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Why was the cohort set up?

Genetic modulation of drug response can cause life-

threatening adverse drug reactions, increase susceptibility to

drug–drug interactions and alter therapeutic effectiveness.1–3

Pharmacogenomics has the potential to immediately impact

the care of patients and is a hallmark of genomic medicine

worldwide. Ideally, pharmacogenomics-guided drug selection

will produce optimal effects for specific indications, reduce

delays in care to effective therapies, improve patient safety and

reduce health care costs. Over the past decade, a large number

of pharmacogenomic variants with demonstrated clinical util-

ity have been identified and corresponding international guide-

lines for clinical implementation have been developed and

published by the Clinical Pharmacogenetics Implementation

Consortium (CPIC),4 Canadian Pharmacogenomics Network

for Drug Safety (CPNDS)5 and Royal Dutch Association for

the Advancement of Pharmacy Dutch Pharmacogenetics

Working Group (DPWG).6 There is now general agreement

that pharmacogenomics represents an area within genomic sci-

ence that could have a significant positive impact on clinical

medicine and, ultimately, affect every patient.

Pre-emptive sequencing of patients interrogates large

numbers of pharmacogenomic variants and integrates clini-

cally actionable results into a patient’s electronic health re-

cord (EHR) for efficient use by clinicians at the point of care.

It is unknown, however, whether integration of pre-emptive

pharmacogenomic data into the EHR will significantly im-

prove patient outcomes and reduce health care costs.

Therefore, the Right Drug, Right Dose, Right Time: Using

Genomic Data to Individualize Treatment Protocol (RIGHT

Protocol) study was designed to recruit a large group of

patients for pre-emptive pharmacogenomic testing, to de-

velop the EHR infrastructure to deliver point of care clinical

decision support and to study the effects of integrating pre-

emptive pharmacogenomic testing into applied clinical prac-

tice on patient outcomes. As a result of these efforts, we have

recruited 11 098 patients to study pre-emptive pharmacoge-

nomic implementation in an integrated medical system. The

RIGHT cohort therefore serves as a scientific resource to

broadly address the following scientific questions.

• What are the associations between genetic variants and

clinical outcomes in patients prescribed drugs known to

interact with these genes? The outcomes we will investi-

gate include therapeutic response (e.g. pain control),

time to optimal therapeutic goal, number of drug and/or

dose changes, health care utilization (e.g. clinic visits and

hospital days), adverse drug events/toxicity (e.g. gastro-

intestinal upset), and subsequent clinical events (e.g.

stroke).

• Does pre-emptive pharmacogenomic testing improve patient

outcomes and reduce health care costs through optimized

treatment? By comparing patients with pharmacogenomic

data to pharmacogenomics-naı̈ve patients we will test the

hypothesis that pre-emptive pharmacogenomic testing

reduces adverse drug events, lowers health care utilizations

and costs, and improves therapeutic response, patient safety

and satisfaction.

• What clinical outcomes are associated with pharmacoge-

nomic variants of unknown or indeterminate clinical sig-

nificance or for which evidence for changes in prescribing

practices is limited? A critical barrier in identifying phar-

macogenomic variants that are clinically significant is the

reliance on costly clinical trials that investigate a single

drug or outcome. Observational studies such as the

RIGHT Protocol study will provide valuable insights re-

garding the cost-effectiveness of identifying drug–gene

interactions that result in adverse drug events and other

clinically significant outcomes.

• How does pre-emptive pharmacogenomic testing impact

clinician and patient perspectives and the broad spectrum

of clinical practice? Understanding the potential influence

of pre-emptive pharmacogenomics in prescribing practi-

ces, as well as identifying the possible impacts to clinician

and patient interactions, can elucidate risks and opportu-

nities that support safe integration. Identifying gaps and

providing education is vital to support wide-scale imple-

mentation when diffusing medical innovations.

Who is in the cohort?

Setting

Mayo Clinic is a non-profit academic medical institution

with major campuses in Rochester, MN; Scottsdale and

Phoenix, AZ; and Jacksonville, FL. The Mayo Clinic

Health Systems has dozens of locations in MN, IA and WI.

Together, these sites provide comprehensive patient care,

education in clinical medicine and medical sciences, and

extensive programmes in research. In 2018, Mayo Clinic
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provided direct care for 1.3 million people from all 50

states and 136 countries.

The Mayo Clinic Biobank is an institutional resource

comprised of adult community volunteers who donated

biological specimens, provided risk factor data, allowed

access to EHR data for research and consented to partici-

pate in additional studies.7 To date, over 57 000 subjects

have consented to participate. Since its inception, this re-

source has been used for more than 250 ancillary studies

and has distributed over 125 000 samples. The Mayo

Clinic Biobank was the source cohort for the RIGHT

Protocol study, which allowed the timely recruitment of

11 098 participants with previously stored DNA samples.

Mayo Clinic EHR data are available for all Biobank par-

ticipants. However, patients use different health care pro-

viders for different reasons and may change providers and

health care systems over time. Therefore, the Mayo Clinic

EHR may not contain complete data for all Biobank partici-

pants. However, most of the Biobank participants (82%) re-

side within the region captured by the Rochester

Epidemiology Project (REP) medical records-linkage system.

