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Abstract

(+)-Perseanol is an isoryanodane diterpene with potent antifeedant and insecticidal properties 

isolated from the tropical shrub Persea indica.1 It is structurally related to (+)-ryanodine, a high 

affinity ligand and modulator of ryanodine receptors (RyRs)—ligand-gated ion channels critical 

for intracellular Ca2+ signaling in vertebrates and invertebrates.2 Whereas ryanodine modulates 

RyR-dependent Ca2+ release across many organisms, including mammals, preliminary data 

indicate that ryanodane and isoryanodane congeners that lack the pyrrole-2-carboxylate ester, such 

as perseanol, may have selective activity in insects.3 Here we report the first chemical synthesis of 

(+)-perseanol, which proceeds in 16 steps from commercially available (R)-pulegone. The 

synthesis features a two-step annulation process that rapidly assembles the tetracyclic core from 

readily accessible cyclopentyl building blocks. This work demonstrates how convergent fragment 

coupling, when combined with strategic oxidation tactics, can enable the concise synthesis of 

complex and highly oxidized diterpene natural products.

The ryanodane and isoryanodane natural products are oxidized diterpenes with antifeedant 

and insecticidal activities against insects of the Hemiptera and Lepidoptera orders. 

Ryanodine (1, Figure 1a), isolated from Ryania speciosa Vahl, was the first of these natural 

products to be characterized, and powdered R. speciosa wood was marketed as a botanical 

insecticide with peak annual production reaching 200 metric tons.4 The insecticidal 

properties of 1 result from its modulation of Ca2+ release by RyR.2 In the early 2000s, 

renewed interest in the insect RyR as a biological target for pest control agents resulted in 

the discovery and development of the phthalic acid diamide and anthranilic diamide 

insecticides—which bind at an allosteric site in the transmembrane domain of the insect 

RyR—with sales of these products exceeding 1 billion USD.5–6
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Decades after the discovery of 1, Fraga and coworkers isolated the natural product (+)-

perseanol (3, Figure 1b) and related congeners from the shrub Persea indica found in the 

Canarian Archipelago. Perseanol (3) features an isomeric carbon framework to 1 but bears a 

similar oxidation pattern and likely results from a shared biosynthetic pathway.1 A key 

difference between the structures of 3 and 1, in addition to their carbon skeletons, is that 3 
lacks the pyrrole-2-carboxylate ester at C3, a functional group that is required for high 

affinity binding of 1 to mammalian isoforms of the RyR.2 Indeed, in preliminary assays, 3, 

4, and related metabolites7–9 were found to exhibit potent antifeedant activity for 

lepidopteran pests with low toxicity toward mammalian cell lines (in contrast to 1), although 

the mode-of-action of 3 was not confirmed to be modulation of the insect RyR.10 Synthetic 

access to 3 could enable the elucidation of its mode-of-action and aid the identification of 

new approaches to target insect RyRs that have evolved resistance to the phthalic acid 

diamide and anthranilic diamide pesticides.11 Although Inoue and coworkers have reported 

an approach to the pentacyclic core of the isoryanodanes, there are no prior completed 

syntheses of this complex diterpene.12 Here we report the first chemical synthesis of (+)-

perseanol (3), which proceeds in 16 steps from commercially available (R)-pulegone. The 

concise synthesis is enabled by a convergent fragment coupling approach that rapidly builds 

the anhydroperseanol tetracycle and uses strategic C–O bond constructions to minimize 

unnecessary functional group interconversions.

The structure of perseanol presents several synthetic challenges, including the central 

bridging 7-membered lactol and the two syn-diol motifs at the A–B and B–C ring fusions 

(Figure 1b). A critical aspect of our synthetic design was the strategic introduction of the six 

hydroxyl groups in order to minimize extraneous protecting group and oxidation state 

manipulations. With this in mind, we envisioned initially targeting the synthesis of 

anhydroperseanol (5), in which the C6–C10 diol would be introduced early in the synthetic 

sequence and the C4–C12 diol would be installed at a late stage (Figure 1c). Although the 

conversion of anhydroperseanol to perseanol had not previously been validated 

experimentally, this disconnection was guided by Deslongchamps’ synthesis of (+)-ryanodol 

