entry 8, 88% and 92%). 

However, by reacting 1a with two batches of 5.0 mol% of B(C6F5)3 and 2 (6.8 equivalent), 

we were able to obtain 3a with >95% deuterium incorporation (entry 9). There was no 

labeling without B(C6F5)3 or when the less hindered BF3 or the less Lewis acidic BPh3 were 

used (entries 10–12). These findings support the notion that strongly acidic B(C6F5)3 

together with sterically demanding and electron-rich N-alkylamine constitute the most 

effective combination.10

Acyclic β-amino C─H bonds in a number of pharmaceuticals (1a–1j) underwent efficient 

deuteration (Table 2). This protocol was found to be compatible with compounds that 
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contain an array of Lewis acid-sensitive functional groups. In addition to the N-alkylamine 

units of 1a–1j, cyano (1a), ester (1b), amide (1d, 1e, 1f) and ketone (1j) were tolerated to 

give the deuteration products 3a–3j in 77 to >95% yield after purification by silica gel 

chromatography. Labeling took place with high regioselectivity for β-amino C─H bonds. In 

addition, drug molecules that possess acidic α-carbonyl C─H bonds also underwent 

efficient deuteration (3d, 3j) based on analysis of 1H NMR spectra of unpurified mixtures. 

Nonetheless, in case of 3d, α-carbonyl C─D bonds of indolin-2-one underwent H─D 

exchange during purification.

For substrates that possess electronically and sterically disparate β-amino C─H bonds (1a, 

1b, 1c, 1d, 1g, 1j), deuterium labeling occurred at varying levels. With verapamil 1a, 

benzylic C2─H and non-benzylic C4─H bonds were converted to C─D bonds in >95%, 

but deuteration of non-benzylic C4─H bonds was more efficient (Table 1, entries 5-9). With 

dicyclomine 1b, while 90% of C2’─H bonds of N-ethyl groups was deuterated, only 23% 

of C1─H bonds adjacent to an ester group were converted to C─D bonds. Similar 

reactivity was observed with clomiphene 1c: 90% of C2’─H bonds were converted into C2’

─D bonds, but 15% of α-aryloxy C1─H bonds were deuterated. Ropinirole 1d was labeled 

at benzylic C1─H bonds (63%), and C2’─H bonds of N-propyl group (86%).

Although the catalytic protocol tolerates an array of functional groups, isotopic labeling was 

more efficient with substrates bearing a protecting group. For instance, 80% of β-C─H 

bonds of lidocaine 1e, which possesses acidic amide N─H bonds, was converted to C─D 

bonds to give 3e. However, deuteration of N-benzyl-protected lidocaine 1f proceeded more 

efficiently to afford 3f with 96% d-incorporation; in addition, deuteration of α-carbonyl 

C─H bonds was also observed (9%). Cinacalcet 1g containing a secondary amine moiety 

was a compatible substrate to provide 3g (63% [C2] and 8% [C2’]), and N-benzyl-protected 

cinacalcet 3h was obtained with >98% of β-amino C2─H bonds selectively converted into 

C─D bonds. With less sterically hindered secondary amines nortriptyline 1i and 

propafenone 1j, their reaction with acetone-d6 may inhibit labeling. However, with an N-

benzhydryl group installed, 3i and 3j could be readily generated. Silyl protection of the 

secondary alcohol proved to be effective in the case of propafenone 1j, giving 3j (76% [C2] 

and 0% at more sterically hindered [C2’]).

Next, we investigated possible labeling of various pharmaceuticals that contain cyclic β-

amino C─H bonds (Table 3; 1k–1s). A variety of Lewis acid-sensitive heterocycles such as 

piperidine (1k–1q), 1,4-diazepane (1r), piperazine (1s), thiophene (1k, 1l), indanone (1m), 

benzodioxole (1o, 1p), benzothiophene (1q), as well as benzoimidazole (1r) were tolerated 

to give the corresponding deuteration products in 85 to >95% yield. With clopidogrel 1k, 

prasugrel 1l, and donepezil 1m, both β-amino C─H bonds and enolizable α-carbonyl C─H 

bonds underwent efficient deuteration to give 3k–3m, but acidic α-keto C─D bond of 3l 
was converted to C─H bond during purification. Less acidic α-amide C─H bond of 

bupivacaine 1n was not deuterated. With bupivacaine 1n and raloxifene 1q that contain 

acyclic and cyclic β-amino C─H bonds, labeling of the cyclic C─H bond was more 

efficient (>90% vs ≤29% for the acyclic C─H). N-Benzyl (1o) and N-benzhydryl (1p)-

protected paroxetine gave 3o and 3p, respectively. The level of labeling for the more 
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hindered 3p (94%) was superior to 3o (76%). Furthermore, deuteration of the C5─H bond 

occurred selectively, while the tertiary C3─H bond remained intact. Deuteration of 

emedastine 1r was found to take place at C2─H (33%) and C6─H (60%) bonds. All eight 

C─H bonds of piperazine ring of O-TBS-protected dropropizine 1s underwent deuteration 

to afford 3s (>86%). Using this protocol, α-amino C─H deuteration occurred only when 

these bonds were also alpha to a carbonyl group (3f) or beta to a N atom (3s).