The REP is an established research infrastructure that links

the health care records of persons residing in a 27-county re-

gion of southern MN and western WI (approximately 1.1

million persons in 2010).8–10 Briefly, the REP links the

health care records of Mayo Clinic, Olmsted Medical

Center and its satellites, Olmsted County Public Health

Services, Zumbro Valley Health Center and some smaller

health care providers in this region. As residents of this re-

gion visit one of the REP collaborators for health care, the

REP captures the electronic data related to the health care

visits. In addition, the full texts of health care records are

available for abstraction for all persons in the REP system

since 1966. Overall, 99% of the Biobank participants have

at least one non-Mayo Clinic medical record captured by

the REP. Therefore, linking the Biobank participants to the

REP infrastructure provides access to more complete cover-

age and follow-up of the Biobank population.

Recruitment

Beginning in 2012, Biobank participants were recruited for

the RIGHT pilot study, which has been previously de-

scribed.11 In brief, 1013 patients consented to pharmacoge-

nomic testing and return of pharmacogenomic results to

their EHR for use in their clinical care. This pilot resulted in

the infrastructure to support the expansion of the cohort.

Beginning in May 2016, we began a targeted effort to fur-

ther enroll an additional 10 000 persons. Patients with prior

allogeneic haematopoietic stem cell transplants and/or hae-

matologic malignancies were not eligible to participate due

to the fact that circulating lymphocytes were used as the

DNA source. All non-White Biobank participants

(n¼ 1442) were preferentially invited to increase the diver-

sity of the cohort. Participants were then prioritized by those

that receive the majority of their care at Mayo Clinic based

on EHR length and a history of clinic visits in a primary

care clinic (e.g. Internal Medicine, Family Medicine). All eli-

gible Biobank participants were mailed an invitation to par-

ticipate in the RIGHT Protocol study and a consent form.

The invitation letter gave recipients three options: (i) partici-

pate in the study, (ii) decline to participate, or (iii) declare

themselves ineligible because they did not intend to utilize

Mayo Clinic for their future health care. Consenting

RIGHT participants agreed to allow use of their stored

Biobank samples for clinical pharmacogenomic testing, de-

posit of pharmacogenomic results into their EHR for clini-

cal use, and use of EHR and pharmacogenomic data for

research. If no response was received after a period of

4 weeks, one additional attempt was made with a second

mailing. This expanded recruitment effort was completed in

16 months. Overall, 18 199 persons were approached, 56%

consented to participate, 29% did not respond and 15%

self-reported ineligibility or refused (Table 1).

Cohort characteristics

Table 1 summarizes the characteristics of the RIGHT pilot

participants, recruitment results for the expansion of the

cohort and the characteristics of the full RIGHT cohort.

Table 2 compares characteristics of the RIGHT cohort,

Mayo Clinic Biobank and REP 27-county populations.

How often have they been followed up?

Prospective and retrospective studies

A primary goal of the RIGHT Protocol study was to imple-

ment pre-emptive pharmacogenomics for Mayo Clinic

patients. Therefore, by design, we anticipate the majority of

our follow-up will be conducted passively, via the EHR, in or-

der to estimate patient outcomes after implementation of pre-

emptive pharmacogenomics. Prospective studies, defined as oc-

curring after pharmacogenomic data were placed in the EHR,

permit comparisons of the RIGHT cohort to a pharmacoge-

nomics-naı̈ve group to determine the effects of genotype-

guided prescribing. As of January 1, 2018, 99% of the cohort

was living and 85% had a clinic visit in 2017 (Table 3). The

RIGHT Protocol study also enables retrospective studies by

leveraging decades of drug exposures to compare drug re-

sponse across genotype prior to pharmacogenomic results be-

ing placed in the EHR (pharmacogenomics-naı̈ve time period).

The median length of the medical record is 22years for the co-

hort (Table 3). For either study type, outcomes can include
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health care utilization, drug type and dose changes, time to op-

timal therapy, and adverse drug events including subsequent

clinical events (e.g. stent thrombosis). Finally, the availability

of genetic sequence data allows for discovery of additional

drug–gene interactions for which clinical evidence is limited or

non-existent.

Active follow-up

Participants in the cohort may, with appropriate approvals,

be contacted directly to assess pharmacogenomics-related

outcomes. To date, we have conducted three surveys

of RIGHT participants. The RIGHT pilot study partici-

pants were surveyed in 2014 to assess their understanding

of their CYP2D6 results.12 Of those invited, 86% com-

pleted the survey.13 In 2017, 5000 subjects from the ex-

panded cohort were surveyed after enrollment to collect

information on prior testing, expectations and concerns

about pharmacogenomic testing, as well as their views

about their current medications and medications in gen-

eral. Response to this survey was exceptionally high (94%)

and reflects a very high level of interest in

Table 1. Characteristics of 1013 RIGHT pilot participants and the 18 199 patients invited to participate in the expansion of the

RIGHT protocol

Characteristic RIGHT expansion results

RIGHT pilot

participantsa

Invited Consented Did not

respond

Ineligible/

refused

Complete

RIGHT cohort

n ¼ 1013 n ¼ 18 199 n ¼ 10 085 n ¼ 5331 n ¼ 2783 n ¼ 11 098

Sex, n (%)

