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Abstract

Artificial Intelligence and Nanotechnology are two fields that have been instrumental in realizing 

the goal of Precision Medicine – tailoring the best treatment for each cancer patient. Recent 

conversion between these two fields is enabling better patient data acquisition and improved 

design of nano-materials for precision cancer medicine. Diagnostic nanomaterials are used to 

assemble a patient-specific disease profile, which is then leveraged, through a set of therapeutic 
nanotechnologies, to improve the treatment outcome. However, high intra-tumor and inter-patient 

heterogeneities make the rational design of diagnostic and therapeutic platforms, and analysis of 

their output, extremely difficult. Integration of AI approaches can bridge this gap, using pattern 

analysis and classification algorithms for improved diagnostic and therapeutic accuracy. 

Nanomedicine design also benefits from the application of AI, by optimizing material properties 

according to predicted interactions with the target drug, biological fluids, immune system, 

vasculature and cell membranes, all affecting therapeutic efficacy.
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Here, fundamental concepts in AI are described and the contributions and promise of 

nanotechnology coupled with AI to the future of precision cancer medicine is reviewed.
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1 Introduction

Every patient is unique. Alongside our apparent differences, such as age, gender, height, eye 

color and blood type, we also have unique molecular signatures. This leads to different 

phenotypic changes and varied drug-responses among patients.[1] Diversity among patients 

is especially apparent in different types of cancer, which are affected by accumulation of 

driver mutations leading to intra-tumor and inter-patient heterogeneities, complicating 

diagnosis and treatment.[2] Precision medicine aims to tailor a specific treatment regime to 

each patient by accounting for multiple genetic and epigenetic characteristics.[3]

Nanomaterials have contributed to the evolution of precision medicine, throughout all of the 

medical stages. New omics collection technologies, such as single-molecule nanopore 

sequencing, enable fast and sensitive single-molecule detection along with longer sequence 

read length, thus maintaining genetic context.[4] Diagnostic assays based on nanosensors 

allow biomarker detection in femtomolar concentrations as well as scanning for multiple 

disease biomarkers simultaneously in liquid biopsies (blood, urine, saliva) and in cell 

cultures.[5] Nanomedicine-based cancer treatments have been evolving over the past 

decades, from a population wide treatment approach, aimed primarily at improving efficacy 

and reducing side effects, to targeted systems that report about drug activity inside the 

patient’s body.

Advances in nanomedicine fabrication techniques coupled with increased understanding of 

cancer biology, promoted the rational design of targeted therapy approaches utilizing 

endogenous and external stimuli for improved drug delivery. These advancements also 

supported the development of theranostic nanomedicines that combine a drug and an 

imaging agent to further analyze the treatment efficacy inside the patient’s body.[6] 

Nevertheless, current nanosensors and targeted nanomedicine have had limited success in 

clinical translation in the field of cancer.[7] Artificial intelligence (AI, see Box 1) is a branch 

of computer science that relates to machines that perform tasks that require “human 

intelligence”. Machine learning (ML, see Box 1), an area in AI, is an approach that trains an 

algorithm using large datasets of previous examples. It is applied in order to, inter alia, find 

patterns and classify data or find an optimal solution to a presented problem. Machine 

learning and AI in general have been used in different fields of medicine including medical 

imaging and analysis of gene expression patterns.[8] In nanoinformatics, AI and other 

computational methods are applied for nanomaterial design and implementation.[9]

The ability of AI algorithms to process large datasets and recognize complex patterns can be 

exploited for improved design of nanotechnologies for diagnostics and treatment. Prediction 

of nanoparticle interactions with the target drug, biological media and cell membranes, in 
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addition to drug encapsulation efficiency and release kinetics can help optimize 

nanomedicine formulations.[10] Moreover, pattern recognition and classification algorithms 

can be used in order to differentiate between healthy and diseased patients and predict drug 

efficacy in patients.[11, 12] These analysis capabilities are especially essential in the case of 

cancer, due to its high complexity.

In this review we discuss the implementation of nanomaterials to the development of omics, 

diagnostics and treatment technologies for precision cancer medicine, emphasizing the 

contribution of AI for precision medicine data analysis and nanomedicine design.

2 Nanomaterials and AI in Precision Diagnostics

2.1 Expanding the Omics Toolkit

An essential requirement for successfully practicing precision medicine is assembling a 

molecular profile for each patient. This includes disease-relevant biomarkers that will 

provide a roadmap for a personalized treatment plan. A disease profile based on omics data 

usually comprises: genomic, epigenomic, transcriptomic, proteomic, metabolomic and 

microbiomic data, all compiled into a distinct molecular signature of the patient.[13] The 

recognition process of relevant disease biomarkers and their distribution and variance among 

different patients has evolved greatly with the development of big data analysis of 

population-wide omics. For example, classification of healthy individuals and patients with 

localized and metastatic tumors was performed by generating an RNA-based molecular 

signature that distinguished between the populations.[14] The molecular signature was 

obtained using RNA sequencing of tumor educated platelets (TEPs, blood platelets with 

altered RNA profile affected by platelet-tumor interactions) and provided accurate 

localization of the primary tumor in more than 70% of the cases. Rapid, accurate and 

affordable data collection tools are essential for collecting large amounts of data from a 

diverse population of patients and efficiently recognizing new biomarkers.

Nanotechnology improves the speed and precision of sequencing technologies used for 

omics data collection. In particular, third-generation sequencing methods, such as single-

molecule real-time (SMRT) sequencing and nanopore sequencing, allow direct analysis of 

single DNA molecules without a need to amplify the template, thereby minimizing reading 

errors.[15] The SMRT system, is based on 60-100 nm cavities prepared using electron beam 

lithography on a thin aluminum 100-nm sheet deposited on a silica substrate.[16] These sub-

wavelength cavities, each containing a single DNA polymerase, are then utilized as a 

confined observation volume for optical monitoring of the addition of fluorescent 

nucleotides to a complement strand of the target DNA.[17] In addition to obtaining real time 

data, another major advantage of this technology is its ability to sequence long reads, 

maintaining the genetic context and overcoming challenges in sequencing repetitive genetic 

elements.[18] Moreover, identification methods of DNA methylations and lesions based on 

SMRT sequencing provide epigenomic data for obtaining additional biomarkers for cancer 

and other malignancies.[19]

