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Abstract

Recently discovered DNAJB1-PRKACA oncogenic fusions have been considered diagnostic for 

fibrolamellar hepatocellular carcinoma. In this study, we describe six pancreatobiliary neoplasms 

with PRKACA fusions, five of which harbor the DNAJB1-PRKACA fusion.

All neoplasms were subjected to a hybridization capture-based next-generation sequencing assay 

(MSK-IMPACT), which enables the identification of sequence mutations, copy number 

alterations, and selected structural rearrangements involving ≥ 410 genes (n=6) and/or to a custom 

targeted, RNA-based panel (MSK-Fusion) that utilizes Archer Anchored Multiplex PCR 

technology and next-generation sequencing to detect gene fusions in 62 genes (n=2). Selected 

neoplasms also underwent FISH analysis, albumin mRNA in-situ hybridization and arginase-1 

immunohistochemical labeling (n=3).

Five neoplasms were pancreatic, and one arose in the intrahepatic bile ducts. All revealed at least 

focal oncocytic morphology: three cases were diagnosed as intraductal oncocytic papillary 

neoplasms, and three as intraductal papillary mucinous neoplasms with mixed oncocytic and 

pancreatobiliary or gastric features. Four cases had an invasive carcinoma component composed of 

oncocytic cells. Five cases revealed DNAJB1-PRKACA fusions and one revealed an ATP1B1-
PRKACA fusion. None of the cases tested were positive for albumin or arginase-1. Our data prove 

that DNAJB1-PRKACA fusion is neither exclusive nor diagnostic for fibrolamellar hepatocellular 

carcinoma, and caution should be exercised in diagnosing liver tumors with DNAJB1-PRKACA 
fusions as fibrolamellar hepatocellular carcinoma, particularly if a pancreatic lesion is present. 

Moreover, considering DNAJB1-PRKACA fusions lead to up-regulated protein kinase activity and 

that this up-regulated protein kinase activity has a significant role in tumorigenesis of fibrolamellar 

hepatocellular carcinoma, protein kinase inhibition could have therapeutic potential in the 

treatment of these pancreatobiliary neoplasms as well, once a suitable drug is developed.
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INTRODUCTION:

The introduction of routine broad-spectrum genomic analysis of solid neoplasms has 

generated a wealth of data about alterations at the DNA and RNA level, some of which 

appear to have diagnostic specificity for distinctive neoplasms, and others may confer 

sensitivity to targeted therapies. Recently, a novel DNAJB1-PRKACA fusion was discovered 

in the fibrolamellar variant of hepatocellular carcinoma [1]. Both genes are located on the 

short arm of chromosome 19, and the in-frame fusion occurs due to a 400 kb deletion. 

PRKACA encodes the catalytic subunit of protein kinase A (PKA). In presence of cyclic 

AMP, the catalytic subunit of PKA is involved in regulation of downstream effectors via 

phosphorylation. The DNAJB1-PRKACA fusion results in the formation of a chimeric 

protein, which has up-regulated protein kinase activity [2]. It is believed that this up-

regulated protein kinase activity has a significant role in tumorigenesis of fibrolamellar 

hepatocellular carcinoma [3]. The published literature documents the presence of this fusion 

in >95 % of fibrolamellar hepatocellular carcinomas, but it is reportedly absent in other 

neoplasms of the liver or other anatomical sites [4]. Thus, identification of this fusion has 

been regarded as diagnostic for fibrolamellar hepatocellular carcinoma.

However, our comprehensive molecular testing of pancreatobiliary neoplasms demonstrated 

the recurrent presence of DNAJB1-PRKACA fusions in a subset with oncocytic features. 

Here, we discuss the clinicopathologic and molecular features of these pancreatobiliary 

neoplasms.

METHODS:

The study was approved by the institutional review board.