Female 538 (53) 11 043 (61) 6150 (61) 3192 (60) 1701 (61) 6688 (60)

Male 475 (47) 7156 (39) 3935 (39) 2139 (40) 1082 (39) 4410 (40)

Age on January 1, 2016, years, n (%)

18–24 0 (0) 151 (1) 58 (1) 76 (1) 17 (1) 58 (1)

25–34 0 (0) 1701 (9) 647 (6) 784 (15) 270 (10) 647 (6)

35–44 2 (<1) 1722 (9) 825 (8) 744 (14) 153 (6) 827 (7)

45–54 178 (18) 2390 (13) 1299 (13) 831 (16) 260 (9) 1477 (13)

55–64 658 (65) 3769 (21) 2069 (21) 1138 (21) 562 (20) 2727 (25)

65–74 175 (17) 5084 (28) 3217 (32) 1056 (20) 811 (29) 3392 (31)

75þ 0 (0) 3382 (19) 1970 (20) 702 (13) 710 (26) 1970 (18)

Race, n (%)

White 966 (95) 16 759 (92) 9482 (94) 4689 (88) 2588 (93) 10 448 (94)

Non-White 39 (4) 1177 (6) 524 (5) 492 (9) 161 (6) 563 (5)

Black 7 (1) 124 (1) 50 (<1) 64 (1) 10 (<1) 57 (1)

Asian 9 (1) 276 (2) 91 (1) 139 (3) 46 (2) 100 (1)

AIAN 0 (0) 30 (<1) 16 (<1) 8 (<1) 6 (<1) 16 (<1)

NHPI 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Other and mixed 23 (2) 747 (4) 367 (4) 281 (5) 99 (4) 390 (3)

Unknown 8 (1) 263 (1) 79 (1) 150 (3) 34 (1) 87 (1)

Ethnicity, n (%)

Non-Hispanic 1006 (99) 17 906 (98) 9967 (99) 5205 (98) 2734 (98) 10 973 (99)

Hispanic 7 (1) 275 (2) 112 (1) 115 (2) 48 (2) 119 (1)

Unknown 0 (0) 18 (<1) 6 (<1) 11 (<1) 1 (<1) 6 (<1)

Self-reported education at time of Biobank

consent (2009–2017), n (%)

High school graduate or General Educational

Development (GED) or less

87 (9) 2754 (15) 1262 (13) 897 (17) 595 (21) 1349 (12)

Some college or Associates degree

(including community college)

326 (32) 5614 (31) 2938 (29) 1817 (34) 859 (31) 3264 (29)

Four year college graduate (Bachelor’s degree) 238 (24) 3580 (20) 1992 (20) 1079 (20) 509 (18) 2230 (20)

Graduate or professional school 362 (36) 6116 (34) 3848 (38) 1476 (28) 792 (28) 4210 (38)

Unknown 0 (0) 135 (1) 45 (<1) 62 (1) 28 (1) 45 (<1)

aPreviously recruited in 2012–2013.

AIAN, American Indian or Alaska Native; NHPI, Native Hawaiian or Pacific Islander.
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pharmacogenomics in our population. A follow-up survey

is currently in the field to assess responses following receipt

of pharmacogenomic results. Additionally, there are op-

portunities to study clinician perspectives, pharmacoge-

nomic testing behaviours and clinical actions following

deposition of pharmacogenomic results into the EHR.

Loss to follow-up

The recruitment design of the study prioritized patients for

whom Mayo Clinic is their primary care clinic and there-

fore loss to follow-up is mitigated. Likewise, use of the

REP allows for data capture within the surrounding com-

munity practices. However, data capture decreases as the

distance of the patient’s residence from Rochester, MN

increases. Loss to follow-up will occur for those patients

moving or choosing a provider out of our catchment area.

However, as indicated in Table 3, the RIGHT cohort

reflects a stable patient population with 91% receiving at

least one prescription in 2017.

What has been measured?

DNA sequencing and pharmacogenomic

phenotyping

For the 1013 pilot-study participants, lymphocyte-derived

DNA sequencing of 84 pharmacogenes was completed at

Mayo Clinic using Version 1 (v.1) of the PGRN-Seq as-

say.14 For the expanded RIGHT cohort, the Clinical

Laboratory Improvement Amendments (CLIA)-certified

and College of American Pathologists (CAP)-accredited

Baylor College of Medicine’s Human Genome Sequencing

Center Clinical Laboratory sequenced 77 genes using ver-

sion 3 (v.3.) of the PGRN-Seq assay (now termed PGx-

seq). This panel includes structurally complex genomic

regions important to optimal drug treatment including

CYP2D6 and HLA regions. CYP2D6 is involved in the

metabolism of 25% of the drugs currently on the market15

and HLA regions are associated with severe drug hypersen-

sitivities (e.g. Stevens-Johnson Syndrome). In v.1, all gene

coverage included all gene model exons plus both 2 kb up-

stream and 1 kb downstream. In v.1, targeted exons and

Table 2. Characteristics as of January 1, 2016 of the RIGHT cohort, Mayo Clinic Biobank and Rochester Epidemiology Project

