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Attractor Concepts to Evaluate 
the Transcriptome-wide Dynamics 
Guiding Anaerobic to Aerobic State 
Transition in Escherichia coli
Thuy Tien Bui1 & Kumar Selvarajoo1,2*

For any dynamical system, like living organisms, an attractor state is a set of variables or mechanisms 
that converge towards a stable system behavior despite a wide variety of initial conditions. Here, using 
multi-dimensional statistics, we investigate the global gene expression attractor mechanisms shaping 
anaerobic to aerobic state transition (AAT) of Escherichia coli in a bioreactor at early times. Out of 
3,389 RNA-Seq expression changes over time, we identified 100 sharply changing genes that are key 
for guiding 1700 genes into the AAT attractor basin. Collectively, these genes were named as attractor 
genes constituting of 6 dynamic clusters. Apart from the expected anaerobic (glycolysis), aerobic (TCA 
cycle) and fermentation (succinate pathways) processes, sulphur metabolism, ribosome assembly 
and amino acid transport mechanisms together with 332 uncharacterised genes are also key for AAT. 
Overall, our work highlights the importance of multi-dimensional statistical analyses for revealing novel 
processes shaping AAT.

Microorganisms are able to adapt to diverse environmental changes, making them the longest surviving living 
systems on this planet. The well-studied bacterium Escherichia coli is able to switch between 2 stable attractor 
states, aerobic and anaerobic conditions, based on oxygen availability1. E. coli grows well on both conditions, 
albeit at a lower rate anaerobically. Over the last few decades, numerous studies have investigated the transition of 
E. coli between the states from a traditional and reductionist standpoint2,3.

The current understanding of E. coli metabolism during aerobic condition is that the glucose flux moves 
through the glycolysis pathway, and channelled to the TCA cycle via pyruvate dehydrogenase complex. This mode 
of respiration yields higher ATP levels, thereby, generating more energy compared to anaerobic respiration. In 
the absence of oxygen, depending on the availabilities of electron donors or acceptors, pyruvate formate-lyase, 
nowadays called formate C-acetyltransferase, catalyses pyruvate and coenzyme-A into formate and acetyl-CoA, a 
reversible conversion. In addition, lactate dehydrogenase also acts on pyruvate to produce lactate, and still others 
include succinate, acetate and ethanol production. These processes, collectively, suppress the metabolic fluxes 
channelling to the TCA cycle. Thus, major metabolic switching mechanisms occur during aerobiosis or AAT, 
and numerous recent studies have focused on deciphering other key novel mechanisms that are also concerted. 
For example, Green and colleagues used microarray transcript profiling to reveal peroxide stress response and 
methionine biosynthesis as novel processes induced during aerobiosis4. Although these works have shed light into 
the novel processes guiding E. coli AAT, it is important to note that living cells are dynamical systems that involve 
large interplay of cellular networks.

For understanding complex cellular behaviours such as immune response or growth, numerous studies have 
employed computational models utilizing linear and non-linear differential equations to monitor intracellular as 
well as extracellular molecular species, such as proteins or metabolites turnover, over time5. In addition, dynami-
cal systems and chaos theories have also been used to study the complex self-organizing (e.g. skin pattern forma-
tion) and stochastic or chaotic behaviors (e.g. multiple lineage cell differentiation from single cell origin) of living 
systems6. Here, the models developed are qualitative, rather than quantitative, in defining the dynamical system, 
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and are often used to understand the sensitivity of the initial conditions, or perturbations, to their longer term 
steady or periodic states7.

With the recent advent of high-throughput technologies, we are now able to observe transcriptome-wide gene 
expression changes over time as opposed to only a few proteins or metabolites monitored traditionally. We also 
know that not individual genes, but rather the complex networks of genes drive key cellular processes. Therefore, 
genes can be considered to be a set of points in state space8,9. The state refers to the expression vector of a large set 
of co-regulated genes of interest. In other words, the alteration of expression levels of specific sets of genes can be 
represented by a continuous trajectory in their expression state space10. Some of these trajectories are attractive, 
that is, they converge towards a fixed point if the system is perturbed from a nearby state (Fig. 1).

Each cellular phenotype can correspond to an attractor in the gene expression state space, where they rep-
resent stable state, either peaks or valleys in the landscape, to which the system returns given a small biological 
perturbation11. In other words, the dynamical pattern of gene expressions developing over time reflect the con-
certed regulation of the transcriptome and can lead to convergence or equilibrium of the cell state, often referred 
to as attractor state12,13.