(2),13 as well as our own synthesis of (+)-ryanodine.14–15 Having simplified our target to 5, 

we sought to identify a convergent fragment coupling that would rapidly assemble the 

tetracyclic lactone from two building blocks of similar size and complexity. Ultimately, 

lactone 6 was recognized as a strategic intermediate that could be accessed from simple 

cyclopentyl fragments by an annulation process involving two C–C bond forming steps: 1) 

the 1,2-addition of an organometallic species, such as 9, to aldehyde 10 to initially join the A 

and C rings, and 2) an intramolecular carbopalladation/carbonylation cascade reaction of 8 
to close the B and D rings. In the key Pd-catalyzed cascade, it was envisioned that oxidative 

addition of alkenyl halide 8 to Pd0 followed by 6-exo-trig migratory insertion of the pendant 

1,1-disubstituted alkene would give rise to σ-alkylpalladium species 7, which would be 

incapable of β-hydride elimination. Subsequent CO insertion of 7 and intramolecular 

capture by the C11 secondary alcohol would deliver 6, bearing the tetracyclic ring system of 

anhydroperseanol. In practice, this would require a bifunctional cyclopentene, 9, which we 

anticipated accessing via the selective lithiation of the corresponding iodide following 

precedent established by Vidari and coworkers.16 The second fragment, aldehyde 10, would 

be prepared from commercially available (R)-pulegone via the methyl pulegenate.17 The 
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successful realization of this fragment coupling strategy would provide a modular route to 3 
that we anticipated could ultimately give rise to additional designed and natural 

isoryanodanes.

Our investigations began with the preparation of C-ring aldehyde 10. Starting with (R)-(+)-

pulegone (11), a known one-step oxidative ring contraction was performed to give methyl 

pulegenate (12) as an inconsequential mixture of diastereomers (Figure 2).18 Enolization of 

methyl ester 12 with potassium hexamethyldisilazide (KHMDS) followed by exposure to O2 

then P(OMe)3 resulted in diastereoconvergent α-hydroxylation to furnish α-hydroxyester 13 
(9:1 dr). Hydroxyl-directed epoxidation with meta-chloroperbenzoic acid (m-CPBA) 

provided epoxide 14 as a single diastereomer, and subsequent treatment of 14 with 

diethylaluminum 2,2,6,6-tetramethylpiperidide (Et2Al(TMP))19 induced epoxide 

isomerization to reveal syn-diol 15, bearing the requisite oxidation at C6 and C10 for 

elaboration to 3. Protection of the diol as the benzylidene acetal (16) followed by in situ 
diisobutylaluminum hydride (DIBAL) reduction of the ester provided alcohol 17 as a single 

diastereomer in 87% yield. Alcohol 17 was oxidized to aldehyde 18 via Stahl’s Cu-catalyzed 

aerobic conditions.20 This 6-step sequence provided gram scale access to a fully-elaborated 

C-ring precursor of (+)-perseanol (3).

Preparation of the A-ring fragment commenced with commercially available vinylogous 

ester 19 (Figure 2). Due to concerns about potential racemization under the conditions 

required to install the vicinal dihalide, we elected to prepare 24 first as a racemate, and then 

resolve the enantiomers in a subsequent asymmetric reduction step. To this end, the zinc 

enolate of 3-ethoxy-2-cyclopentenone (19) was alkylated under conditions reported by 

Overman and coworkers21 to generate rac-21. Iodination of the vinylogous ester with I2 and 

ammonium cerium(IV) nitrate (CAN) afforded iodide 22, which was hydrolyzed with 

aqueous sodium hydroxide. Diketone 23 was converted to rac-bromoiodocyclopentenone 24 
upon treatment with a mixture of oxalyl bromide and N,N-dimethylformamide (DMF).22 

The reaction proceeds with 5:1 regioselectivity, favoring bromination of the enol tautomer 

distal to the i-propyl group. Corey-Bakshi-Shibata (CBS) reduction of rac-24 using catalyst 

(R)-2523 resulted in a kinetic resolution to deliver alcohol (–)-(1S, 5R)-27 in 44% yield and 

91% ee (S = 44, see Supplemental Information for details). The kinetic resolution is 

consistent with the stereochemical model developed by Corey (see 26),24 wherein the i-
propyl substituent of (R)-24 projects away from the coordinated borane, resulting in 

reduction of (R)-24 at a faster rate than (S)-24. Unreacted enone (S)-24 could be recovered 

in 56% yield and 68% ee; resubjection of (R)-24 to (R)-25 allows it to be further enriched to 

93% ee (79% recovery). Protection of alcohol 27 using Dudley’s conditions25 provided the 

C-ring fragment, para-methoxybenzyl (PMB) ether 29.