RIGHT cohort Mayo Clinic Biobank Rochester Epidemiology Project 27-counties

Characteristic n ¼ 11 098 n ¼ 56 988 n ¼ 582 466

Sex, n (%)

Female 6688 (60) 33 478 (59) 309 707 (53)

Male 4410 (40) 23 510 (41) 272 759 (47)

Age on January 1, 2016, years, n (%)

18–24 58 (1) 536 (1) 69 237 (12)

25–34 647 (6) 3227 (6) 98 800 (17)

35–44 827 (7) 4026 (7) 85 385 (15)

45–54 1477 (13) 7238 (13) 94 059 (16)

55–64 2727 (25) 13 020 (23) 101 644 (17)

65–74 3392 (31) 15 115 (27) 71 216 (12)

75þ 1970 (18) 13 826 (24) 62 125 (11)

Race, n (%)

White 10 448 (94) 54 316 (95) 520 716 (89)

Non-White 563 (5) 1967 (3) 41 434 (7)

Black 57 (1) 702 (1) 14 248 (2)

Asian 100 (1) 572 (1) 11 423 (2)

AIAN 16 (<1) 117 (<1) 1491 (<1)

NHPI 0 (0) 22 (<1) 842 (<1)

Other and mixed 390 (3) 554 (1) 13 430 (2)

Unknown race 87 (1) 705 (1) 20 316 (3)

Ethnicity, n (%)

Non-Hispanic 10 973 (99) 5370 (94) 505 374 (87)

Hispanic 119 (1) 783 (1) 22 428 (4)

Unknown 6 (<1) 2504 (4) 54 664 (9)

Socio-economic characteristics

�High school (%) 99 97 41*

� Bachelor’s degree (%) 58 50 15*

*Education data are available for 329 589 (57%) persons; percentages are based on this denominator.

AIAN, American Indian or Alaska Native; NHPI, Native Hawaiian, or Pacific Islander.

International Journal of Epidemiology, 2020, Vol. 49, No. 1 24c



2 kb upstream/1 kb downstream for CYP2A6 were in-

cluded. For PGx-seq, these upstream and downstream tar-

gets were dropped. In both v.1 and PGx-seq, intron 6 of

CYP3A4 was targeted. In PGx-seq, the entire �31 kb re-

gion for CYP2D6 was targeted including both of the

nearby pseudogenes. For both versions, all of the Illumina

ADME and Affymetrix DMET single nucleotide polymor-

phism (SNP) sites not already covered by gene targets were

included. Over 250 genes have either DNA sequencing or

SNP genotyping information available (Table 4).

For the RIGHT pilot, CYP2C19, CYP2C9, VKORC1,

SLCO1B1 and CYP2D6, sequencing results were inter-

preted at the Mayo Clinic Personalized Genomics

Laboratory, a CLIA-certified and CAP-accredited labora-

tory. These genes were chosen because they have strong clin-

ical practice recommendations when patients are prescribed

warfarin, clopidogrel, simvastatin, tamoxifen, opioid anal-

gesics and selective serotonin reuptake inhibitors.16 For the

expanded RIGHT cohort, CYP1A2, CYP2C9, CYP2C19,

CYP2D6, CYP3A4, CYP3A5, DPYD, SLCO1B1, TPMT,

UGT1A1, VKORC1, HLA-A and HLA-B are interpreted

and reported in the EHR by the Personalized Genomics

Laboratory. Point of care drug–gene alerts access these

reports and present a description of the variants identified

for each gene to the prescriber. In addition, the clinician

receives an interpretation of the impact of the findings on

gene function as well as pharmacogenomic implications.

Table 5 includes the drug–gene alerts active in the Mayo

Clinic EHR as of December 31, 2018.

A pharmacogenomic interpretive report (OneOme LLC,

Minneapolis, MN) provides information to clinicians on how

an individual patient’s genes may affect drug response.

Proprietary algorithms and curated clinical data are used to

generate a personalized report based on a patient’s genomic

results. The report lists drugs categorized into three different

bins according to genomic impact on different metabolic or

physiologic effects: ‘Major gene–drug interaction’ (red),

‘Moderate gene–drug interaction’ (yellow) and ‘Minimal gene–

drug interaction’ (green). The drugs are further classified by

primary therapeutic area. For each drug, the report provides

the patient’s results of the interpreted genes along with addi-

tional clinical annotation and interpretations in both textual

and graphical form to provide clinicians with a better under-

standing of the complex information. These static reports flow

through the Personalized Genomics Laboratory and are placed

into the EHR for each patient. These reports may be viewed by

health care providers, but do not interact with the EHR.

Drug prescription information

Drug prescription information is available via the REP.