Memorial Sloan Kettering Cancer Center institutional database of 34830 solid neoplasms 

that underwent clinical sequencing testing with MSK-IMPACT (n=33,634) or MSK-Fusion 

Panel (n=1196) assays as well as the authors’ prior research cohorts of 23 pancreatic and 

biliary intraductal oncocytic papillary neoplasms [5; 6; 7; 8] were searched for cases with 

fusions involving DNAJB1 or PRKACA, the specific DNAJB1-PRKACA fusion in 

particular. MSK-IMPACT is a hybridization capture-based next generation sequencing assay 

that assesses the coding regions as well as selected promoter and intronic regions of 410 

genes (n=23849) or 468 genes (n=9785), depending upon the version of the test employed, 

for mutations, amplifications, deletions, selected structural rearrangements (including 

DNAJB1-PRKACA fusions), and microsatellite status against a patient’s matched normal 

[9; 10; 11]. Only cases tested using the newer (01/30/2015 or later) versions of the MSK-

IMPACT panel (MSK-IMPACT 410 or 468) were included as the previous versions did not 

include probes that specifically target DNAJB1 intronic rearrangements. The MSK-Fusion 

assay is a custom targeted, RNA-based panel that utilizes Archer Anchored Multiplex PCR 

technology and next-generation sequencing to detect gene fusions in 62 genes (including 
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DNAJB1, PRKACA, and ATP1B1) known to be involved in chromosomal rearrangements 

[12; 13; 14]. These custom assays have been validated and approved for clinical use at 

Memorial Sloan Kettering Cancer Center by the New York State Department of Health 

Clinical Laboratory Evaluation Program.

Separately, the Cancer Genome Atlas database [15; 16] was also searched for additional 

cases with fusions involving these genes.

Histologic sections of the cases with DNAJB1-PRKACA fusions in the institutional 

database were evaluated to characterize the diagnostic features of the neoplasms [slides of 

the primary neoplasm and metastases (if applicable) were reviewed and tissue from the 

primary was tested]. Available medical records, including pathology reports, were reviewed 

to obtain clinical data and outcome.

The cases with DNAJB1-PRKACA fusions, for which additional material was available 

(n=3), underwent FISH analysis following the standard protocols. Briefly, 4 μm-thick tissue 

sections were de-paraffinized, followed by dehydration in 100% ethanol. Tissues were 

treated with pepsin for 10-25 minutes, followed by fixation in 10% formalin, and 

dehydration in a series of 70%, 85% and 100% ethanol. The PRKACA break-apart probe set 

(Empire Genomics, Buffalo, NY) consists of two BAC probes for the 5’PRKACA region 

(383kb, labeled in spectrum red) and 3’PRKACA region (542kb, labeled in spectrum green), 

respectively. After applying the FISH probes to the tissue, both tissue and probes were co-

denatured, hybridization was set at 37° C overnight, followed by post-hybridization washing, 

and counterstained with DAPI. Signal analysis was performed in combination with 

morphology correlation, and at least 100 interphase cells within the marked tumor area were 

evaluated and imaged using a Zeiss fluorescence microscope coupled with Metasystems 

ISIS software (Newton, MA).

The cases with DNAJB1-PRKACA fusions, for which additional material was available 

(n=3), as well as cases of intraductal oncocytic papillary neoplasms of the pancreas and bile 

ducts from prior research cohorts (n=23) [6; 7; 8] were also labeled with arginase-1 

immunohistochemical stain (Cell Marque, Rocklin, CA), using the standard avidin-biotin 

peroxidase method, and albumin mRNA in-situ hybridization, using the automated 

ViewRNA platform (Affymetrix) as previously described [17], to assess diagnostic value of 

arginase and albumin staining in these neoplasms.

RESULTS:

Among the 33,634 cases in the MSK-IMPACT clinical sequencing cohort (2434 of these 

cases also had MSK-Fusion), we found two non-fibrolamellar hepatocellular carcinoma 

samples that harbored DNAJB1-PRKACA fusions. Both neoplasms were pancreatobiliary 

primaries with oncocytic morphology, and none had typical histologic features of 

fibrolamellar hepatocellular carcinoma. Additionally, among the 1196 cases in the MSK-

Fusion clinical sequencing cohort (none of these cases had MSK-IMPACT), another 

pancreatobiliary neoplasm with similar oncocytic morphology was found to harbor an 

ATP1B1-PRKACA fusion. The prior research cohorts of 23 pancreatic and biliary 
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intraductal oncocytic papillary neoplasms [5; 6; 7; 8] revealed three more cases with 

DNAJB1-PRKACA fusions.