With the requisite fragments in hand, a two-step annulation to forge the anhydroperseanol 

tetracyclic ring system was investigated (Figure 3). First, the A and C ring fragments were 

joined by addition of aldehyde 18 to the alkenyllithium generated by selective lithium–

iodide exchange of 29, which provided secondary alcohol 30 in 75% yield (3.2:1 dr, major 

diastereomer drawn). However, preliminary attempts to induce the subsequent 

carbopalladation/carbonylation cascade under canonical conditions, which involved 
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exposure of the substrate to a Pd catalyst and base under a CO atmosphere, resulted in the 

clean recovery of alkenyl bromide 30 (Table 1, entry 1). A control experiment demonstrated 

that bromide 30 can undergo oxidative addition to bis(tri-ortho-tolylphosphine)palladium(0) 

(Pd(P(o-Tol)3)2) in the absence of CO, which led to the hypothesis that coordination of CO 

to Pd was inhibiting the rate of oxidative addition.26 To investigate the feasibility of the 

carbonylation step, bromide 30 was heated with stoichiometric Pd(P(o-Tol)3)2 to induce 

oxidative addition and alkene insertion, and upon consumption of starting material, CO was 

introduced. Gratifyingly, the desired tetracyclic lactone 31 was isolated in 52% yield under 

these stoichiometric conditions (entry 3). An extensive investigation of different Pd sources 

and ligands did not improve the yield further (entries 4 and 5, see Supplementary 

Information for further details). The major side product observed under these conditions was 

direct carbonylation of the bromide of 30 to give butyrolactone 32. Having validated that the 

cascade could be effected under stoichiometric conditions, we reasoned that in situ 
generation of CO, to maintain low concentrations of CO in solution,27–30 might enable the 

reaction to proceed with catalytic Pd. Ultimately, it was determined that the combination of 

1.2 equiv N-formylsaccharin (36) and KF, in the presence of 50 mol % Pd(PPh3)4 and 

triethylamine (Et3N) provided the tetracyclic lactone 31 in 57% yield, as a single 

diastereomer at the newly formed quaternary carbon (entry 10). In contrast to the Manabe’s 

original report29 of Pd-catalyzed carbonylation with N-formylsaccharin, bisphosphine-

ligated Pd complexes performed poorly (entries 12 and 13). This key transformation forges 

two C–C bonds, with perfect control over the C5 quaternary center, while forming the 

central 7-membered lactone of anhydroperseanol.

With the tetracyclic framework of anhydroperseanol (5) in place, our focus transitioned to 

the final adjustments of the A-ring oxidation pattern (Figure 3). To this end, PMB ether 31 
was first subjected to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to reveal C1 

secondary alcohol 37, which was oxidized with dimethyldioxirane (DMDO) to the 

corresponding enone. In the presence of excess DMDO, the benzylidene acetal was 

unexpectedly oxidized to deliver hydroxybenzoate 38 (3:1 rr, major isomer drawn). 

Treatment of 38 with MeMgCl in the presence of CeCl3•2LiCl31 effected 1,2-addition to 

generate diol 39 (55% isolated yield of a single isomer, over two steps), an intermediate that 

now harbors all of the carbons present in the isoryanodane framework. Serendipitously, it 

was discovered that exposure of allylic alcohol 39 to trifluoroacetic acid (TFA) at 0 °C gives 

rise to orthobenzoate 41 in excellent yield. This 1,3-allylic transposition presumably 

proceeded by solvolysis under anchimeric assistance to generate dioxolenium ion 40, which 

is followed by intramolecular trapping with the C10 alcohol. Thus, over the course of these 

four steps, the benzylidene acetal protecting group was transiently repurposed as a directing 

group to guide the installation of the C4 tertiary alcohol and then reinstated as an 

orthobenzoate protecting group to mask the resulting triol for the rest of the synthesis.

With this fortuitous discovery, we were left to reconsider the final sequence of steps to 

prepare perseanol. Although we had initially targeted the preparation of anhydroperseanol 

(see Figure 1), the ability to prepare 41 led us to consider whether epoxide 43—potentially 

accessible from 41 by allylic C–H oxidation and hydroxyl-directed epoxidation—could 

undergo reductive cyclization. It was recognized that this cyclization might be challenging, 

Han et al. Page 4

Nature. Author manuscript; available in PMC 2020 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



given that formation of the C1–C15 bond via epoxylactone isomer 43 would require a 

Baldwin disfavored32 5-endo-tet epoxide ring opening, when viewed from the formation of 

the THF ring. Successful endo-ring openings of epoxides have been reported in the 

literature, but they generally rely on directing groups to stabilize the epoxonium 

intermediate under Brønsted or Lewis acidic conditions; related endo-cyclizations of 

epoxides under neutral or basic conditions are less common. Nevertheless, given the 

strategic advantage of this approach, we elected to investigate it.