Complete outpatient electronic prescription data are

Table 3. Medical record data for the RIGHT cohort

Characteristics RIGHT cohort

n¼11 098

Alive as of January 1, 2018, n (%) 11 021 (99)

Clinical contact in 2017, % yes 85

Length of medical record prior to 2017,

median years interquartile range (IQR)

22 (19, 27)

Clinic visits per year from 2004 to 2017,

median visits (IQR)

27 (16, 44)

Prescribed medications in 2017, n (%)

None 1010 (9)

1–2 1725 (16)

3–5 2732 (25)

6–10 2992 (27)

11–20 2124 (19)

� 21 515 (5)

Prescribed a drug with therapeutic

recommendationsa 2004–2017, n (%)

abacavir 2 (<1)

allopurinol 494 (4)

amitriptyline 664 (6)

atazanavir 1 (<1)

azathioprine 134 (1)

capecitabine 20 (<1)

carbamazepine 102 (1)

citalopram 1531 (14)

escitalopram 524 (5)

clomipramine 8 (<1)

clopidogrel 636 (6)

codeine 3704 (33)

desipramine 20 (<1)

doxepin 179 (2)

fluorouracil 625 (6)

fluvoxamine 16 (<1)

imipramine 29 (<1)

ivacaftor 0 (0)

mercaptopurine 11 (<1)

nortriptyline 723 (7)

ondansetron 1927 (17)

oxcarbazepine 29 (<1)

paroxetine 369 (3)

peginterferon alfa-2a 4 (<1)

peginterferon alfa-2b 3 (<1)

ribavirin 8 (<1)

phenytoin 41 (<1)

rasburicase 0 (0)

sertraline 1268 (11)

simvastatin 3562 (32)

tacrolimus 449 (4)

tamoxifen 180 (2)

tegafur 0 (0)

thioguanine 0 (0)

trimipramine 3 (<1)

tropisetron 0 (0)

voriconazole 53 (<1)

aTherapeutic recommendations are available at https://www.pharmgkb.

org/guidelines
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Table 4. Genetic data available in the RIGHT study

Gene Sequence data Genotype data

Version 1 Version 3

ABCA1 Yes No No

ABCB1 Yes Yes Yes

ABCB11 Yes No Yes

ABCB4 No No Yes

ABCB7 No No Yes

ABCC1 No No Yes

ABCC2 Yes No Yes

ABCC3 No No Yes

ABCC4 No Yes Yes

ABCC5 No No Yes

ABCC6 No No Yes

ABCC8 No No Yes

ABCC9 No No Yes

ABCG1 Yes No Yes

ABCG2 Yes Yes Yes

ABP1 No No Yes

ACAD10 No No Yes

ACE Yes No No

ADH1A No No Yes

ADH1B No No Yes

ADH1C No No Yes

ADH4 No No Yes

ADH5 No No Yes

ADH6 No No Yes

ADH7 No No Yes

ADRB1 Yes No No

ADRB2 Yes Yes No

AGR3 No No Yes

AHR Yes No Yes

AKAP9 No No Yes

ALB No No Yes

ALDH1A1 No No Yes

ALDH2 No No Yes

ALDH3A1 No No Yes

ALDH3A2 No No Yes

ALOX5 Yes No No

ANKK1 No Yes No

ANKRD17 No No Yes

ANXA1 No No Yes

AOX1 No No Yes

AOX2P No No Yes

APOA1 Yes No No

APOA2 No No Yes

ARID5B Yes No No

ARNT No No Yes

ARSA No No Yes

ASB4 No No Yes

ATP7A No No Yes

ATP7B No No Yes

ATXN7L2 No No Yes

BCKDK No No Yes

BDNF Yes No No

(continued)

Table 4. Continued

Gene Sequence data Genotype data

Version 1 Version 3

C14orf164 No No Yes

C16orf54 No No Yes

C18orf16 No No Yes

C1orf87 No No Yes

C3orf22 No No Yes

C4orf17 No No Yes

CACNA1C Yes No No

CACNA1S Yes No No

CACNB2 Yes No No

CBR1 No No Yes

CBR3 No No Yes

CCDC101 No No Yes

CDA No No Yes

CES1 Yes Yes No

CES2 Yes No Yes

CFTR No Yes No

CHST1 No No Yes

CHST10 No No Yes

CHST11 No No Yes

CHST13 No No Yes

CHST2 No No Yes

CHST3 No No Yes

CHST4 No No Yes

CHST5 No No Yes

CHST6 No No Yes

CHST7 No No Yes

CHST8 No No Yes

CHST9 No No Yes

COMT Yes Yes Yes

CRHR1 Yes No No

CRIP3 No No Yes

CROT No No Yes

CYP11A1 No No Yes

CYP11B1 No No Yes

CYP11B2 No No Yes

CYP17A1 No No Yes

CYP19A1 No No Yes

CYP1A1 No No Yes

CYP1A2 Yes Yes Yes

CYP1B1 No No Yes

CYP20A1 No No Yes

CYP21A2 No No Yes

CYP24A1 No No Yes

CYP26A1 No No Yes

CYP26C1 No No Yes

CYP27A1 No No Yes

CYP27B1 No No Yes

CYP2A13 No No Yes

CYP2A6 Yes Yes Yes

CYP2A7 No No Yes

CYP2B6 Yes Yes Yes

CYP2B7P1 No No Yes

(continued)