The presence of multi-dimensional attractor states based on high-throughput gene expression data has been 
experimentally implicated in recent times14,15. It has been shown that dynamic gene expression trajectories, using 
principal components and correlation metrics, reveals subset of the state space convergence in time, a hallmark of 
attractor, coinciding with the end of cell fate completion16–18 (Fig. 1C,D).

Despite the progresses made for E. coli AAT, as mentioned earlier, detailed gene expression response using 
multi-dimensional statistical approaches and a global transcriptome-wide scale analyses using dynamical system 
approach still remain largely underexplored. Most studies investigate only the most differentially expressed genes 
over time using arbitrary expression fold, e.g. 2-fold, cut-off without investigating the underlying statistical struc-
ture or undertake dynamical systems view. However, during aerobiosis or cell state changes, the transcriptomic 
network invokes a progressive directional change of thousands of gene expressions in time, through which the cell 
state expression pattern is adopted19–21.

With the recent advances in understanding how transcriptomic networks govern cell fate decisions, it is 
now possible to explore biological patterns and order using multi-dimensional statistics22–25. Here we, therefore, 
extended the concept, using multi-dimensional statistical methods on RNA-Seq data, to investigate the anaero-
bic to aerobic transition of E. coli grown in 3-liter bioreactors. Sampling of cells for transcriptome analysis were 
obtained rapidly, with 6 time points in the first 10 minutes. Using distribution fitting, linear and non-linear cor-
relations (to develop attractor landscape), PCA (to observe attractor trajectory), hierarchical clustering and gene 
ontology, we report the gene expression patterns and functions during early aerobiosis.

Results
E. coli transcriptome-wide expressions follow lognormal distribution.  The original experiments 
were performed by Feuer and colleagues26. Briefly, E. coli K-12 strain W3110 cells were grown anaerobically in a 
3-liter continuously stirred tank bioreactor at pH7 and 37°C, and stirred at 500 rpm with a Rushton turbine. The 
first sample was drawn (t = 0) when OD of 3 at 600 nm was achieved, and air supply of 1L/min was then initiated. 
Subsequent samples were taken at t = 0.5, 1, 2, 5 and 10 min, with 3 biological replicates. The resultant RNA-Seq 
data, in read counts, for all samples were deposited and available with GEO accession number GSE71562.

The RNA-Seq data needed to be checked and reduced for gene expressions that can be considered noisy, 
especially the lowly expressed ones. Previously, we had used statistical distributions on normalized expressions as 
a means to remove unreliable or noisy genes17,23,24,27. Therefore, Transcripts Per Kilobase Million or Transcripts 
Per Million (TPM) normalization of the read counts of all samples were performed and checked for statistical 
distribution of all (4240 non-zero) transcripts for all time points (Figs. 2A and S1A). As previously seen for other 
cell types, we observed theoretical Pareto (power-law) and lognormal distributions best followed the experimen-
tal transcript distributions above a threshold of 5 TPM. Next, to check how close the gene expressions match the 
Pareto and lognormal distributions, we performed a Quantile-Quantile plot (Figs. 2B and S1B). The data show 
that lognormal has major advantage over Pareto, noticeable for the higher expressions (TPM > 800). The quality 
of statistical distribution fit was finally confirmed using the Akaike information criterion (Table S1). Notably, log-
normal distribution for gene expressions has also been recently implicated for several other cell types27,28. Hence, 
we concur that our E. coli gene expressions follow lognormal distribution across all replicates and time points 
(Fig. S1A,B) and retained genes with transcript levels above the 5 TPM threshold for further analysis (N = 3391).

Correlation analysis shows gradual transcriptome-wide deviation from origin.  Temporal cor-
relation metrics are often used to check how a dataset deviates from their initial condition, time or perturba-
tion17,18,22. Here, to investigate the transcriptome-wide deviation from t = 0, we adopted 4 correlation metrics 
(Pearson, Spearman, Biweight midcorrelation or bicor29, and Mutual Information-based correlation30 MIc, see 
Methods). We used these metrics to investigate parametric (Pearson), and non-parametric (Spearman, bicor 
and MIc) correlations. All metrics pointed to a gradual decay in the transcriptome-wide correlation with time for 
all 3 replicates (Fig. 2C,D – left panel and Fig. S2). These data suggest that there is a constant and gradual global 
transcriptomic “movement” in time31.