Nanopores present a different single-molecule method for DNA and RNA sequencing based 

on measuring the changes in ionic current as a DNA strand is translocated across a lipid 
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membrane.[20] An important advantage of nanopore sequencing is that it does not require 

nucleotide labeling and extensive sample preparation, in addition to its long read length 

capabilities. Furthermore, recent portable and simple hand-held platforms expanded the use 

of nanopore sequencing to remote locations and enabled rapid identification of biological 

targets such as the Ebola virus.[21]

The first nanopore technologies were based on protein nanopores from bacterial origin, such 

as α-hemolysin, that enabled translocation of single-stranded DNA under an applied voltage 

and detection of current changes as the nucleic acid passed through the nanopore 

constriction.[22] Yet, achieving single nucleotide resolution with protein-based nanopore 

sequencing is challenging since multiple nucleotides are localized in the nanopore at a given 

time point, all contributing to the measured ionic current. Solid-state nanopores present a 

possible alternative to protein-based nanopores. These nanopores, made of a variety of 

materials, including SiO2, graphene, Boron Nitride and MoS2, demonstrate higher stability 

and controlled pore size.[23] Ion beam sculpting, electron-beam lithography and chemical 

vapor deposition have all been used for solid-state nanopore fabrication, achieving diverse 

nanopore geometries and controlled diameters (as small as 1 nm) that expand the range of 

applications from DNA sequencing to protein and DNA-protein complex sensing.[24] 

Nevertheless, single nucleotide resolution in solid-state nanopores still remains a challenge. 

Even in membranes with single-atom thickness (such as graphene) that contain a single 

nucleotide in the pore, the applied electrical field-effect extends also to nucleotides that are 

located near the nanopore surface affecting the measured current.[25]

Therefore, AI is applied in the translation process of the nanopore raw signal to a nucleotide 

sequence. Artificial Neural Networks (ANNs, see Box 1 and Figure 1) are a set of 

algorithms often used in nanopore sequencing. In general, an ANN is composed of layers of 

connected nodes. Using training data with known output (known oligonucleotide sequences 

in the case of nanopores), the weight of each connection is altered according to its effect on 

the output in order to obtain optimal results. In current nanopore sequencing algorithms the 

accuracy rate reaches 90%, and therefore further post-sequencing computational analysis is 

required for read correction. These additional algorithms generate consensus sequences from 

multiple reads and exploit them to increase the sequencing accuracy level to 97% and higher, 

depending on the DNA coverage level.[26]

Quantum sequencing aims to overcome the single nucleotide resolution challenge by 

integrating nanoscale electrodes perpendicularly to a nanopore, and measuring the electron 

tunneling at a single nucleotide resolution.[27] Each nucleotide has a unique electronic 

signature that can be measured by the changes in the electron tunneling current between 

these electrodes as the nucleotide passes through it.[28] However, the scalability of the solid-

state nanopores fabrication techniques with integrated electrodes still needs to be improved 

in order to fulfill the promise of this approach. Quantum sequencing also exploits machine 

learning algorithms for raw signal interpretation. For example, first steps in amino acid 

identification and peptide sequencing were performed with quantum sequencing, 

implementing a support vector machine (SVM) algorithm (see Box 1) for recognizing the 

amino acid sequence.[29] The SVM algorithm is trained to classify signals of known amino 
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acids according to the signal features, and use this training to classify new signals of 

unknown amino acid sequences.

Combining machine learning algorithms with feature selection (see Box 1) can be useful for 

detecting disease specific signatures in omics data.[30] Feature selection aims to recognize 

relevant features in a selected target from a larger pool of features. For example, a 

classification algorithm analyzed nearly 10,000 genes from two-hundred prostate cancer 

patients, recognizing 50 of them to be related to metastatic prostate cancer.[31] The selected 

features can then be utilized as biomarker signature criteria in a machine learning algorithm 

for patient classification and diagnostics. Moreover, current efforts in combining omics data 

from multiple sources (transcriptomics, proteomics, metabolomics) in order to create 

integrated signatures, will further improve the accuracy of biomarker signatures and patient’ 

diagnoses.[32]

2.2 Nano-sensors compose the patient's biomarker profile

Nanosensors are designed to detect a target analyte through measureable optical, electrical, 

magnetic or mechanical signals (Figure 1). A variety of nanomaterials for sensing 

applications, including gold nanoparticles, quantum dots, carbon nanotubes and nanowires, 

have been studied.[33] We focus here on the application of these sensors for composing a 

diagnostic profile for cancer patients in order to achieve early disease detection, personalize 

the patient's treatment plan and monitor the disease progression.

The intrinsic spectral, mechanical and electrochemical properties of nanosensors enable an 

increased signal-to-noise ratio output, making them preferable for cancer biomarker sensing. 

Effective nanosensors must be able to detect extremely low concentrations of the molecular 

signature in an environment of other interfering biological components. For example, the 

serum levels of prostate specific antigen (PSA), one of the few FDA-approved biomarkers, 

are elevated in prostate cancer patients from 0.5-2 ng/ml in healthy individuals to above 4 

ng/ml, and need to be detected in the serum environment that contains the abundant human 

serum albumin in a concentration range of approximately 35-50 g/L, a thirty-million times 

greater concentration.[34] In vitro diagnostic platforms are rationally-designed to identify 

biological biomarkers (DNA, RNA, proteins and metabolites) in liquid biopsies taken from 

blood, urine, sweat, saliva and breath by conjugating a ligand that can bind the target 

molecule to a designed nanomaterial.[35, 36] The high sensitivity of these platforms, reaching 

femtomolar concentrations, is essential for early detection of cancer biomarkers that exist at 

early stages of the disease.[37] For example, a streptavidin-conjugated quantum-dot 

nanosensor, enabled distinguishing between the wild type KRAS gene and a cancerous 

KRAS with a single point mutation point by generating a fluorescent signal.[38] The sensor 

is comprised of DNA strands that emit a distinct fluorescence resonance energy transfer 

(FRET) signal upon hybridization with the mutated gene. Such sensors can be modified to 

detect almost any mutant DNA or RNA. In another study, a hybrid mechanical and opto-

plasmonic nanosensor based on a sandwich assay was used for serum-based protein 

detection, including the detection of the FDA-approved biomarker carcinoembryonic antigen 

(CEA) that is used as a diagnostic marker of colorectal cancer.[35] This sensor captures the 

required protein using two antibodies for two different epitopes on the target. The first 
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antibody is anchored to the surface of the sensor and the second is conjugated to gold 

nanoparticles that supply the plasmonic output which is subsequently analyzed for protein 

quantification with a 1x10-16 g/ml sensitivity.