The method is scalable. Treatment of 1.4 g (3.0 mmol) of verapamil 1a with 5.0 mol% 

B(C6F5)3, 20 mmol of acetone-d6 (toluene, 12 h, 150 °C), followed by filtration through a 

pad of silica gel and repeating the aforementioned procedure afforded 3a in 95% yield (2.9 

mmol, 1.3 g) and >93% deuterium incorporation (Scheme 1).

To summarize, we have designed an efficient and regioselective deuterium labeling of β-

amino C─H bonds in various bioactive molecules, provided that sufficient steric congestion 

is present around the reacting amine. By implementing the cooperative action of B(C6F5)3 

and N-alkylamine catalyst system, we show that it is possible to convert an N-alkylamine-

based pharmaceutical compound to the corresponding enamine, and that the same catalyst 

system can generate a labeling agent from acetone-d6. The principles outlined herein, 

entailing conversion of amine containing drugs into enamines and its reaction with in situ 

generated electrophilic partner, provide a new rational framework for late-stage modification 

of a drug candidate. Studies along these lines are in progress.
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Figure 1. 
Amino C─H deuteration of biologically active molecules.
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Scheme 1. 
Scale-up experiment
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Table 1.

Evaluation of Reaction Parameters 
a,b,c,d

 entry Lewis acid Brønsted base  temperature  d-incorporation (%)

(mol%) (mol%)  (°C)  [C2]  [C4]

 1 B(C6F5)3 (5.0) NEt3 (10)  125  17  26

 2 B(C6F5)3 (5.0) NBn3 (10)  125  20  34

 3 B(C6F5)3 (5.0) PMP (10)  125  16  26

 4 B(C6F5)3 (5.0) DBU (10)  125  0  0

 5 B(C6F5)3 (5.0) none  125  21  35

 6 B(C6F5)3 (5.0) none  100  <5  7

 7 B(C6F5)3 (5.0) none  150  80  85

 8 B(C6F5)3 (10) none  150  88  92

 9
c B(C6F5)3 (5.0 x 2) none  150  95  >98

 10 none none  150  0  0

 11 BF3•OEt2 (5.0) none  150  0  0

 12 BPh3 (5.0) none  150  0  0

a
Conditions: verapamil (1a, 0.1 mmol), acetone-d6 (2, 0.68 mmol), organoborane, Brønsted base, toluene (0.4 mL), under N2, 1 h.

b
Yield and deuterium incorporation level was determined by 1H NMR analysis of unpurified reaction mixtures with mesitylene as the internal 

standard.

c
Conditions: verapamil (1a, 0.2 mmol), acetone-d6 (2, 1.4 mmol), B(C6F5)3 (5.0 mol%), toluene (0.8 mL), under N2, 150 °C, 1 h. Isolated and 

purified 3a was reacted with acetone-d6 (2, 1.4 mmol), B(C6F5)3 (5.0 mol%), toluene (0.8 mL), under N2, 150 °C, 1 h.

d
Green label indicates sites that are beta to N.
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Table 2.

Deuteration of Acyclic β-Amino C─H Bonds 
a,b,c

a
Conditions: N-alkylamine (1, 0.2 mmol), acetone-d6 (2, 1.36 mmol), B(C6F5)3 (10 mol%), toluene (0.8 mL), under N2, 150 °C, 3 h.

b
Yield of isolated and purified product. Deuterium incorporation level was determined by 1H NMR analysis of the isolated and purified product.

c
Green label indicates sites that are beta to N. Red label is used for any other sites that undergo deuteration.

J Am Chem Soc. Author manuscript; available in PMC 2020 April 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chang et al. Page 11

d
Conditions: N-alkylamine (1, 0.2 mmol), acetone-d6 (2, 1.4 mmol), B(C6F5)3 (5.0 mol%), toluene (0.8 mL), under N2, 150 °C, 3 h. After the 

filtration of the crude reaction mixture through a pad of silica gel and removal of volatiles, acetone-d6 (2, 1.4 mmol), B(C6F5)3 (5.0 mol%), and 

toluene (1.0 mL) were added under N2, and then heated at 150 °C, 3 h.

e
The reaction was carried out in two batches, using 10 mol% of B(C6F5)3 in the first batch, and 5.0 mol% in the second. For details, see the SI.
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Table 3.

Deuteration of Cyclic Amino C─H Bonds 
a,b

a
Conditions: N-alkylamine (1, 0.2 mmol), acetone-d6 (2, 1.36 mmol), B(C6F5)3 (10 mol%), toluene (0.8 mL), under N2, 150 °C, 3 h.

b
Yield of isolated and purified product. Deuterium incorporation level was determined by 1H NMR analysis of the isolated and purified product.

c
Green label indicates sites that are beta to N. Red label is used for any other sites that undergo deuteration.

d
Conditions: N-alkylamine (1, 0.2 mmol), acetone-d6 (2, 1.4 mmol), B(C6F5)3 (5.0 mol%), toluene (0.8 mL), under N2, 150 °C, 3 h. After the 

filtration of the crude reaction mixture through a pad of silica gel and removal of volatiles, acetone-d6 (2, 1.4 mmol), B(C6F5)3 (5.0 mol%), and 

toluene (1.0 mL) were added under N2, and then heated at 150 °C, 3 h.

e
The reaction was carried out in two batches, using 10 mol% of B(C6F5)3 in the first batch, and 5.0 mol% in the second. For details, see the SI.
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