Looking closer, the Pearson correlation, which measures the linear association between 2 vectors, showed a 
sharp initial decay (t = 0.5 and 1 min) and a recovery before gradual decay for 2 replicates. This “discrepancy” is 
absent in the other 3 non-parametric correlations which could be less outlier-sensitive. In addition, the Q-Q plots 
show that the highly expressed genes deviated from the global statistical distribution (Figs. 2B and S1B). Thus, we 
removed genes one by one from the highest expression and checked the transcriptome-wide Pearson correlation. 
Consequently, the removal of the top 2 highest expressed genes (rnpB and lpp) was sufficient to result in smooth 
correlation decay in all metrics used (Fig. 2C,D – right panel and Fig. S2). Thus, we kept the remaining genes 
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(N = 3389) for further analysis. Next, we investigate which portions of genes are key for guiding the anaerobic 
to aerobic state transition. To do this, we need to consider the concepts of attractors often used in physics and 
mathematics18,32.

Defining attractor region and transcriptomic elements.  State space for a dynamical system is the set 
of all possible states, where each state of the system corresponds to a unique point in the state space13,14,20. As it is 
difficult to define explicit expressions for representing transcriptome-wide dynamics, the analysis of state space 

Figure 1.  Schematic illustration of attractor landscape and cellular trajectory. (A,B) Cellular gene expression 
profile represented by (A) matrix and (B) heat map of gene expression level. Each element represents the 
expression level of a gene (rows) in a cellular state (columns). (C) Schematic representation of cell trajectory 
convergence on principal components 1 and 2 (denoted as PC1 and PC2) space. Each point represents a 
sample’s entire gene expression profile within one of the two transitioning processes caused by two distinct 
perturbations13. (D) The landscape is a schematic 3-D projection of N (total number of genes) to a two-
dimensional state space. In the attractor landscape, many stationary attractors (represented by the local 
minima), which correspond to the natural cellular phenotypes such as cell fate, might co-exist. Each attractor 
associates with a unique cellular signature profile (or gene expression profile in this study). The transitioning 
processes (dashed blue line) guide the cell from one stable attractor to another57. (E) Gene expression attractor 
landscapes generated by the superimposition of probability distribution of Pearson and mutual information 
correlation mertics to create a 3-D space18. Existence of stable attractor coinciding the convergence of cellular 
trajectories is indicated by the local minima.

https://doi.org/10.1038/s41598-020-62804-3


4Scientific Reports |         (2020) 10:5878  | https://doi.org/10.1038/s41598-020-62804-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

as set of all possible pairs of linear and non-linear gene expression correlation dynamics (based on Rv and MIv, 
see below) provides a useful way for understanding the qualitative features of attractor localizations or visuali-
zations18,22. Note that the modified mutual information (MIv) and Pearson correlation (Rv) used here are slightly 
different from those used in the previous section (Method).

The fractal nature of transcriptomic response in cell fate determination has been explored in previous stud-
ies18,33,34. Basically, discrete subsets of transcriptome are responsible for guiding the transition of gene expres-
sions from one “equilibrium” attractor state to another. The attractor state is the result of the convergence of 
gene expression dynamics across the transitioning time. Thus, in order to identify the genetic drivers of AAT, 
we divided the transcriptome into discrete fractions, namely transcriptomic elements18, and compared their 

Figure 2.  E. coli transcriptome-wide statistical properties. (A,B) Comparison of transcriptome-wide data with 
statistical distributions: (A) Cumulative distribution functions versus TPM values in logscale, and (B) Quantile-
quantile plot between transcriptome data (experimental data – black colour) and lognormal (red), Pareto 
(yellow), Burr (cyan), loglogistic (blue), Weibull (purple), and gamma (grey) statistical distributions (Methods). 
Figure is one representative at t = 10 min for replicate a. See Fig. S1 for other time points and replicates. 
Transcriptome-wide correlation in time using: (C) Pearson correlation, and (D) Mutual Information-based 
correlation metrics (Methods) between time t0 (0 min) and ti (0, 0.5, 1, 2, 5, 10 min) for all 3 replicates (replicate 
a – red, replicate b – green, replicate c - blue) across 3391 genes with expression above 5 TPM (left panels) and 
3389 genes upon removal of two highest expressed genes rnpB and lpp (right panels).
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individual trajectories against attractor region (Fig. 3A). Any element falling within the attractor boundary 
is attributed to AAT response.

A transcriptomic element is a minimum set of genes that possess enough correlation information (based on Rv 
and MIv) to show whether they fall into a cell attractor state18. To identify the size of a transcriptomic element, n 
genes were randomly chosen from the whole genome (n = 25, 50, 100, 200, 400, 600, 800, 1000), and their Rv and 
MIv were evaluated for 100 repeats at all time points. The standard deviation of the Rv and MIv were then plotted 
for the different n sizes and compared with the law of large numbers or LLN18,35. Both Rv and MIv distributions of 
the transcriptomic elements converged to specific values for n > 50 (Figs. 3B and S3A). Furthermore, the result 
shows that the standard deviations of Rv and MIv distributions at each time point decrease with increasing n, 
approximately following the law of large number (Figs. 3C and S3B). To investigate ensemble of genes that fall 
into the AAT attractor basin we, therefore, chose n = 100 as a compromise between density distribution and to 
retain a reasonable number of transcriptomic elements since higher n reduces the total number of elements.