International Journal of Epidemiology, 2020, Vol. 49, No. 1 24e



Table 4. Continued

Gene Sequence data Genotype data

Version 1 Version 3

CYP2C18 No No Yes

CYP2C19 Yes Yes Yes

CYP2C8 No Yes Yes

CYP2C9 Yes Yes Yes

CYP2D6 Yes Yes Yes

CYP2D7P1 No No Yes

CYP2E1 No Yes Yes

CYP2F1 No No Yes

CYP2J2 No Yes Yes

CYP2R1 Yes No No

CYP2S1 No No Yes

CYP39A1 No No Yes

CYP3A4 Yes Yes Yes

CYP3A43 No No Yes

CYP3A5 Yes Yes Yes

CYP3A7 No No Yes

CYP46A1 No No Yes

CYP4A11 No No Yes

CYP4A22 No No Yes

CYP4B1 No No Yes

CYP4F11 No No Yes

CYP4F12 No No Yes

CYP4F2 No Yes Yes

CYP4F3 No No Yes

CYP4F8 No No Yes

CYP4X1 No No Yes

CYP4Z1 No No Yes

CYP4Z2P No No Yes

CYP51A1 No No Yes

CYP7A1 No No Yes

CYP7B1 No No Yes

CYP8B1 No No Yes

DBH Yes No No

DCK No No Yes

DKFZp779M0652 No No Yes

DPYD Yes Yes Yes

DRD1 Yes No No

DRD2 Yes Yes No

DRD3 No Yes No

DRD4 No Yes No

EGFR Yes Yes No

EPHX1 No No Yes

EPHX2 No No Yes

ESR1 Yes No No

F2 No No No

F5 No Yes No

FAAH No Yes Yes

FAM19A3 No No Yes

FKBP5 Yes No No

FMO1 No No Yes

FMO2 No No Yes

FMO3 No No Yes

FMO4 No No Yes

(continued)

Table 4. Continued

Gene Sequence data Genotype data

Version 1 Version 3

FMO5 No No Yes

FMO6P No No Yes

G6PD Yes Yes Yes

GGCX No Yes No

GLCCI1 Yes No No

GRIK4 No Yes No

GRIP2 No No Yes

GRK4 Yes No No

GRK5 Yes No No

GSTA1 No No Yes

GSTA2 No No Yes

GSTA3 No No Yes

GSTA4 No No Yes

GSTA5 No No Yes

GSTM1 No No Yes

GSTM2 No No Yes

GSTM2P1 No No Yes

GSTM3 No No Yes

GSTM4 No No Yes

GSTM5 No No Yes

GSTO1 No No Yes

GSTP1 No Yes Yes

GSTT1 No No Yes

GSTT2 No No Yes

GSTT2B No No Yes

GSTZ1 No No Yes

HLA-A No Yes No

HLA-B No Yes No

HMGCR Yes Yes Yes

HNF1A No Yes No

HNF4A No Yes No

HNMT No No Yes

HOMEZ No No Yes

HSD11B2 Yes No No

HTR1A Yes No No

HTR2A Yes Yes No

HTR2C No Yes No

ICK No No Yes

IFNL3 No Yes No

IGFBP7 No Yes No

IL28B No No No

KCNH2 Yes Yes No

KIF6 No Yes No

LDLR Yes Yes No

LEP No Yes No

LEPR No Yes No

LOC26172 No No Yes

LOC286186 No No Yes

LOC619207 No No Yes

LOC651536 No No Yes

LOC96610 No No Yes

LST-3TM12 No No Yes

MAOA Yes No Yes

(continued)
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Table 4. Continued

Gene Sequence data Genotype data

Version 1 Version 3

MAOB No No Yes

MAT1A No No Yes

METTL1 No No Yes

MKL1 No No Yes

MTHFR No Yes No

MYOF No No Yes

NAT1 No No Yes

NAT2 Yes Yes Yes

NNMT No No Yes

NPPB Yes No No

NPR1 Yes No No

NQO1 No No Yes

NR1I2 No No Yes

NR1I3 No No Yes

NR3C1 Yes No Yes

NR3C2 Yes No No

NTRK2 Yes No No

NTSR1 No No Yes

NUDT15 No No No

OPA3 No No Yes

OPRM1 No Yes No

ORM1 No No Yes

ORM2 No No Yes

PARL No No Yes

PCP4L1 No No Yes

PEAR1 Yes No No

PGAP3 No No Yes

PNMT No No Yes

PON1 No Yes Yes

PON2 No No Yes

PON3 No No Yes

POR Yes No Yes

PPARD No No Yes

PPARG No No Yes

PPP1R9A No No Yes

PRSS53 No No Yes

PTGIS Yes No Yes

PTGS1 Yes No No

QPRT No No Yes

RALBP1 No No Yes

RPL13 No No Yes

RXRA No No Yes

RYR1 Yes Yes No

RYR2 Yes Yes No

SCN1A No Yes No

SCN5A Yes Yes No

SDCBP No No Yes

SERPINA7 No No Yes

SETD4 No No Yes

SHANK3 No No Yes

SLC10A1 No No Yes

SLC10A2 No No Yes

(continued)