Improving the sensitivity and portability of these sensors will makes them attractive point-

of-care (POC) devices for diagnosing and monitoring cancer patients. Clinically-approved 

devices are already used for isolating circulating tumor cells (CTCs) from blood using 

magnetic beads functionalized with antibodies against the epithelial cell adhesion molecule 

(EpCAM).[39] Yet large-scale fabrication issues, slow capture rate of the target molecules 

and lack of defined validation and analytical testing hinder the translation of point-of-care 

nanosensors to the clinic.[40] Moreover, the current number of clinically approved 

biomarkers must be expanded, as the specificity of cancer prognosis by a single biomarker is 

not sufficient.[41] For example, CA125, a clinically-approved protein biomarker for ovarian 

cancer is elevated in only 50-60% of the patients with stage I disease, rendering the 

classification of additional biomarkers to improve false positive detections.[42]

Multiplex sensing of a number of biomarkers for constructing a disease signature based on 

computational analysis can increase the accuracy of diagnosis. For example, the clinically 

approved OVA1 test uses five biomarkers for assessing the likelihood of a diagnosed ovarian 

adnexal mass to be malignant.[43] This test uses a designated algorithm which calculates an 

integrated score on a scale of 0.0 to 10.0 based on five separate immunoassays performed for 

each of the biomarkers to indicate the risk for malignancy. Multiplex nanosensor arrays can 

detect a number of target biomarkers in a single test, saving time and providing with high 

sensitivity and selectivity. Electrical detection of three prostate cancer biomarkers in non-

diluted serum samples was performed using silicon-nanowires synthesized by chemical 

vapor deposition.[44] The nanowires were deposited on a microfluidic chip, and controlled 

clusters of nanowires were each functionalized with a specific antibody to one of the target 

biomarkers. The changes in conductance due to protein-antibody binding were monitored 

and translated into biomarker concentrations. Similar multiplex sensing was also performed 

in quantum-dot-based fluorescent sensors and gold nanorod-based localized surface plasmon 

resonance (LSPR) sensors, the latter enabling detection of 6 cytokine biomarkers in 

approximately 40 minutes.[45] The development of multiplex nanosensors is promoting the 

transition from single biomarker detection to multiple biomarker signatures.[46] Combining 

multiple variables for the calculated diagnostic output reduces the error rates and can be 

used not only for cancer detection, but also for cancer staging.[47]

“Electronic nose” nanosensors are highly adequate for multiplex analysis of a large number 

of analytes. The electronic nose was designed to mimic the olfactory system and utilizes an 

array of selected sensors that can detect and quantify complex mixtures of volatile organic 

compounds (VOCs) in the gaseous phase.[48] Different types of electronic nose nanosensors 

detected and analyzed specific VOC patterns in the breath of cancer patients.[11, 49] One of 

the main advantages of electronic nose nanosensors is that they do not depend on specific 

aptamers or antibodies for recognition of a specific entity. Instead, each one of the detected 

VOCs generates a unique pattern when reacting with the different sensors in the nanosensor 

array, making them suitable for a wide range of targets. For example, a nanosensor array 

based on multiple 5-nm gold nanoparticles functionalized with different ligands, was able to 
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distinguish between healthy and diseased breath samples in cancer patients diagnosed with 

breast, lung, colorectal and prostate cancer.[50]

Computational analysis plays an important role in realizing the shift from rationally-

designed sensors targeting specific biomarkers to pattern-based nanosensors, which require 

advanced methods for clustering and classification of large datasets.[51] Principal component 
analysis (PCA) (see Box 1) is a commonly used method for electronic nose data analysis 

that uses linear combinations of the input data features to create a smaller number of new 

variables that exhibit high variance. These are then used to classify the data to distinct 

groups.[52] One shortage of this method is that it only relates to linear combination and 

therefore non-linear relations between the variables will not be preserved. AI methods, such 

as Neural Network models, allow to maintain non-linear correlations between the variables 

and increase the accuracy of data classification in electronic-nose applications.[53] For 

example, Kermani, et al. used a Levenberg–Marquardt (LM) algorithm (see Box 1), which is 

used to solve problems with non-linear correlations, as a training method of a Neural 

Network for fragrance classification.[54] The implementation of nanosensors arrays for 

biomarker-free, quick and accurate cancer diagnostics and staging seems promising, yet one 

issue that needs to be addressed is the requirement for large data collection from a wide 

variety of populations. This is especially essential for pattern recognition in nanosensor 

arrays that require the clustering algorithm to take into account the inherent variabilities 

between populations.

In addition to the efforts performed in developing efficient nanosensors for markers in liquid 

biopsies, analysis of the tumor tissue remains imperative for the diagnostic process. 

Therefore, many of the sensing technologies are being modified for quick detection of 

biomarkers in cell culture. In case the target analyte is found inside the cell, a method for 

intracellular penetration is required. For example, plasmonic gold nanoparticles 

functionalized with a fusogenic transduction peptide and a targeting antibody were able to 

the access the cytoplasm of NIH3T3 fibroblasts and bind to their target protein.[55] For 

detection of oligonucleotides, fluorescent nanoprobes known as molecular beacons, can 

detect specific sequences with high accuracy.[56] These probes are based on a DNA hairpin 

conjugated to a fluorescent entity and a quencher that are released upon binding to the target 

sequence, exposing the fluorescent signal.[57] Moreover, nanosensors that are based on 

pattern recognition, rather than biomarker targeting, were developed for cell culture analysis 

as well. Electronic noses that sense the headspace of cell cultures and arrays of 

fluorescently-labeled nanoparticles with the ability to specifically identify cancer stem cells 

in a tumor-derived cell culture are examples of these kind of sensors.[58]

3 Using Nanotechnology to Predict Personalized Drug Potency

Despite advances in the analysis of personalized omics data, it is still difficult to predict a 

patient's response to medication based on omics alone. This difficulty is specifically 

apparent in the field of cancer, where predicting the tumor's response must account for 

tumor/metastasis heterogeneity and the development of resistance over time.[59] Testing a 

candidate drug inside the patient's body to gauge its response can be used to optimize the 

treatment course.
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Nanotechnology offers the means to perform such in situ diagnostics. Barcoded liposomes, 

each encapsulating a drug and a specific DNA barcode, can be used in order to predict the 

drugs' potency in the tumor of a specific patient.[60] For example, liposomes containing four 

potential drugs (gemcitabine, cisplatin, doxorubicin, caffeine), each marked with a unique 