To check the existence of cell attractor state in AAT, we analysed the superimposition of probability density 
(SPD) distribution for modified Pearson correlations (Rv) and modified mutual information (MIv) of gene expres-
sion deviations from t = 0 to 10 minutes18 (Method). We found 2 distinct peaks (Fig. 3D,E), with the major peak 
coinciding with the state transition end time of the experiments. This implies the existence of cell attractor by the 
localizations of Rv and MIv on the correlation space. As previously, we defined the attractor region boundary or 
basin as the inflection plane of the major peak curves18, and observed the transcriptome-wide trajectory also fall 
within this attractor region (Fig. 3E). Note that there are usually several meta-stable attractor states before the 
final state transition occurs. Here, we are evaluating the early meta-stable attractor states crucial for AAT.

Identification of genes falling into attractor basin.  To identify the number of genes that fall into the 
attractor basin and their names, we first ranked all genes according to their expression variability, measured by 
standard deviation (SD) across time18. Secondly, we assembled the ranked genes into transcriptomic elements (n 
= 100) and checked their Rv-MIv trajectories in time across the coordinates of the attractor region (Fig. S4A). We 
observe that one element, with the highest SD, fall above the attractor basin, 4 elements (3, 4, 5 and 12) fall into 
the basin and the rest fall out and remain below the basin (Fig. S4A).

The Euclidean distance of each element compared with the whole transcriptome trajectory is shown in 
Fig. S3C. Notably, the elements that fall above and into the basin shows the closest distance (less than the mean 
values) with whole transcriptome trajectory. Thus, we concur that these 5 transcriptomic elements are key in 
shaping the AAT response, and checked their combined effect. As anticipated, merging the elements into a larger 
sub-transcriptome resulted in them falling into the attractor region (Fig. S3C, black dotted). Hence, we named 
them as attractor genes.

Among the remaining 29 transcriptomic elements, 13 show close Euclidian distance to the whole transcrip-
tome trajectory (Fig. S3D, empty circle symbol), while 16 elements have large deviation (Fig. S3D. empty square 
symbol). We considered them as pseudo-attractor and non-attractor elements as their collective or combined 
Rv-MIv trajectories fall into and outside the attractor basin, respectively (Fig. S3D, green and blue dotted).

Finally, we combined the attractor (500) and pseudo-attractor (1300) genes and tracked their overall trajecto-
ries which resulted in them falling into the attractor basin (Fig. 3F). Since the 1,800 genes collectively enter into 
the attractor basin, we now re-term them as the attractor genes, while keeping the remaining as the non-attractor 
genes (Fig. 3F). In other words, our attractor analyses reveal 53% or about half of the transcriptome, spreading 
across a wide spectrum of expression levels (Figs. 3G and S3D), is responsible for shaping the E. coli AAT. Next, 
we also conducted a similar attractor study, sorting elements according to fold-changes instead (Fig. S4B). Here, 
we obtained 65% of the transcriptome fall into the attractor basin.

Overall, contrary to the general impression that only a small number of highly expressed genes shape AAT, 
our data suggest that gene expression levels are not indicative of AAT, and an order of about half the transcrip-
tome is crucial for the biological state transition.

Principal component analysis as a test for attractor genes.  Previous works had utilised principal 
components (PC) trajectories to investigate the dynamic global response of cell differentiation13,16–18,36. Here, 
we performed similar analysis for whole, attractor and non-attractor genes. PCs 1 and 2 constituted over 70% 
variance at t = 0 for all genes (Fig. S5A) and, hence, we tracked their values at each time point (Fig. 4A). As antic-
ipated, our results show that the attractor genes tracked similar whole genome PC trajectories in time.

Next checking correlations, the attractor genes produce the most variable response (Fig. 4B). Nevertheless, the 
non-attractor genes also show monotonic or gradual variation in time, suggesting that even these genes can sup-
port AAT response, albeit with lower kinetics. Therefore, in this remaining 1,589 genes, we removed 68 genes that 
had below 1.12 fold changes at any time point, and checked their PCA and correlation plots (Figs. 4A and S5B). 
Our data show that removing the 68 genes did not noticeably affect the PCA or correlation response. Although 
the 1521 genes did not enter the attractor basin, they still show gradual response in time. Thus, these were named 
as collective non-attractor genes.