Table 4. Continued

Gene Sequence data Genotype data

Version 1 Version 3

SLC13A1 No No Yes

SLC15A1 No No Yes

SLC15A2 Yes No Yes

SLC16A1 No No Yes

SLC19A1 No Yes Yes

SLC22A1 Yes Yes Yes

SLC22A11 No No Yes

SLC22A12 No No Yes

SLC22A13 No No Yes

SLC22A14 No No Yes

SLC22A2 Yes Yes Yes

SLC22A3 Yes No Yes

SLC22A4 No No Yes

SLC22A5 No No Yes

SLC22A6 Yes No Yes

SLC22A7 No No Yes

SLC22A8 No No Yes

SLC25A27 No No Yes

SLC28A1 No No Yes

SLC28A2 No No Yes

SLC28A3 No No Yes

SLC29A1 No No Yes

SLC29A2 No No Yes

SLC41A2 No No Yes

SLC47A1 Yes No No

SLC47A2 Yes No No

SLC5A6 No No Yes

SLC6A3 Yes No No

SLC6A4 Yes Yes No

SLC6A6 No No Yes

SLC7A5 No No Yes

SLC7A5P1 No No Yes

SLC7A7 No No Yes

SLC7A8 No No Yes

SLC9A7 No No Yes

SLCO1A2 Yes No Yes

SLCO1B1 Yes Yes Yes

SLCO1B3 Yes No Yes

SLCO2B1 Yes Yes Yes

SLCO3A1 No No Yes

SLCO4A1 No No Yes

SLCO5A1 No No Yes

SOD2 No Yes No

SPG7 No No Yes

SPN No No Yes

SR140 No No Yes

SULT1A1 No Yes Yes

SULT1A2 No No Yes

SULT1A3 No No Yes

SULT1A4 No No Yes

SULT1B1 No No Yes

SULT1C2 No No Yes

(continued)
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available from January 1, 2004 through to the present.

Filled drug prescription data are not available. However,

medication reconciliation occurs when patients visit a

health care provider. Patients are asked to list all of the

medications they are currently taking, including prescribed

medications, over the counter medications and supple-

ments. All medication information is coded using the

RxNorm and National Drug File-Reference Terminology

(NDF-RT) coding systems.17,18 Combination drugs with

multiple ingredients are counted under the category of the

main ingredient, or under the combination drug category

when applicable. The REP electronic indexes may be

searched to identify all persons with either a prescription

or report of medication use in the desired time frame.

Prescriptions for drugs with pharmacogenomic guidelines

for the RIGHT cohort are summarized in Table 3.

Outcomes

Relevant pharmacogenomic outcomes (e.g. response to

treatment or adverse events) may be assessed electronically

using coded data from the available EHRs and billing sys-

tems. Such data include all International Classification of

Diseases (ICD-9 and ICD-10) and Current Procedural

Terminology (CPT) coded diagnoses and procedures from

these EHRs, as well as health care utilizations including

hospitalizations, office visits and emergency room visits.

We also maintain access to the full text of the EHRs in the

REP, and this text is available for chart abstraction or for

Table 4. Continued

Gene Sequence data Genotype data

Version 1 Version 3

SULT1C4 No No Yes

SULT1E1 No No Yes

SULT2A1 No No Yes

SULT2B1 No No Yes

SULT4A1 No No Yes

TBXAS1 Yes No Yes

TCL1A Yes No No

TFF3 No No Yes

TMEM120A No No Yes

TMEM176A No No Yes

TMPRSS11B No No Yes

TOP1P1 No No Yes

TP53 No Yes No

TPMT Yes Yes Yes

TPSG1 No No Yes

TSEN2 No No Yes

TTBK1 No No Yes

TYMS No Yes Yes

UGT1A1 Yes Yes Yes

UGT1A10 No No Yes

UGT1A3 No No Yes

UGT1A3-10 exon1 No Yes No

UGT1A4 Yes Yes Yes

UGT1A5 No No Yes

UGT1A6 No No Yes

UGT1A7 No No Yes

UGT1A8 No No Yes

UGT1A9 No No Yes

UGT2A1 No No Yes

UGT2A2 No No Yes

UGT2B10 No No Yes

UGT2B11 No No Yes

UGT2B15 No Yes Yes

UGT2B17 No No Yes

UGT2B28 No No Yes

UGT2B4 No No Yes

UGT2B7 No Yes Yes

UGT8 No No Yes

VDR Yes No No

VEGFA No Yes No

VKORC1 Yes Yes Yes

XDH No No Yes

XYLB No No Yes

ZNF280B No No Yes

ZNF423 Yes No No

ZNF662 No No Yes

Table 5. Mayo Clinic clinical decision support interventions

Gene Drug Year went live

CYP2C19 Clopidogrel 2014

Citalopram 2015

Escitalopram 2015

CYP2D6 Codeine 2013

Tramadol 2013

Tamoxifen 2013

Paroxetine 2015

Fluoxetine 2015

Fluvoxamine 2015

Venlafaxine 2015

SLCO1B1 Simvastatin 2014

CYP2C9/VKORC1 Warfarin 2014

TPMT

Genotype or phenotype

Mercaptopurine 2013

Thioguanine 2013

Azathioprine 2013

HLA-B*1502 Carbamazepine 2013

HLA-B*5701 Abacavir 2013

HLA-B*5801 Allopurinol 2014

CYP3A5 Tacrolimus 2016

DPYD 5-FU 2017

NUDT15 Mercaptopurine 2018

Thioguanine 2018

Azathioprine 2018

HLA-A*3101 Carbamazepine 2018
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natural language processing (NLP) techniques. We have

used such techniques to identify prescription drug allergies

from the linked EHRs (see below).