Of note, pancreatobiliary neoplasms in our MSK-IMPACT clinical sequencing cohort 

included ampullary carcinomas (n=84), pancreatic ductal adenocarcinomas (n=1584), 

adenosquamous carcinomas of the pancreas (n=36), undifferentiated carcinomas of the 

pancreas (n=18), intraductal papillary mucinous neoplasms of the pancreas (n=14), 

mucinous cystic neoplasms of the pancreas (n=3), pancreatic neuroendocrine tumors 

(n=200), acinar cell carcinomas (n=34), pancreatoblastomas (n=3), solid pseudopapillary 

neoplasms (n=8), gallbladder carcinomas (n=138), cholangiocarcinomas, NOS (n=56), 

extrahepatic cholangiocarcinomas (n=102), perihilar cholangiocarcinomas (n=13), and 

intrahepatic cholangiocarcinomas (n=334). Our MSK-Fusion clinical sequencing cohort 

included pancreatic ductal adenocarcinomas (n=13), adenosquamous carcinomas of the 

pancreas (n=2), pancreatic neuroendocrine tumor (n=1), acinar cell carcinomas (n=2), 

pancreatoblastoma (n=1), gallbladder carcinomas (n=2), cholangiocarcinomas, NOS (n=6), 

and intrahepatic cholangiocarcinomas (n=4). The prior research cohorts included solely 

intraductal oncocytic papillary neoplasms of the pancreas (n=13) and bile ducts (n=10).

Of the 10,967 samples in the Cancer Genome Atlas database, none of the non-fibrolamellar 

hepatocellular carcinoma samples harbored DNAJB1-PRKACA fusions. However, there 

were four samples that harbored PRKACA rearrangements with other partner genes and the 

primary sites of those neoplasms were breast (two invasive ductal carcinomas; one with a 

GATA2A-PRKACA fusion, another with a TPGS1-PRKACA fusion), lung (an invasive 

squamous cell carcinoma with an ASF1B-PRKACA fusion), and ovary (a high grade 

papillary serous carcinoma with an ASF1B-PRKACA fusion) [16].

Clinical Features:

The clinicopathologic features of the six PRKACA fusion positive oncocytic 

pancreatobiliary neoplasms are summarized in Table 1. The cohort included five males and 

one female, and the mean age was 55 years at first presentation (range, 36-76 years). Five 

cases were pancreatic and one case arose in an intrahepatic bile duct. Follow-up data were 

available for five patients (interval 9 months - 20 years). One patient died of disease, 4 years 

after initial diagnosis. One patient had a local recurrence as well as immunohistochemically 

confirmed distant metastases after 20 years. At the time of last follow-up, the remaining 

three patients were alive with no evidence of disease 9 months, 6 years, and 10 years after 

initial diagnosis.

Histologic Features:

There was significant morphologic overlap among these six neoplasms. All six were either 

an intraductal neoplasm (n=2) or an invasive carcinoma arising in association with an 

intraductal neoplasm (n=4).

Three cases were diagnosed as intraductal oncocytic papillary neoplasm (two in the 

pancreas, one in the intrahepatic bile ducts). These cases exhibited arborizing papillae lined 

by multiple layers of neoplastic cells with abundant eosinophilic, granular cytoplasm and 

large, and fairly uniform nuclei containing single, prominent nucleoli (Figure 1). 
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Intraepithelial lumina and interspersed goblet cells were also present [5]. Three additional 

pancreatic cases were diagnosed as intraductal papillary mucinous neoplasms with mixed 

oncocytic and pancreatobiliary features (n=2) or mixed oncocytic and gastric features (n=1), 

as they also demonstrated foci of pancreatobiliary or gastric differentiation (Figure 2).

Four cases had an associated invasive carcinoma component (three in the pancreas, one in 

the intrahepatic bile ducts). The invasive component was characterized either by small 

tubular units composed of oncocytic cells infiltrating loose, myxoid stroma or by stromal 

mucin accumulation in which oncocytic neoplastic cells were suspended, resembling the 

pattern of colloid carcinoma (Figure 1). In one case, prominent cytoplasmic eosinophilic 

globules were noted.

Immunohistochemical Features:

None of the three cases with DNAJB1-PRKACA fusions tested (Cases #2, #3 and #5) were 

positive for albumin mRNA by in-situ hybridization or arginase-1 by immunohistochemistry.