To summarize, our analysis indicate that 1,800 attractor genes shape the global AAT response, while 1521 
genes follow weak but collective global response with remaining 68 genes not having any response. (Note that 
these 68 genes are additional to the 851 genes already removed during the low and high expression filtering using 
lognormal distribution fitting.)

Temporal groups of attractor genes and characterization of major biological processes.  The 
previous section highlights the significance of the attractor genes in shaping the global response of E. coli in 
aerobiosis. To scrutinize the biological functions of attractor genes, hierarchical clustering was utilised, resulting 
in 13 initial clusters (Fig. 5A). From these clusters, we further refined the gene groupings by setting a Pearson 
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Figure 3.  Attractor landscape by probability density distributions of correlations, transcriptomic elements and 
attractor genes. (A) Schematic trajectories for transcriptomic elements falling into attractor (red) and not falling 
into attractor (blue). (B) Distribution and (C) Standard deviation of Rv (top panel) and MIv (bottom panel) with 
different transcriptomic element size (denoted as n) of replicate a at 0.5 minutes. Distribution of Rv and MIv for 
ensembles of n randomly chosen genes (n = 25, 50, 100, 200, 400, 600, 800, 1000) were generated with 100 
repeats. Standard deviation of Rv and MIv decreases as n increases (except for when n = 25 for Rv), and follows 
α n/  + c law. See Fig. S3A,B for other time points. (D) 3D plot of the superimposition of the probability 
distribution (SPD) of Rv and MIv over all time points for the whole transcriptome. SPDs were estimated by 
getting Rv and MIv values of 100 randomly chosen genes for 100 times, using two-dimensional kernel density 
estimation. (E) Trajectory of whole genome (3389 genes) falling within attractor boundary (solid contour line) 
overlaid on SPD of whole transcriptome Rv and MIv. The trajectory was generated by averaging 100 trajectories 
of 100 randomly chosen genes from the pool of 3389 genes. (F) Trajectories of cumulative attractor (1800), and 
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correlation of above 0.7 between each gene’s temporal expression with the average profile for that group. Those 
that were below the threshold were re-evaluated within subgroups and subsequently re-grouped. As a result, we 
obtained 6 temporal groups of patterns for the attractor genes (Fig. 5B).

To elucidate the major biological processes that are regulated in each of the temporal groups, we performed 
Gene Ontology enrichment analysis using clusterProfiler R package37 with Entrez Gene database38 (both False 
Discovery Rate and adjusted p-value cut-off were set at 0.05). Enrichment analysis for the 6 groups of attractor 
genes resulted in (Fig. 6, Table S2): Group A: Gradual decay, mainly enriched in glycolysis, fermentation, anaero-
bic respiration, phosphorylation, amino acid metabolism, and locomotion, Group B: Gradual activation, enriched 
in TCA cycle, aerobic respiration, sulphur compound metabolism, protein folding and response to stress, Group 
C: Fast activation, followed by decay and re-activation, enriched in ribosome biogenesis, RNA processing, gene 
expression and response to copper ion, Group D: Early activation, followed by decay, mostly enriched in amino 
acid metabolism, cation transport, and organelle organization, group E: Early activation followed by plateau, 
enriched in aerobic respiration, several types of transporters, and ion homeostasis, and group F: Early decay, fol-
lowed by plateau, enriched in biosynthesis of lipid, organonitrogen and nucleobase-containing compounds, and 
negative regulation of cellular processes.

Focusing on the names and functions of each attractor gene (using UniProt39 and EcoCyc40 databases), we 
observe several novel or uncharacterised genes for all groups (Tables S2–S4). Group A possesses several genes 
coding for flagellum protein, ligase, transcriptional regulator, hydrogenase/dehydrogenase functions, together 
with 71 uncharacterized genes. Group B contains ion and small molecular binding, and oxidoreductase genes 
together with 60 uncharacterized genes. Notably, a large portion of group C are tRNA genes (approximately 20% 
of the genes in group C) and ribosomal protein genes, with 76 uncharacterized genes. Group D consists of several 
ribosomal proteins (distinct from group C) and transporters, with 19 uncharacterized genes. Group E comprises 
mainly of oxidoreductase, ion transferase and binding proteins, with 33 uncharacterized genes. Finally, group F 
shows many rRNA coding genes, along with other protein binding genes and 73 uncharacterized genes (note that 
tRNAs and rRNAs were not mapped to any gene ontology term in the Entrez Gene database, they were found in 
EcoCyc database instead).