DNA barcode, were injected to murine breast cancer models in doses lower than 0.1% of the 

therapeutic drug dose. After 24 hours, a biopsy was taken from the tumor and the barcode 

distribution between live and dead tumor cells was analyzed. Barcodes matching the drugs 

with high potency were found in higher concentrations in dead tumor cells and in low levels 

in live cells. Currently, the data analysis methods used in this approach are based on direct 

counts of the barcodes and their delivered percentage in live and dead cells. Integration of AI 

algorithms in the data analysis process can extend its applicability and allow recognition of 

combinatorial treatment effects, taking into account complex patterns of barcode 

distribution.

Moreover, the use of computational methods for in silico drug screening as a preceding step 

can further improve the results of the in situ nano-based screening (Figure 2).[61] For 

example, a study performed on tumor samples from 48 individuals identified mutational 

cancer drivers and classified them according to their mode of action, using a random forest 
classifier learning-based algorithm (see Box 1).[12, 62] This algorithm is based on a 

combination of decision trees that test selected features after training the algorithm on 

previous data. Then, a dataset of available drugs which are able to target these cancer drivers 

was constructed based on drug-target interactions, followed by automatic fitting of 

therapeutic agents to the mutational landscape of each patient. Despite the limitations in this 

method, including possible inaccuracies due to errors in mutation classification, disregard of 

the combinatorial effect of drugs and intra-tumor heterogeneity, this computational approach 

offers a unique point of view on possible therapeutic strategies.

4 Computation in Nanotherapeutics - Targeting and Personalized Dosing

4.1 Designing Nanoparticles for improved targeting

One of the first ideas that come to mind when discussing precision cancer therapeutics is 

using targeted drugs that will recognize and activate only in the disease target site, not 

harming healthy tissues. This concept was first introduced by Paul Erlich in the early 1900's 

as the “Magic Bullet” theory and has been widely discussed since.[63] Nanomedicines 

provide a tool for personalized targeting by coating the surface of drug-loaded nanoparticles 

with specific ligands, such as antibodies, membrane-bound receptor ligands, and other 

cellular markers that enable to selectively bind to the target cells once the particles are in the 

vicinity of the target tissue.[64] A parallel approach suggests using synthetic drug delivery 

systems with biological properties – namely, biomimetic Trojan systems that have the outer 

appearance of a natural cell or extra-cellular vesicle, that are loaded with drugs.[65] These 

systems can take advantage of the natural properties of the mimicked cells and reduce 

undesired reactions of nanoparticles in the plasma such as uptake by the reticuloendothelial 

system (RES). For example, nanoparticles derived from the membrane of mesenchymal stem 

cells (MSCs) loaded with a plasmid DNA encoding for the cancer inhibitory protein 
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hemopexin-like domain (PEX), retained the surface characteristics of the MSCs and 

displayed tumor-targeting abilities in murine models of lung and prostate cancers.[66]

External stimuli can also be used to drive nanoparticles towards each patient’s disease site or 

trigger their activation in a selected location.[67] Heat, magnetic fields, ultrasonic irradiation 

and light have been used to trigger drug release from nanoparticles at the disease site.[68] 

Endogenous patient biomarkers expressed in the diseased tissue are utilized as cues for 

triggering drug release onsite as well. The acidic environment in solid tumors has been used 

to reduce the inter-molecular bond strengths in nanomedicines, thereby allowing loaded 

drugs to diffuse rapidly out of the particle at the target site.[69] Similarly, the altered 

expression of extracellular enzymes has been exploited to cleave molecular bonds in 

nanoparticles in order to release encapsulated drugs.[70] Yet the implementation of targeted 

nanomedicine in the clinic hasn't come of age so far, with few formulations currently in 

clinical studies.[71] A number of recently published reviews have discussed in detail many of 

the challenges that have to be overcome in order to successfully translate targeting to the 

clinic.[72] We want to highlight two important aspects that are highly relevant for the success 

of this approach for precision medicine. The first aspect is the significance of accurate 

biomarker profiling of the patient's tumor, based on omics and nanosensor-based techniques, 

before administrating a targeted drug. This is a critical issue in order to find the right 

population of patients that fit the targeted drug, and was evident from the clinical study 

stages of different targeted therapies. For example, the efficacy of cetuximab and 

panitumumab, monoclonal antibodies targeted to the epidermal growth factor receptor 

(EGFR), was shown to be associated not only with EGFR expression levels, but also to 

KRAS-associated resistance, EGFR ligands mRNA levels and EGFR downstream pathway 

genes.[73] Omics-based classification of the responsive and irresponsive patients to the drug, 

followed by nanosensor-based patient pre-screening will increase the response rate and 

improve patient selection. This again highlights the potential that biomarker signature 

profiles generated with AI-based algorithms hold.

Integrating computational modeling into the nanoparticle design stage is another important 

aspect in increasing the success rate of targeted therapies. It is now clear that simply tagging 

drug-loaded nanoparticles with a targeting moiety does not promise successful delivery and 

release at the diseased site. The effect of the nanomedicine properties on the interactions 

with plasma, the vasculature endothelium and cellular membranes is not easily rationalized 

and can be significantly improved with computational methods. For example, an optimal 

antibody surface coverage of nanoparticles for specific vascular endothelium binding was 

computed in a computational model that calculated the binding free energy of nanoparticles 

using a Metropolis Monte Carlo algorithm (see Box 1).[74] The process initiates from a 

randomly selected state of the nanoparticle and ligand system, and by random changes of the 

defined variables it generates a probability distribution of the system's configurations. The 

effect of the nanoparticle's antibody surface coverage on the binding energy of the system 

was obtained by changing the former parameter in the computational model and simulating 

the changes in the system's states. The obtained results, displaying optimal targeting at a 

coverage ratio of above 100 antibodies per nanoparticle, were in agreement with 

experimental data obtained from cell culture and in vivo murine models performed in that 

study.
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Moreover, computational models are imperative for predicting the ability of nanoparticles to 

cross barriers on their way to the target organ. Several model types have been used for 

predicting the ability of nanoparticles to permeate across the blood-brain barrier (BBB) and 

their potential toxicity.[75] These models can be implemented for improving the formulations 

of brain targeting nanoparticles. Yet the construction of these models is exceptionally 

difficult due to the high complexity of the permeation process; therefore, it requires large 

computation capabilities and understanding of the principles governing the biological and 

physical mechanisms. Recently, a machine learning approach for blood-brain permeability 

prediction was presented based on the drugs' indications, side effects and chemical 

properties.[76]