Processed allergy section clinical notes

Drug side-effects as well as drug allergies are commonly

reported in the allergy section of the clinical note. As a re-

sult, the allergy section is a rich source of information for

adverse drug reactions. However, descriptions of drug

events are often embedded in both structured and unstruc-

tured clinical narratives, and thus processes for cleaning

and standardizing the data are required. For the RIGHT

Protocol study, we deployed NLP methods to process the

clinical text and annotate clinical concepts to capture ad-

verse drug events.19–21 We used the Medical Dictionary for

Regulatory Activities (MedDRA),22,23 a medical terminol-

ogy ontology adopted to describe adverse drug reactions

and provide an internationally approved classification, and

the Unified Medical Language System (UMLS, version

2012AB) (https://www.nlm.nih.gov/research/umls/),24 a

knowledge resource for biomedical vocabularies developed

by the US National Library of Medicine. Allergy data from

the EHR were pulled and recorded as unstructured text,

for example: ‘fluid retention, hypertension’ and ‘anxiety,

distorted vision’. We used MedTagger,25 an NLP pipeline

to extract adverse drug events mentioned in text. The

extracted descriptions were then mapped to MedDRA

terms and then aggregated using UMLS. For example, in

the allergy text ‘fluid retention, hypertension’, ‘fluid

retention’ was first extracted and mapped to MedDRA

‘body fluid retention’, and mapped to ‘Renal and urinary

disorders’ and ‘Metabolism and nutrition disorders’,

whereas ‘hypertension’ was extracted and mapped to

‘Vascular disorders’. The top five most common drug reac-

tions were skin and subcutaneous tissue disorders, gastro-

intestinal disorders, immune system disorders, nervous

system disorders, and general disorders and administration

site conditions.

EHR integration and clinical decision support

Since 2013, Mayo Clinic has developed and implemented a

comprehensive multidisciplinary model26 to integrate

pharmacogenomic test results and clinical decision support

(CDS) interventions in the Mayo Clinic unified EHR

system (Table 5). Real-time pharmacogenomic-CDS alerts

advise the need for pharmacogenomic testing when it is

indicated, alert for potentially actionable drug–gene inter-

actions, explain to prescribers the nature of the drug–gene

interaction, and provide patient-specific therapeutic

recommendations. The rules are embedded in the clinical

workflow of all prescribers and pharmacists managing pre-

scriptions (inpatient and outpatient prescription manage-

ment systems). Multiple implementation and process

metrics have been developed to allow post-implementation

analyses. It is possible to measure when alerts are triggered

and whether the clinician changes the initial prescription

following the CDS alert. Such data allow for studies of cli-

nician behaviours related to pharmacogenomics-CDS

implementation.

What has it found? Key findings and
publications

In the RIGHT pilot study, we found that 99% of partici-

pants had a clinically actionable variant when considering

the five genes reported in the EHR (CYP2C19, CYP2C9,

VKORC1, SLCO1B1 and CYP2D6).27 We have also

reported our experience with integrating pharmacogenomic-

CDS alerts into clinical practice in recent publications.16,26,28

Drug-focused studies include investigating drug response

and clinical outcomes associated with exposure to opioids,29

diabetes treatment, proton pump inhibitors, statins, anaes-

thesia, antidepressants, anticoagulants, penicillin, beta

blockers and antifungals. Other ancillary studies have

assessed patient and provider perspectives on pharmacoge-

nomics.12,13,28 Finally, additional studies have examined

associations between pharmacogenomic phenotypes and

health care utilization.30

One of our key findings is related to our first return of

results to participants. After the pilot was completed, we

returned CYP2D6 results to participants and surveyed

them to determine their understanding of the data. Of the

respondents, 26% said that they only somewhat under-

stood their results and 7% did not understand them at all.

Participants commonly suggested that results should be

personalized, should refer to drugs they were currently tak-

ing, and should use layperson language.12

What are the main strengths and
weaknesses?

The strengths of the RIGHT cohort derive from the large

sample size, extensive EHR data, medical record access for

abstraction, ability to study any drug exposure, and avail-

ability of sequence data for discovery. The RIGHT cohort

are all Mayo Clinic Biobank participants who have

existing, stored biospecimens (DNA, plasma, serum, white

blood cells) and who can be re-contacted for future research

questions or invited to participate in ancillary studies.
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The ability to cost-effectively re-contact participants

expands the research capability of the cohort. Despite

the strengths, the RIGHT cohort has some limitations. First,

the cohort was not selected from patients with any particu-

lar diagnosis or drug indication. Thus, although the RIGHT

study is one of the largest studies of pre-emptive pharmaco-

genomics, less frequent and rare drug exposures will be dif-

ficult to study in this population. Second, because this is an

observational cohort, and not a clinical trial, patients in this

study have been prescribed drugs based upon prescriber

practices, the dictates of insurance coverage, and not ran-

domized methods. Thus, inferences may be limited.

Can I get hold of the data? Where can I find
out more?

The RIGHT cohort is a resource for pharmacogenomic re-

search.11 As part of the infrastructure, a RIGHT Data

Access Committee has been created to review data requests

for use of RIGHT data. External access to the data is facili-

tated by the Mayo Clinic Biobank31 https://www.

mayo.edu/research/centers-programs/mayo-clinic-biobank/

overview
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