Among the 23 cases from the prior research cohorts, although two pancreatic (15%) and one 

biliary (10%) intraductal oncocytic papillary neoplasms were positive (all patchy) for 

albumin mRNA by in-situ hybridization (Figure 3), none demonstrated arginase-1 

immunolabeling.

Molecular Features:

Of the six cases harboring PRKACA fusions, five revealed DNAJB1-PRKACA fusions and 

one (Case #1) revealed an ATP1B1-PRKACA fusion. All five cases with DNAJB1-
PRKACA fusions harbored fusions involving exon 2 or intron 1 of DNAJB1 with intron 1 or 

the promoter of PRKACA. Case #1 harbored a fusion involving exon 1 of ATP1B1 with 

exon 2 of PRKACA (Figures 4 and 5, Table 2).

In all three cases tested (Cases #2, #3 and #5), FISH analysis revealed that more than 90% of 

the tumor cells had a signal pattern of one single signal (green) for the 3’PRKACA region 

and one to two normal fusion signals (Figure 6). These results are consistent with a complete 

deletion of the 5’ PRKACA region between PRKACA and DNAJB1, which results in the 

DNAJB1-PRKACA fusion, supporting the results of MSK-IMPACT and MSK-Fusion 

assays.

Of note, all cases revealed other genomic mutations and/or alterations. In four cases, 

mutations in key driver genes involved in the MAPK pathway (KRAS, BRAF and RAF1) 

were identified. Three of these were pancreatic intraductal papillary mucinous neoplasms 

with either mixed oncocytic and pancreatobiliary (n=2) or mixed oncocytic and gastric (n=1) 

features that harbored KRAS G12R, KRAS G12D or BRAF V600_K601delinsE mutations. 

The last one was a pancreatic intraductal oncocytic papillary neoplasm that had a RAF1 
A150S mutation. Additionally, the case with distant metastasis had alterations in key cell 

cycle regulator genes, such as TP53 (Table 2 and Figure 4).
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DISCUSSION:

In this study, we present six pancreatobiliary neoplasms with fusions involving PRKACA. 

All neoplasms at least focally demonstrated oncocytic morphology in their intraductal and/or 

invasive components. The morphologic overlap of these neoplasms with each other as well 

as with fibrolamellar hepatocellular carcinoma, which are also defined by fusions involving 

the PRKACA gene, suggests that the oncocytic morphology may be associated with fusions 

involving this gene.

In 2014, Honeyman et al. reported the DNAJB1-PRKACA fusion transcript in fibrolamellar 

hepatocellular carcinoma [1]. This finding has been validated by subsequent studies and 

touted as a diagnostic biomarker for this entity [18]. In the seminal study, the authors 

documented a ~400kb deletion on chromosome 19 resulting in a fusion that either starts in 

intron 1 or exon 2 of DNAJB1 and ends in intron 1 of PRKACA. Since the description of the 

fusion, several studies have been undertaken to determine the role of this fusion transcript in 

the development of fibrolamellar hepatocellular carcinoma. The fusion codes for an active 

and oncogenic form of protein kinase A (PKA) enzyme. The fusion protein is 

phosphorylated at a site in the Cα catalytic subunit of the PKA (PKA-Cα), which is often 

associated with kinase activity even in the absence of activators of adenylyl cyclase, 

suggesting that the fusion protein is constitutively more active than wild-type PKA-Cα, but 

can be further induced with signals that normally activate PKA in cells [19]. The reason for 

upregulated activity of the fusion transcript as compared to wild-type PKA may be related to 

the replacement of the PRKACA promoter by the DNAJB1 promoter, leading to a higher 

basal transcription rate. Engelholm et al., using CRISPR/Cas9 techniques, showed 

generation of the DNAJB1-PRKACA fusion gene in wild-type mice to be sufficient to 

initiate formation of tumors that have many features of human fibrolamellar hepatocellular 

carcinoma, but carcinogenesis may be more complex in humans [20]. In fact, in human 

fibrolamellar hepatocellular carcinomas, recurrent mutations that hyperactivate the Wnt 

pathway have been reported, together with the DNAJB1-PRKACA fusion. Furthermore, 

genetic alteration of this pathway -but not several other oncogenes or tumor suppressors- 