To this end, exposure of 41 to SeO2 in 1,4-dioxane at 100 °C resulted in site-selective and 

stereospecific oxidation at C2 to give tertiary allylic alcohol 42 in 78% yield (Figure 3). 

Vanadium-mediated hydroxyl-directed epoxidation of 42 then provided epoxyalcohol 43 as a 

single diastereomer. The use of vanadium(V) oxytripropoxide (VO(On-Pr)3) proved 

essential to obtain full conversion of alkene 42; the more routinely used vanadium(III) 

acetylacetonate (VO(acac)2) gave only 5–10% conversion under otherwise identical 

conditions. Treatment of epoxylactone 43 with lithium 4,4′-di-tert-butylbiphenylide 

(LiDBB), the optimal conditions from our (+)-ryanodine synthesis,15 did produce small 

quantities of the desired pentacycle 46; however, significant decomposition was observed. 

Analysis of the side products revealed that reduction of the orthobenzoate was a competing 

process, prompting a screen of different reductants in order to prevent this undesired 

reactivity. Use of lithium naphthalenide (LiNap) provided the desired pentacycle in 17% 

isolated yield. Weaker reductants, like lithium anthracenide (LiAnth), gave rise to epoxide 

isomerization products instead of reductive cyclization. A further screen of modified 

naphthalenes revealed that use of lithium 2-phenylnaphthalenide (LiPhNap) effects 

cyclization to give the desired pentacycle 46 in 25% yield (43% yield based on recovered 

starting material). The use of PhH as a co-solvent, which had previously been reported by 

Carreira and coworkers to improve ketyl anion chemistry, was critical for the improved 

yield.33 We note that a similar substrate, lacking the C2 i-propyl substituent, undergoes the 

reductive cyclization mediated by LiDBB in 50% yield, demonstrating that the position of 

the epoxide itself is not chiefly responsible for the reduced efficiency in the cyclization. 

Deprotection of 46 with Pd(OH)2/C under an atmosphere of H2 afforded (+)-perseanol (3) in 

90% yield. This approach provides (+)-perseanol (3) in 16 steps (longest linear sequence) 

from (R)-pulegone (11), and is the first total synthesis of an isoryanodane diterpene. The 

concision of the synthesis derives from the convergent union of two cyclopentyl fragments 

of comparable complexity, followed by a carbopalladation/carbonylation cascade to form 

two C–C bonds and rapidly constructs the tetracyclic lactone framework of 

anhydroperseanol. Strategic late-stage introduction of the A-ring oxidation pattern 

minimized lateral redox and protecting group manipulations. This synthetic framework 

should provide a versatile platform for the preparation of designed isoryanodanes and further 

studies of their mode-of-action.

Methods.

Unless otherwise stated, reactions were performed under an inert atmosphere (dry Ar) with 

freshly dried solvents utilizing standard Schlenk techniques. Tetrahydrofuran (THF), 

methylene chloride (CH2Cl2), acetonitrile (MeCN), diethyl ether (Et2O), 1,4-dioxane, 
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toluene (PhMe), and benzene (PhH) were dried by passing through activated alumina 

columns. Yields refer to chromatographically and spectroscopically (1H and 13C) 

homogeneous materials, unless otherwise stated. Reagents were purchased at the highest 

commercial quality and used without purification, unless otherwise stated. Reactions were 

magnetically stirred and monitored by thin-layer chromatography. For full experimental 

details–including procedures for all reactions and characterization of all compounds (1H 

NMR, 13C NMR, mass spectrometry, infrared spectroscopy, retention factors)–see the 

Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The ryanodane and isoryanodane diterpenes.
(a) Chemical structure, carbon numbering, and ring system letter assignment for the 

ryanodane diterpenes. (b) Chemical structure, carbon numbering, and ring system letter 

assignment for the isoryanodane diterpenes. (c) Retrosynthetic analysis of the isoryanodane 

diterpene (+)-perseanol.
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Figure 2. Fragment preparation for the synthesis of (+)-perseanol.
Reagents and conditions as follows for C-ring fragment preparation: (1) Br2, NaHCO3, 