It is important to note that the design of machine learning methods requires different types 

of data than traditional computational models (Figure 3). In the latter, extensive physical, 

chemical and biological knowledge is necessary for constructing a computational model that 

accounts for the governing mechanisms in the process. However, in machine learning 

methods prior understanding of the process is not a prerequisite; these methods utilize large 

datasets of experimental results related to the investigated subject and detect correlations in 

the data which are translated into a prediction model. Nevertheless, understanding of the 

data can provide additional insights when choosing the machine learning model and 

algorithms in order to achieve maximal accuracy. The type of the data (text, numbers, 

images, etc.), mathematical behavior of the involved mechanisms and dependent 

relationships between data features are examples of variables that can be taken into 

consideration when designing a machine learning model. For example, DNA sequences were 

converted to 2-dimensional images and used in Neural Networks optimized for image 

analysis to predict the DNA chromatin structure.[77] Every DNA sequence was divided into 

overlapping 4-codon oligonucleotides that were converted into a pixel in the image. The 

conversion of the data from text to image facilitated the use of machine learning models 

optimal for image processing and improved the obtained prediction accuracy.

Other computational methods considered the optimal shape and size for nanoparticle binding 

and drug release.[78] For example, an Artificial Neural Network (ANN) was used for 

predicting the size and initial burst rates of poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles.[79] The ANN received an input of the PLGA molecular weight and 

concentration, in addition to the poly(vinyl alcohol) (PVA) molecular weight and the 

sonication rate which were used in the preparation process, and returned the predicted 

nanoparticle size and initial burst rate. Although the algorithm provided results with less 

than 5% error rate when tested on the provided data in the study, a major challenge in this 

computational approach is the incorporation of a large training set that is required for 

achieving increased accuracy. Harnessing high throughput screening methods for obtaining 

large datasets in a relatively short amount of time can help address the data acquisition 

challenge.[80] Yamankurt, et al. developed a high throughput screening protocol to test the 

activity of almost 1000 nano-formulations of spherical nucleic acids (SNAs) and used the 

obtained results to train a machine learning algorithm to predict the activity of new SNA 

formulations.[81] They furtherer showed that reducing the size of the dataset to 

approximately 150 examples of formulations provided similar accuracy rates for activity 

prediction.
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4.2 Nanomaterials and AI for correlating drug dosing and therapeutic efficacy

Nanomaterials can provide controlled drug dosing by fitting the drug release rate to the 

specific pharmacokinetic and pharmacodynamics profiles of the patient. In a similar manner 

to the targeting approach, external stimuli are exploited for this purpose. Porous scaffolds 

that can release the target agent on-demand present an attractive approach for controlled 

release and dosing. For example, a macroporous ferrogel based on alginate patterned with 

Fe3O4 nanoparticles displayed reversible deformation under an external magnetic field 

enabling step-wise release of different moieties ranging from low molecular weight drug 

Mitoxantrone (type II topoisomerase inhibitor), to plasmid DNA and even whole cells.[82] 

Electric field and ultrasound were also used in in vitro and in vivo animal models for 

achieving pulsatile release in various nanomaterials including electro-sensitive polymeric 

nanoporous membranes and mesoporous silica nanoparticles.[83] However, in order to 

improve personalized dosing technologies, the pulsatile release systems must be coupled to 

real-time sensing technologies that will monitor the drug levels in the plasma or in the target 

site in a similar manner to the operation of insulin pumps. This will introduce challenges in 

fabricating nanosensing technologies that are also stable for prolonged time periods.

Dosing control is not always sufficient in order to personalize the treatment, as patients with 

different pharmacogenomic profiles respond differently to varying drug doses. In these 

cases, AI can be exploited in order to correlate between drug dosing and the therapeutic 

outcome. For example, Artificial Neural Networks were developed for constructing tailored 

radiotherapy treatment plans for cancer patients according to the radiation's physical 

specifications, the treatment goal and the patients' physiological and anatomical parameters.
[84] These methods are currently being adapted to predict drug-response relationships for 

chemical drugs as well, based on drug properties, physiological measurements and gene 

expression profiles.[85] Other AI models link directly between the patient's condition and a 

suggested treatment to predict the treatment efficacy without considering patient-specific 

dosing. For example, a pharmacogenetic predictor was used to predetermine the response of 

breast cancer patients to a combination treatment of Paclitaxel, Fluorouracil, Doxorubicin 

and Cyclophosphamide. For that purpose, a classification model was designed based on 

training data obtained from gene expression profiles of 82 breast cancer patients treated with 

the aforementioned drug combination. The AI model successfully predicted pathologic 

complete response in 92% of the 51 patients that were analyzed.[86] Implementing these 

dosing and treatment efficacy predictors to nanomedicine will help improve their 

performance in clinical settings.

5 Nanotechnology Facilitates Personalized Gene Therapy

Gene therapy is an ultimate example of precision medicine, as patient-specific mutations are 

corrected, removed or inhibited. Nano-carriers are vital for successful delivery of 

oligonucleotides for gene therapy, enabling their activity at the target site. Gene silencing 

with RNA interference (RNAi) was first demonstrated by Fire and Mello, and has been used 

since to target complimentary mRNA molecules in cells and lead to their degradation.[87] 

This mechanism was exploited for precision treatment in various diseases, including cancer. 