synergized with DNAJB1-PRKACA driven carcinogenesis in mouse models [21]. Sanford et 

al. also suggested that sole activation of PRKACA is not sufficient for human carcinogenesis 

and perhaps the conformational properties of this chimera may play a role [22]. More 

recently, microRNA-375 dysregulation was also identified in cases of fibrolamellar 

hepatocellular carcinoma, but how the DNAJB1-PRKACA fusion transcript plays a role in 

the suppression of microRNA-75 expression and whether microRNA-75 has important 

targets in this tumor remain to be studied [23]. Of note, while the DNAJB1-PRKACA fusion 

is highly recurrent in fibrolamellar hepatocellular carcinoma, rare cases of fibrolamellar 

hepatocellular carcinoma without the fusion have been described [2, 24]. In those cases, 

alternative mechanisms of upregulation of PKA, such as loss of PRKACA1 in Carney 

complex, or amplification of PRKACA, have been demonstrated [4, 24, 25].

Through analysis of a large series of pancreatobiliary neoplasms, we identified six 

neoplasms, five with DNAJB1-PRKACA fusions and one with an ATP1B1-PRKACA 
fusion. The structural variants of DNAJB1-PRKACA observed in our study are similar to 

those described by Honeyman et al in their seminal study [1], indicating that the functional 
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implications of the fusions are also most likely similar [1]. However, additional possible 

driver mutations, including key drivers of the MAPK pathway and key cell cycle regulatory 

genes, were also present in our cases (Table 2). Of note, ATP1B1-PRKACA fusions have 

been reported in cholangiocarcinoma [26, 27]. ATP1B1 is also a known gene partner in 

NRG1 rearrangements, which are oncogenic drivers that are enriched in invasive mucinous 

adenocarcinomas of the lung [28].

In addition to the shared genomic event, these pancreatobiliary neoplasms shared some 

specific histologic features as well. All six cases had an intraductal neoplasm with at least 

mixed, if not pure, oncocytic morphology. Of note, the pancreatic intraductal papillary 

mucinous neoplasms with mixed (oncocytic and pancreatobiliary or gastric) features 

harbored MAPK pathway mutations, more typical of intraductal papillary mucinous 

neoplasms [6]. All four cases with an invasive component also revealed similar oncocytic 

features in the invasive carcinoma. The morphologic overlap between fibrolamellar 

hepatocellular carcinomas and the pancreatobiliary neoplasms in this series is also 

interesting. Fibrolamellar hepatocellular carcinomas are composed of cords of large and 

polygonal neoplastic cells in background of dense collagen bundles frequently arranged in 

parallel lamellae. The neoplastic cells have abundant granular and eosinophilic cytoplasm 

with frequent hyaline globules and typical nuclear features include open chromatin and 

prominent “cherry red” macronucleoli [4]. While the pancreatobiliary neoplasms in this 

series are architecturally different from fibrolamellar hepatocellular carcinoma, they are 

cytologically similar, as they also exhibit abundant granular and eosinophilic cytoplasm, 

large vesicular nuclei, and prominent nucleoli [29].

Although number of the cases is too limited to draw any definitive conclusions, the 

morphologic similarity among these tumors that have the same fusion resulting in activation 

of PKA is intriguing. Studies have shown that oncocytic neoplasms including fibrolamellar 

hepatocellular carcinoma and intraductal oncocytic papillary neoplasm are rich in 

mitochondria [30]. It is also known that PKA acts on several substrates located in the 

mitochondria in various organs [31]. The constitutional activation of the PKA pathway by 

the chimeric fusion protein probably causes mitochondrial hyperplasia within the cells, 

which results in the oncocytic appearance. Therefore, it is possible that fibrolamellar 

hepatocellular carcinoma and the pancreatobiliary neoplasms described in this series may 

share common progenitors, especially considering they overlap not only morphologically but 

also immunophenotypically. While conventional hepatocellular carcinomas are usually CK7 

negative, fibrolamellar hepatocellular carcinomas label with CK7 [32; 33] and oncocytic 

pancreatobiliary neoplasms express HepPar-1 [7; 34] and, focally, albumin mRNA. 