To narrow down the pool of the attractor genes and to investigate their individual function, a more stringent 
cut-off of expression levels (TPM) greater than 500 units at any time point, and a 3-fold change between any 2 
time points unveiled 94 genes (individual function of the genes are listed in Table S5). As expected, the majority 
of the refined Group A (23 genes) belongs or is connected to glycolysis and fermentation. In addition, genes of 
aldehyde-alcohol dehydrogenase (adhE), transcriptional regulator (gadE), ferritin (ftn), formate hydrogenlyase 
regulatory protein (hycA) and fumarate reductase (frdB, frdC) are also present in the group.

Refined Group B contains 27 genes and mainly relates to TCA and sulphur metabolism (Table S5). Notably, 
it contains still several novel or unknown functional genes (gpmA, osmY, ybaY, yfhJ, ytjA). Other genes include 
those of entericidin B (ecnB), thiol peroxidase (tpx), chaperon protein (hscA) and co-chaperon protein (hscB), 
stress resistant protein (ycfR), and transcriptional regulators (iscR and soxS) among others.

Group C genes were not retained with the cut-off threshold, and refined Group D consists of 5 genes with 
various functions. Refined group E contains mostly electron transport and aerobic respiration genes, along with 
cytochrome bo oxidase genes (cyoA, cyoB, cyoC, cyoD, cyoE), biopolymer transporters (exbB, exbD), ornithine 
carbamoyltransferase (argF, argI), sigma factor binding protein (crl), peptide methionine sulfoxide reductase 
(yeaA), and alpha-ketoglutarate permease (kgtP). Finally, refined Group F contains 12 genes, 9 of which specifi-
cally code for ribosomal RNA (rrlC, rrlA, rrlD, rrsH, rrlH, rrsG, rrsC, rrsE, rrfA) (Table S5).

Finally, we compared our attractor analysis with the common method of choosing genes with more 
than 2-fold expression change between any 2 time points. This resulted in 631 genes clustered in 5 temporal 
groups (Fig. S6A,B). Venn diagram comparative analysis reveals 522 common genes (Fig. 7), with 48 unique 
novel or uncharacterized genes compared with 219 unique in the attractor set and 113 that are common. The 
notable novel genes for the 2-fold analysis include uracil permease (yfbP), plasmid stabilization mediating pro-
teins (mokC) and a few tRNA genes (Table S6). Gene expression distribution of the attractor and 2-fold genes 
showed that the latter possess higher proportion of lowly expressed genes (Fig. S6B).

Discussion
E. Coli aerobiosis is a highly investigated area of research. Although numerous works have been performed, 
the early dynamic transcriptome-wide response is still poorly understood. Here we investigated RNA-Seq data, 
consisting of 4,240 non-zero expressions, of anaerobic E. Coli in a bioreactor where readings were taken at 0, 0.5, 
1, 2, 5 and 10 min after air supply was initiated. Unlike other approaches that typically investigated arbitrarily 
selected differential fold changing genes, and performed gene ontology enrichment analysis41–43, here we under-
took multi-dimensional statistical approaches, in view of a dynamical system approach, where we queried the 
portion of transcriptome that are able to track the global transcriptome-wide attractor response. In other words, 
we investigated the spectrum of genes that are responsible for shaping the AAT.

After incorporating statistical distribution fitting (Fig. 2A,B), we retained 3,389 genes for analysis. We also 
included the concept of dynamical systems approach into analysing the remaining gene expressions, introduc-
ing the state space visualizations through modified linear (Pearson, Rv) and non-linear (mutual information, 
MIv) correlation density distributions. From these, the attractor regions were generated where a subset of genes 

non-attractor (1589) genes overlaid on SPD of Rv and MIv for whole transcriptome. (G) Distribution of 
expression level for attractor (red), and non-attractor (blue) genes at representative t = 0. See Fig. S3D for other 
time points.
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(transcriptomic elements) were shown to fall into (Fig. 3). We obtained 1800 genes that fall into the attractor basin 
(attractor genes), and another 1589 genes fall away (non-attractor genes). Notably, the attractor genes track the 
global transcriptome-wide trajectory on the PC space (Fig. 4A), and their temporal correlation analysis showed 
significant variation in time (Fig. 4B). Among the 1589 non-attractor genes, 1521 genes showed small-scaled but 
clear trajectory on PC space, indicating weak but collective global response, while the remaining 68 did not show 
any response during the AAT (Fig. S5B).