Silencing of oncogenes, proteases that mediate cell invasion and metastasis, genes associated 
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with drug resistance, and angiogenic factors was shown to have positive therapeutic effects 

in different types of cancer.[88]

However, in order to implement RNAi as a precision treatment in the clinic, efficient 

delivery vehicles are essential.[89] These delivery vehicles must be able to avoid phagocytic 

uptake in the blood stream, successfully transport through the endothelial barrier and plasma 

membrane, escape the endosome and release the small interfering RNA (siRNA) in the 

cytoplasm.[90] In addition, using delivery vehicles that will direct the payload towards the 

target site can reduce innate immune responses and off-target effects.[91] Many different 

types of nanoparticles have been tested in animal models for siRNA delivery. Lipid 

nanoparticles, poly(ethylene imine) polymer nanoparticles, self-assembled nucleic acid 

nanoparticles and polysaccharide-based nanoparticles composed of chitosan or cyclodextrin 

were all shown to deliver siRNA in vivo.[92] Recently, an enormous step forward was taken 

with the clinical approval of the first siRNA-based nanomedicine – Patisiran, a lipid 

nanoparticle encapsulating siRNA for treating hereditary transthyretin amyloidosis.[93] 

Nevertheless, the use of these delivery tools in cancer remains a challenge. Delivery issues 

including inter-patient variability in tumor vasculature and high interstitial fluid pressure in 

the tumor environment need to be overcome in order to translate this technology to clinical 

use in cancer. A number of clinic trials are currently running with siRNA formulations 

against different targets in several cancer types, attempt to make this step forward.[94]

The use of nanotechnology for gene therapy delivery is not limited to RNAi alone. Delivery 

of mRNA vaccines and mRNAs for immune-oncology is currently tested in clinical trials for 

a number of malignant diseases including metastatic melanoma, pancreatic and colorectal 

cancers.[95] For example, lipid nanoparticles encapsulating OX40L mRNA that amplifies the 

immune-stimulatory response of DCs are currently in phase I trials for metastatic solid 

tumors and lymphoma.[96] Moreover, the discovery and development of the CRISPR 

(clustered regularly interspaced short palindromic repeats)/Cas9 technology provides 

another tool for genome editing which requires efficient delivery tools and can be utilized 

for cancer therapy.[97] Liu, et al. attempted to create allogenic chimeric antigen receptor 

(CAR) T-cells by knocking out T-cell genes known to induce immunogenic graft-vs-host 

reactions.[98] Although these cells showed comparable activities to unmodified CAR T-cells, 

their immunogenicity needs to be further investigated.

Computational methods are introduced in several stages in the engineering process of gene 

therapy systems. Numerous AI-based models, including Neural Networks, SVMs and 

decision trees, were used for classification of effective and ineffective sequences for RNAi in 

order to recognize key features in their design.[99] However, these models only refer to the 

efficiency of the siRNA sequence itself, and don't take into account the delivery method. The 

use of predictive algorithms for delivery of oligonucleotides is not as frequent. Instead, 

laborious experimental scanning of chemical libraries were performed in several studies for 

testing parameters in the design of carrier systems.[100] Nevertheless, this data can be 

exploited for training machine learning algorithms and help uncover vital design parameters 

which might have been overlooked in current designs. Moreover, specific modeling of 

membrane-nanoparticle interactions can provide insights on the uptake mechanism of the 

particle and its inter-cellular pathway, as well as the effects of the nanoparticle properties on 
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these processes.[101] By taking these considerations into account and altering the 

nanoparticle's properties, the transfection efficacy of the nanoparticles can be further 

increased.

6 Deciding when to use Nanomedicine

Despite the numerous advantages of nanomedicine-based therapies, nanomedicine are not 

suitable for every patient and malignancy. The most widely discussed example for this issue 

is the great variability in the enhanced permeability and retention (EPR) effect between 

different patients and cancer types.[102, 103] While most clinically approved nanomedicine to 

date rely on the EPR effect for effective delivery to the target site, its heterogeneity among 

patients due to different clinical and physiological conditions, such as varied vascular 

architecture, leads to different drug response among patients.[103] Similar variability exists in 

targeting moieties' expression in the case of ligand-targeted nanoparticles.[104] Therefore, 

prescreening the patient's compliance to the specific nanomedicine is crucial before deciding 

on this type of treatment.[105] Nanoparticle-based imaging has been widely used in pre-

clinical studies and was also tested in several clinical studies.[106] The intrinsic properties of 

nanomaterials make them suitable for various imaging modalities. superparamagnetic iron 

oxide nanoparticles (SPIONs) for example, are clinically approved imaging contrast agents 

exhibiting improved contrast in MRI imaging due to their unique magnetic properties.[107] 

Bourdeau, et al. used protein-based gas nano-vesicles as ultrasound and MRI contrast agents 

in animal models.[108] “C-dots”, dye-labeled mesoporous silica nanoparticles functionalized 

with a targeting peptide, are currently under clinical trials for image-guided intra-operative 

mapping of lymph node metastasis in head and neck, breast and colorectal cancer.[109] 

Nevertheless, only a few nanoparticle-based imaging agents have been clinically approved. 

One reason for their limited use is their unique pharmacokinetic profile that does not always 

fit the requirements of an imaging agent. Nanoparticles often display long circulation times, 

limited tissue penetration which is highly dependent on the tumor vascularization, and are 

mostly taken up by the mononuclear phagocytic system. Therefore, in certain tumor types 

these agents do not achieve the desirable rapid accumulation in the target site in comparison 

to low-molecular-weight imaging agents.[110] Concerns about toxicity and compatibility of 

certain nanomaterials, as well as high development costs pose additional difficulties for 

translating these imaging technologies to the clinic.

Nanotheranostics offer an alternative solution for pre-screening nanomedicine suitability in 

different patients using nanomedicines that contain both a drug and an imaging agent in one 

nanoparticle.[111] These nanoparticles can then be used in order to study the nanomedicine's 

pharmacokinetics, targeting efficacy and drug release profile.[112] For example, a 

radiolabeled cyclodextrin-based nanoparticle encapsulating the topoisomerase inhibitor 

camptothecin, was used for pharmacokinetic studies with PET imaging in mice 

neuroblastoma models.[113] Nanotheranostics were also used for increasing the accuracy of 

nanoparticle-based photothermal and radiation therapies, by localizing the nanoparticles in 

the tumor area prior to the treatment in animal models.[114] For example, PEGylated WS2 

nanosheets displaying high absorbance of NIR irradiation for photothermal therapy were 

detected with CT imaging prior to their photo-activation in a murine breast cancer model.
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[115] These nanosheets displayed good biocompatibility and effectively photo-ablated the 

tumors both in intra-tumoral and intravenous administration.