Et2O, –10 °C then NaOMe, MeOH, 55 °C, 78%. (2) KHMDS, THF then O2 (1 atm), 

P(OMe)3, −78 °C, 67%. (3) m-CPBA, NaHCO3, CH2Cl2, 0 °C, 92%. (4) Et2Al(TMP), 

PhMe, 0 °C, 68%. (5) benzaldehyde dimethyl acetal (PhCH(OMe)2), (±)-10-

camphorsulfonic acid (CSA), 1,2-dichloroethane (DCE), 23 °C then DIBAL, 0 °C, 87%. (6) 

Cu(MeCN)4OTf, 4,4′-dimethoxy-2,3′-bipyridine (MeObpy), 9-azabicyclo[3.3.1]nonane N-

oxyl (ABNO), 1-methylimidazole (NMI), air, MeCN, 23 °C, 98%. Reagents and conditions 

as follows for A-ring fragment preparation: (1) 2-iodopropane (20), lithium 

diisopropylamide (LDA), diethylzinc (Et2Zn), hexamethylphosphoramide (HMPA), THF, 

−78 °C to 23 °C, 70%. (2) I2, CAN, MeCN, 0 °C to 23 °C, 73%. (3) 1.0 M NaOH (aq), 1,4-

dioxane/MeOH (1:1), 23 °C. (4) oxalyl bromide ((COBr)2), DMF, CH2Cl2, 0 °C to 23 °C, 

68%, 2 steps. (5) 25 (0.4 equiv), BH3•NEt2Ph (0.7 equiv), CH2Cl2, 23 °C, 44% (–)-27, 91% 

ee. (6) 28 (2.0 equiv), CSA, CH2Cl2, 23 °C, 81%.
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Figure 3. 16-step synthesis of (+)-perseanol.
Reagents and conditions as follows: (7) 29 (1.25 equiv), n-butyllithium (1.25 equiv), THF, 

−78 °C to −50 °C, 75%. (8) Pd(PPh3)4 (50 mol %), N-formylsaccharin (1.2 equiv), KF, 

Et3N, 1,4-dioxane, 100 °C, 57%. (9) DDQ, CH2Cl2/pH 7 buffer (5:1), 0 °C, 80%. (10) 

DMDO (3.0 equiv), Na2SO4, acetone, 23 °C. (11) MeMgCl (2.0 equiv), CeCl3•2LiCl (2.0 

equiv), THF, 0 °C, 55%, 2 steps. (12) TFA, CH2Cl2, 0 °C, 90%. (13) SeO2, 1,4-dioxane, 100 

°C, 78%. (14) VO(On-Pr)3, tert-butyl hydroperoxide (TBHP), PhMe, 60 °C, 68%. (15) 44 
(4.5 equiv), PhH/THF (1:1), 10 °C, 25% (43% BRSM). (16) Pd(OH)2/C, H2 (1 atm), MeOH, 

90%.
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Table 1.

Evaluation of conditions for a Pd-catalyzed carbopalladation/carbonylation cascade.

entry
a [Pd] mol % CO source additive N (min) 30 (%)

b
31 (%)

b
32 (%)

b

1 Pd(P(o-Tol)3)2 50 CO (1 atm) 0 92 1 5

2 Pd(P(o-Tol)3)2 50 CO (1 atm) 20 67 11 15

3 Pd(P(o-Tol)3)2 120 CO (1 atm) 90 0 52 0

4 Pd(P(o-Tol)3)2 120 CO (10 atm) 90 0 53 0

5 Pd(PPh3)4 120 CO (1 atm) 90 23 48 13

6 Pd(PPh3)4 50 33 DBU 85 0 8

7 Pd(PPh3)4 50 34 90 0 0

8 Pd(PPh3)4 50 35 KF 14 7 4

9 Pd(PPh3)4 50 36 KF 22 31 10

10 Pd(PPh3)4 50 36 KF 1 57 14

11 Pd(P(o-Tol)3)2 50 36 KF 60 0 0

12 PdCl2(dppf) 50 36 KF 80 0 0

13 PdCl2(Xantphos) 50 36 KF 55 1 4

a
Reactions performed on 0.01 mmol scale at 100 °C.

b
Yields determined by 1H NMR versus pyrazine as an added internal standard.

DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; dppf, 1,1′-bis(diphenylphosphino)ferrocene; Xantphos, 4,5-bis(diphenylphosphino)-9,9-
dimethylxanthene
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