Hierarchical clustering of the attractor genes showed 6 temporally regulated groups (Fig. 5). Functional 
enrichment analysis to characterise the function of these important genes shows, as expected, glycolytic, fermen-
tation, anaerobic respiration and cell motility related genes were gradually deactivated (Group A), whereas TCA 
cycle, aerobic respiration and sulphur compound metabolism were activated (Group B), inversely to Group A. 
These data are consistent with our general understanding of E. coli aerobiosis4. There were also several novel or 

Figure 4.  Principal component (PC) analysis and auto-correlations of whole transcriptome attractor and non-
attractor genes. (A) Gene expression trajectory of whole transcriptome (black), attractor (red), non-attractor 
(blue), and no response genes (brown), obtained by taking the average trajectories of 3 replicates, presented on 
first 2 principal components space. Right panel indicates non-attractor trajectory on a larger scale. (B) Temporal 
correlation of whole transcriptome (black), attractor (red), and non-attractor (blue) genes using Pearson (top left 
panel), Spearman (top right panel), Biweight midcorrelation (bottom left panel) and Mutual Information-based 
(bottom right panel) correlation metrics.
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uncharacterized genes significantly induced (TPM > 500 and 3-fold changes), including osmY, ybaY, yfhJ, and 
ytjA. Additionally, entericidin B (ecnB), which plays a role in bacteriolysis44, was also found in this group.

Group C reveals ribosomal biogenesis, translation and gene expression processes. Notably, almost 20% of 
the genes in this group are tRNA, along with several unknown functional genes (yciG, bdm, YciG, YmdF, YobH, 
YciH - Table S3). Group F, on the other hand, constitutes mainly of ribosomal RNA. The data from these 2 groups 
are interesting in that several recent high-profile articles have highlighted the importance of hibernating ribo-
somes to conserve respiration energy during anaerobic conditions, and certain enzymes “kick in” to revive the 
metabolism45–49. Also, tRNAs are key for protein synthesis and they play important roles in cellular growth, stress 
response and general translational regulation. The data here show several genes coding for ribosomes and tRNA 
perhaps play key roles in translational process that shapes anaerobic to aerobic transition.

Group D and E elucidates several hydrogenase genes which are known to be produced in anaerobic or stress 
conditions and participates in the reduction of fumarate and dimethyl sulfoxide (fnr)50. In addition to these,  cys-
tathionine gama-synthase (metB), alkyl hydroperoxide reductase (ahpF, ahpC), ornithine carbamoyltransferase 
(argF, argI), and ferric iron reductase (fhuF) are also revealed. Many of these genes were not previously identified 
with the anaerobic to aerobic transition.

Figure 5.  Major gene expression patterns of attractor genes. (A) Hierarchical clustering of attractor genes 
reveals 13 clusters of temporal expression profiles. (B) Six temporal average expression profile constructed by 
regrouping the 13 clusters: Group A: Gradual decay: Group B: Gradual activation; Group C: Fast activation, 
followed by decay and re-activation; Group D: Early activation, followed by decay; Group E: Early activation 
followed by plateau; Group F: Early decay, followed by plateau.
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Overall, our work undertaking several statistical metrics, on a dynamical systems viewpoint, to infer the 
transcriptome-wide response of E. Coli aerobiosis have revealed, for the first time, the existence of a fractal portion 
of transcriptome (1,800 attractor genes) that tracks transcriptome-wide response, and is collectively crucial for the 
adaptive state transition. This shows a much higher resolution than the conventional 2-fold expression changing genes 
selected between any 2 time points (Fig. 7). Notably, previous works have mainly focused on metabolic regulatory 
genes, but here we show the significance of other types of genes such as tRNAs and rRNAs which are largely involved in 
post-transcriptional and -translational processes, in addition to 332 uncharacterised attractor genes. Future work could 
focus on elucidating the function of these genes that are captured for each temporal group of gene regulation.

Methods
Statistical distributions fitting.  Fitting gene expression distributions was performed using the maxi-
mum-likelihood estimation method (fitdistplus packge51 for parameter estimation and the mass package52 for 
log-normal, Pareto, Burr, Loglogistic, Weibull and Burr distributions53).

Figure 6.  Selected enriched biological processes (coloured hubs) with their associated genes (grey dots) in the 6 
major expression patterns of attractor genes. Full list of enriched processes is available in Table S2.
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Pearson correlation.  The Pearson correlation coefficient r between two vectors (e.g. transcriptome in two 
different samples), containing n observations (e.g. gene expression values), is defined by (for large n):

μ μ

σ σ
=

∑ − −=r X Y
x y

( , ) ( )( )i
n

i X i Y

X Y

1

where xi and yi are the ith observation in the vectors X and Y, respectively, μX and μY, the average values of each 
vector, and σx and σy, the corresponding standard deviations. Pearson correlation measures linear relationship 
between two vectors, where r = 1 if the two vectors are identical, and r = 0 if there are no linear relationships 
between the vectors.