Yet although nanotheranosic formulations present an attractive approach, current theranostic 

clinical studies are mostly based on direct labeling of drugs or targeting ligands with 

imaging moieties (mostly for cancer radiation therapy) without using nanoparticles.[116] The 

high complexity of designing, testing and clinically approving a nanomedicine, even before 

adding an imaging agent, may withhold attempts to add an imaging agent for theranostic 

purposes. Therefore, simple techniques that will allow to efficiently label an approved 

nanomedicine after the fabrication process will enable more frequent use of nanomedicine 

pre-screening in patients. For example, remote loading of 52Mn-DOTA to liposomes enabled 

their radiolabeling for PET imaging without effecting their encapsulated materials or their 

external surface properties.[117] The utilization of AI in nanotheranostic formulation can 

provide essential insights (Figure 4). In case the imaging agent and the drug need to be 

loaded into the particle, predictive machine-learning algorithms can be applied to predict 

their encapsulation efficiency.[118] For example, a quantitative structure-property 

relationship (QSPR) model was used to predict the ability of the molecules to be remotely 

loaded into liposomes with over 90% accuracy according to their chemical structure and the 

conditions of the encapsulation process.[119] This model was implemented with several 

different algorithms, including SVM, decision trees and Iterative Stochastic Elimination 
(ISE, see Box 1). A similar method was used to predict the cytotoxicity of metal oxide 

nanoparticles.[120] Extrapolating this method to other types of nanoparticles, will allow to 

assess the effect of surface labeling of nanoparticles for imaging purposes on their 

biocompatibility. The contribution of AI to image analysis must also be recognized when 

discussing medical imaging.[121] Machine learning algorithms for tumor detection, 

characterization and monitoring are constantly improved in their accuracy and 

reproducibility, aiming to save time and improve the diagnostic abilities of medical teams. 

Implementing these algorithms in nanotheranostic imaging could provide further insights on 

the particles bio-distribution profiles and therapeutic efficacies.

A complimentary approach to patient pre-screening before selecting nanomedicine-based 

treatments, is based on actively improving the patients' nanomedicine compatibility. This can 

be performed by reducing the tumor stromal barrier in order to achieve better nanoparticle 

localization and penetration. For example, conjugation of recombinant human hyaluronidase 

to PLGA-PEG nanoparticles increased their penetration into the tumor in tumor-bearing 

mice by eliminating hyaluronic acid in the tumor microenvironment.[122] This technology is 

currently under clinical studies in combination with Nab-Paclitaxel and other therapeutic 

agents in pancreatic cancer patients.[123] Von Maltzahn, et al, presented another approach for 

enhanced particle accumulation with a system based on two types of nanoparticles that can 

enhance nanoparticle localization in murine tumors by triggering endogenous biological 

processes in the cancer tissue.[124] First, gold nanorods were injected and localized to the 

tumor utilizing the EPR effect. Photothermal heating of these nanorods initiated 

extravascular coagulation and fibrin deposition specifically in the tumor area. This in turn 

led to amplified tumor localization of a second wave of injected nanoparticles functionalized 

with fibrin binding peptides that were recruited to the target site by the coagulation signal of 

the first wave of nanoparticles.
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7 Future Outlook

The development and implementation of precision medicine has begun revolutionizing the 

diagnosis and care of cancer patients. Cancer multi-gene panel scans adapted for different 

cancer types are available in clinics worldwide, aimed to assist in treatment selection. Yet, 

further improvements and considerations must be addressed in order to fulfill the potential of 

precision medicine.

Patient classification is an important issue that must be improved in order to optimally 

personalize the treatment regime. To date, patient classification is based on differentiating 

healthy vs. diseased individuals, with several technologies that enable cancer staging and 

differentiating between cancer types.[47, 50] Implementation of unsupervised learning 
methods (see Box 1) that will cluster patient groups without predefined categorization, can 

assist in detection of new features that are important to take into account when tailoring a 

treatment regime for a patient. For example, results from pharmacogenomic studies indicate 

that gender is an important factor to consider for drug administration, since it influences the 

therapeutic response, adverse effects and pharmacokinetics, partially due to differences in 

drug metabolizing enzymes expression patterns and effects of sex hormones.[125] A recent 

study emphasized the importance of this issue specifically for nanomedicine, demonstrating 

differences in nanoparticle uptake between male and female amniotic stem cells.[126]

Patient follow-up after completing the treatment is another important issue that is not 

discussed as often in comparison to the diagnostic and treatment stages. Current protocols of 

long-term patient follow-up vary for different cancer types, treatment stages and treatment 

regimens, and raise controversies among medical teams.[127] Major effectors on the success 

of long-term follow-up are the sensitivity and accuracy of the performed tests, as well as 

their cost, time-consumption, complexity and patient-compliance. Many of the sensing 

technologies that are developed for diagnostic purposes could be adjusted to fit follow-up 

purposes. For example, successful differentiation between pre- and post-surgery states of 

lung cancer patients using a VOC nanosensor array, initiated a clinical study for its use as a 

shot-term follow-up tool.[128]

Portable and easy-to-operate nanosensors can improve the implementation of follow-up 

protocols for cancer patients. Advancements in the fabrication of flexible and self-healing 

nanomaterials should pave the way towards electronic skin nanosensors that will enable 

continuous monitoring of selected biomarkers through sweat, saliva and non-invasive blood 

analysis.[129] In a recently published study by Gao, et al., a flexible sensing array for 

detection of sweat metabolites and electrolytes was designed and connected to a mobile app 

via Bluetooth.[130] This on-body nanosensor was used for real time monitoring of subject's 

sweat profile under different physiological conditions. In addition, combination of 

microfluidic techniques in point-of-care devices and smartphone-integrated platforms can 

also prove essential for simplifying patient-operated devices that will allow more frequent 

follow up without increasing the burden on medical teams.[131]

Computational methods are essential in the implementation of precision medicine, beginning 

from molecular data collection, to the diagnostic and treatment stages. AI algorithms for 
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patient classification, screening patients' drug suitability and for optimizing nanomedicine 

properties demonstrated their value for precision medicine in numerous studies. However, in 

order to reach clinical implementation of these algorithms, several challenges must be 

addressed. One of the most important issues for achieving high accuracy in these 

computational methods is obtaining large datasets that will be used for training the 

algorithms. Therefore, data standardization as well as data collection from heterogenic 

patient populations are crucial for the clinical success of these models. Moreover, stronger 

connection between the experts in the fields of nanomaterials, medicine and computer 

science and implementation of computation in all stages of academic and industrial research 

will help to optimize their performance and clinical relevance.