Moreover, transcriptomic analysis of fibrolamellar hepatocellular carcinomas has shown 

enrichment of certain transcription factor gene sets associated with pancreatic cancer, 

namely ERBB2, E2F1, E2F3, CDKN2A, CDK6, SMAD2, TGFBR1, and TGFB2 [3]. What 

this likely means is that altered PKA function, leading to alteration in the activity of these 

oncogenic proteins, may at least play a part in, if not driving, oncogenesis. Interestingly, one 

of our cases shared genomic mutations/alterations in some of the above-mentioned genes 

(ERBB2 in Case #6).
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Our data raise awareness that DNAJB1-PRKACA fusions are not unique to fibrolamellar 

hepatocellular carcinoma and may also be seen in oncocytic pancreatobiliary neoplasms. 

Although diagnostic confusion is unlikely based upon resected specimens, caution should be 

exercised in the context of biopsy and cytology specimen interpretation. Because the 

differential diagnosis of an oncocytic neoplasm in the liver, perihepatic soft tissue or 

regional lymph nodes, with CK7, HepPar-1, and albumin mRNA expression and a DNAJB1-
PRKACA fusion includes fibrolamellar hepatocellular carcinoma as well as intraductal 

oncocytic papillary neoplasms (and associated invasive carcinomas) of the bile ducts and the 

pancreas [32; 35]. Therefore, more specific hepatocellular differentiation markers, such as 

arginase-1 immunohistochemical staining, as well as radiographic findings demonstrating 

the lack of a pancreas mass may be needed to establish a definitive diagnosis.

Furthermore, this chimera is potentially targetable, and new therapeutics are on the horizon, 

including kinase inhibitors or other modalities altering the PKA pathway [36]. Considering 

clinical trials using non-specific tyrosine/aurora kinase inhibitors for advanced stage 

fibrolamellar hepatocellular carcinoma are already enrolling patients [37], it is only a matter 

of time before specific targeted therapy becomes available for fibrolamellar hepatocellular 

carcinoma. Identifying PRKACA fusions will then become therapeutically important not 

only for fibrolamellar hepatocellular carcinoma but also in other neoplasms harboring this 

fusion [38].

Conclusion:

We report six novel cases of oncocytic pancreatobiliary neoplasms with PRKACA fusions, 

including five with DNAJB1-PRKACA fusions. Our data proves that DNAJB1-PRKACA 
fusion is not a specific marker for the diagnosis of fibrolamellar hepatocellular carcinoma. 

As in depth next-generation sequencing of tumors becomes a standard of care in the 

oncologic management of patients, we are likely to find more cases exhibiting similar 

molecular alterations, which might be amenable to targeted therapy.
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Figure 1: 
A-B. Intraductal oncocytic papillary neoplasms exhibited papillary architecture with distinct 

oncocytic cytology and intracytoplasmic lumens. C. If present, invasive component revealed 

stromal mucin accumulation in which the neoplastic cells were suspended (Case 1 is 

depicted here).
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Figure 2: 
Three pancreatic neoplasms demonstrated mixed features, Case 5 with mixed oncocytic and 

gastric features is shown here.
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Figure 3: 
Albumin mRNA by in-situ hybridization was positive in two pancreatic intraductal 

oncocytic papillary neoplasms (none of these cases had DNAJB1-PRKACA fusions).
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Figure 4: 
OncoPrint diagram of types of genetic alterations seen in our cases.
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Figure 5: 
Schematic representations of PRKACA fusions detected by the MSK-Fusion targeted 

RNASeq assay. A. DNAJB1-PRKACA in-frame fusion resulting from a 400 Kb deletion on 

chromosome 19 and joining exon1 of DNAJB1 (NM_006145) to exons 2-10 of PRKACA 
(NM_002730). B. ATP1B1-PRKACA fusion derived from a translocation between 

chromosome 1 and chromosome 19. This in-frame fusion event involves exon 1 of ATP1B1 
(NM_001677) and exons 2-10 of PRKACA (NM_002730). The chimeric transcript 

sequence and its corresponding protein sequence are indicated under the fusion breakpoint 

region. +/− indicate the direction of transcription of each gene.
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Figure 6: 
FISH analysis using PRKACA break-apart probes reveals a complete loss of the 5’PRKACA 

signal (labeled in red) in most cells, indicative of an interstitial deletion of the 5’ upstream 

region between the PRKACA and DNAJB1 at 19p13.12.
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