Spearman correlation.  Spearman rank correlations is defined by
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where rx,i and ry,i are the ranks of the ith observation xi and yi, in vectors X and Y, respectively.

Bicor (Biweight midcorrelation).  The biweight midcorrelation29 of two vectors X and Y is given by
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and the identity function:
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Mutual information-based correlation MIc.  Nonlinear dependency between two vectors X and Y can be 
checked by mutual information:

Figure 7.  Number of attractor genes (red), 2-fold change genes (cyan), and novel genes (purple).
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where54 the joint probability distribution function p(x, y), and marginal probability distribution functions, p x( )i  
and p y( )i  are estimated by means of an histogram-based approach by discretizing the rank-transformed gene 
expression into K = 10 bins18,54,55 for ti (i = 0,1,2..,M, where and M = 10 min). Note that systematic error ε occurs 
during the discretization, which is then subtracted from the raw MI value. ε is defined as minimum MI for 100 
random permutation of the rank-transformed gene expression vector17. The MI-based correlation between X and 
Y is expressed via30:

= − −MI e[1 ]c
MI2 1

2

Modified Pearson correlation Rv.  The dynamic gene expression at time ti can be defined as a 
N-dimensional vector X(ti) = (x1(ti), x2(ti), …, xN(ti)) with xj(ti) being expression value of the jth gene at ti. The 
deviation-from-average expression vector at time ti is defined as V(ti) = (v1(ti), v2(ti), …, vN(ti)) where 

= −v t x t x( ) ( )j i j i j (where xj is the average expression of jth gene over M + 1 time points)
The modified Pearson correlation is defined as
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This index thus measures the temporal correlation of genome-wide expression deviations from their average 
values so as to allow discriminating gene expressions with different amplification but similar temporal profiles18.

Modified mutual information MIv.  Mutual information between vectors V(ti) and V(t0) is defined similar 
to formula (1) with V(ti) replacing X and V(t0) replacing Y. The probability functions p(x), p(y) and p(x,y) are 
estimated based on discretized gene deviation data into 10 bins using histogram-based approach. Systematic error 
ε is defined as minimum MI for 100 random permutation of gene deviation vectors V(ti)18. Finally, to compare MI 
among different replicates, we used the normalized value:
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Ranking genome elements.  The whole transcriptome (3389 genes) was sorted according to their  
standard deviation across 6 time points, from the highest to the lowest: N( 3389)j

N
j1∪σ σ= == , with 

σ = ∑ =
+ = x t M( ( )) ( 6)j M i

M
j i

1
1 0

2  being the standard deviation of gene jth expression across 6 time points. After 
that, we divided the ranked standard deviation vector σ into p groups, each group with n genes (n = 25, 50, 100, 
200, 400, 600, 800, 1000). Note that we choose p = ⌈N

n
⌉, the pth group contained n genes which can be overlapped 

with the (p − 1)th group. Next, we examined the trajectory on MIv − Rv space for each individual group of genes 
to check whether it fall into attractor region.

Determination of attractor region on Rv-MIv space.  Attractor boundary was defined on the superim-
posed probability density (SPD) distribution of modified Pearson correlation Rv and modified mutual informa-
tion MIv for whole genome (3389 genes). Distribution of whole genome Rv and MIv was generated by randomly 
choosing n = 100 genes for 100 times from the pool of 3389 genes, and SPD of these 100 repeats was estimated on 
discretised lattice by 2D kernel density estimation using the mass library in R programming52.

Attractor boundary was determined by the inflection points on the SPD of whole genome Rv and MIv, where 
the inflection points18 were determined as highest gradients in vertical and horizontal directions from the local 
points on the lattice. Averaging the z-coordinates of the vertical and horizontal inflection points determine the 
z-coordinate of inflection curve, or attractor boundary contour.

Hierarchical clustering.  Hierarchical clustering was performed on normalized expressions of attractor and 
pseudo-attractor genes using Ward clustering method56. Normalized expression of the jth gene at time ti is defined 
as17 σ= −z t x t x( ) ( ( ) )/j i j i j j where x t( )j i  is expression of the jth gene at time ti, xj is the mean expression across all 
time points, and σj is the standard deviation. As a result, 9 clusters were obtained, which were further regrouped 
according to 5 distinct temporal average expression patterns for attractor genes, and 4 distinct temporal average 
expression patterns for pseudo-attractor genes.

Data availability
The R-codes for transcriptomics analysis are available from the authors upon request. The E. coli data is obtained 
using GEO accession number GSE71562.
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