The design of specific computational models for different patients is another emerging 

approach for improving the accuracy of precision medicine. Bordbar, et al. took initial steps 

in this direction and designed personalized computational models for cellular metabolism 

kinetics that provided insights on the patients' personal pharmacodynamics.[132] These 

models were based on several measurements of metabolite concentrations in erythrocytes 

and in the plasma extracted from each subject. These measurements were used to calculate 

the metabolite baseline levels and a single rate constant that represented a combination of 

the kinetic constants for the metabolic network. Simulations of the response of each of the 

models to ribavirin, a drug used for treatment in Hepatitis C patients, revealed drug 

tolerability issues in some of the individuals. Translating this approach for cancer patients 

can prove beneficial for metabolomics-based diagnosis and drug pre-screening.

A frequently asked question when discussing precision medicine treatment's is: can we 

personalize a nanomedicine for every patient? Although present techniques enable versatile 

conjugation of any desired antibody to nanoparticles, as well as variability in the choice of 

cargo (e.g., a specific siRNA sequence that matches the chosen gene for inhibition), many 

further obstacles remain in order to make this approach realizable.[133] Besides the 

complicated clinical approval process for personalized nanomedicine, limitations of current 

fabrication techniques and the high costs of nanomedicine development must be addressed. 

More accurate use of existing drugs by utilizing precision diagnostic platforms and 

personalized drug-tailoring techniques can significantly improve treatment outcome by 

constructing a combinatorial treatment protocol for each patient targeting several pathways 

simultaneously. This will enable to overcome drug resistance and improve therapeutic 

efficacy. AI and other computational models will play an important role in the development, 

design and implementation of these nanotechnologies.
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Box 1

Basic Terms in Artificial Intelligence, Machine learning and Computational 
Models

Artificial intelligence (AI) –

The ability of machines to execute tasks that require “human intelligence”, such as 

problem solving and learning. For example, an algorithm that learns to distinguish 

between healthy and diseased individuals.

Machine learning (ML) –

An area in AI based on construction of algorithms supplied with large datasets that are 

used as an input for training and improving the algorithm's output results. ML is used for 

numerous applications including decision making, classification and pattern recognition 

problems.

Supervised and Unsupervised Learning –

Supervised learning is a machine learning task in which the training data is already 

labeled with the required output and the algorithm modifies its variables in order to 

optimize the obtained results from the data as requested by the user. In unsupervised 

learning, the data is classified without prior labeling and categorization according to 

patterns discovered by the algorithm.

Artificial Neural Networks (ANN) –

An ANN is a framework of connected layers of nodes that can be used for implementing 

machine learning algorithms. It is composed of an input layer, an output layer, and 

usually also contains hidden layers. A node can receive input from multiple connections 

from the preceding layer, each assigned with a specific weight that is considered when 

calculating the node's output. The network is trained to optimize the weights of each 

node-to-node connection for achieving increased accuracy of the output.

Support Vector Machine (SVM) –

SVM is a machine learning algorithm that is trained to classify data by constructing an n-

dimensional space according to the input features and optimizing the separation of 

different groups across this space.

Decision Tree Learning –

A decision tree is a method for data classification and regression that is based on 

constructing a tree-like structure that performs sequential tests on selected features.

Random Forest Classifier –

A Random Forest Classifier is built from a combination of decision trees. The 

randomness of this approach is due to a selection of the feature for testing from a random 

subset of the total features during the tree construction process, which leads to variant 

decision trees that comprise the forest.

Principal Component Analysis (PCA) –
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PCA is a method that receives a dataset of examples with multiple features and uses 

linear combinations in order to generate a smaller number of new features called 

principal components (PCs). These PCs are arranged from top to bottom according to 

their variance, and therefore by using the top PCs the data can be classified and presented 

in lower dimensionality.

Feature Selection –

Feature selection is used in order to reduce the complexity of the problem by detecting 

the important features that contribute most to the results.

Levenberg–Marquardt (LM) Algorithm –

The LM algorithm is a fitting algorithm that is used for non-linear problems in an 

iterative process in order to minimize errors. It can be used in the training process of 

machine learning models.

Metropolis Monte Carlo Algorithm –

The Metropolis Monte Carlo Algorithm is used for randomly generating a set of 

configurations for an investigated system and calculate their probability distribution.

Iterative Stochastic Elimination (ISE) –

ISE is an algorithm for complex problem solving that uses stepwise variable scoring and 

rejection of the variables that lead to the worst results after each step, thus simplifying the 

problem.
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Figure 1. 
Advancing from single biomarker sensing to multiplex sensing. Diagnostic screening of 

patient-derived liquid biopsies with single biomarkers sensors demonstrates high sensitivity 

and specificity, but is limited by inter-patient heterogeneity in biomarker expression and the 

low number of approved single biomarkers. Integration of AI in the data analysis of 

multiplex nanosensors that can detect a number of target molecules enables identification of 

disease-specific biomarker patterns. These patterns can be used for patient screening, 

overcoming the variability in biomarker expression.
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Figure 2. 
Exploiting AI and nanomedicine for tailoring a patient-specific treatment regime. Initial 

drug screening with computational methods based on the patient's specific omics profile will 

provide a list of drugs with therapeutic potential. These drugs can then be tested in situ with 

nanoparticle-based technologies in order to select the optimal treatment regime. Applying 

nanotheranostic methods combining the nanomedicine with an imaging agent will allow to 

tune the treatment protocol by monitoring the drug's pharmacokinetics and release in the 

target site.
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Figure 3. 
Differences between computational models and machine learning algorithms: prediction of 

drug encapsulation as an example. Computational models depend on a devised mathematical 

model for simulation of the physio-chemical process and therefore prior physical, chemical 

and biological knowledge of the mechanisms is essential. Machine learning algorithms on 

the other hand, are based on training on large datasets of previous examples and detecting 

key features and correlations in the data for increasing the prediction accuracy.

Adir et al. Page 27

Adv Mater. Author manuscript; available in PMC 2021 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Computational methods contribute to various aspects of nanoparticle design. Current 

machine-learning algorithms and computational models provide tools for predicting the 

nanoparticles' size and charge, drug encapsulation efficiency, interactions with biological 

membranes, biological fluids and drug release kinetics.
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