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Representing 3D geometry for different tasks, e.g. rendering and
reconstruction, is an important goal in different fields, such as
computer graphics, computer vision and robotics. Robotic appli-
cations often require perception of object shape information
extracted from sensory data that can be noisy and incomplete. This
is a challenging task and in order to facilitate analysis of new
methods and comparison of different approaches for shape
modeling (e.g. surface estimation), completion and exploration, we
provide real sensory data acquired from exploring various objects
of different complexities. The dataset includes visual and tactile
readings in the form of 3D point clouds obtained using two
different robot setups that are equipped with visual and tactile
sensors. During data collection, the robots touch the experiment
objects in a predefined manner at various exploration configura-
tions and gather visual and tactile points in the same coordinate
frame based on calibration between the robots and the used
cameras. The goal of this exhaustive exploration procedure is to
sense unseen parts of the objects which are not visible to the
cameras, but can be sensed via tactile sensors activated at touched
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1. Data description

The dataset includes visual and tactile readings in the form of 3D point clouds obtained using two
different robot setups that are equipped with visual and tactile sensors. It contains three different files
for every object, which include a point cloud from the vision sensor, a point cloud from the tactile
sensors and the ground-truth object scan. The data files containing point clouds use the .mat format,
i.e. they areMATLAB formatted files, while the ground-truth object scans are .obj files, representing the
3D geometry of objects. The data files are available at a Mendeley data repository [11] , which includes
these three files for every object:

� <object_name>_v.mat, containing the visual data (n x 3 double, where n is the number of visual
points for this object),

� <object_name>_t.mat, containing the tactile data (m x 1 cell, with each element being ki x 3 double,
where m is the number of touches for this object and ki, the number of tactile points for touch i).

� <object_name>_scan.obj, containing the scanned object,

Where <object_name> can be box1, box2, box3, cyl1, cyl2, cyl3, cyl4, spray1, spray2 or spray3, for
the experiments with the first robot, and box1, box2, box3, cyl1, cyl2, cyl3, cyl4, bottle1, bottle2 or
bottle3, for the experiments with the second robot. Visual and tactile points are defined in the same
frame.

2. Experimental design, materials, and methods

The data was acquired by using two different robot setups. The first robot is composed of a 6-
degree-of-freedom KUKA arm, a three-finger Schunk Dextrous Hand (7 degrees of freedom) equip-
ped with tactile sensing arrays and a Kinect stereo vision camera. The robot can acquire tactile imprints
via pressure sensitive tactile pads mounted on the Schunk hand's fingers. Each finger of the hand has 2
tactile sensor arrays composed of 6 � 13 and 6 � 14 cells, which yields at most 486 tactile points after
one touch. For each touch, the hand is set to a fixed initial joint configuration, where the thumb op-
poses the other two fingers, then fingers are closed until contact is sensed. The ten objects were placed
on a table-top with the Kinect camera overlooking objects from one side.

An observed object is segmented from its background using a segmentation and tracking system.
The system uses stereo vision, the Kinect camera, in a heterogeneous Markov-Random-Field-based
framework [12], which uses color and depth information to divide the scene into either planar sur-
faces, bounded objects or uniform clutter models. From the resulting object segments we get point
clouds that serve as starting points for object modeling. To fully cover an object with tactile mea-
surements, up to 54 touches (27 for cyl3 and 18 for box2 due to their lower heights) were performed
from the side parallel to the table in a grid of 9 approaching angles (22.5� apart) and 6 heights (spaced
at a vertical distance of 2 cm) with respect to the table. The tactile measurements are illustrated as red
points in Fig. 2 in Ref. [3]. In order tominimize the potential displacements that can be caused by object
Fig. 1. Example readings from objects in the dataset, for the first robot setup. Tactile and visual readings are plotted in red and black,
respectively, for box1, cyl1 and spray1. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)



Table 1
Details about objects used in experiments with the first (left) and second (right) robot setups, including i.a. Object names and the
number of visual and tactile points.

Name Object # of sensory
points

# of vertices Name Object # of sensory
points

# of vertices

Visual Tactile in scans Visual Tactile in scans

box1 6979 1714 102011 box1 1919 190 35681

box2 5450 445 71097 box2 3113 207 48960

box3 12620 1952 167970 box3 3911 524 79532

cyl1 5029 1580 82930 cyl1 3290 323 64150

cyl2 4528 1460 84755 cyl2 5465 676 95832

cyl3 2765 829 48739 cyl3 3948 620 71019

cyl4 5071 1975 95008 cyl4 4431 737 96935

spray1 4252 1214 94658 bottle1 3759 478 82667

spray2 4084 1508 92439 bottle2 3044 327 83357

spray3 2937 1166 63231 bottle3 2915 321 63770
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movements after touching, before and after a touch, point clouds were registered using the Iterative
Closest Point algorithm [13] and measurements were transformed to the initial object frame. Example
readings from 3 objects in the dataset can be seen in Fig. 1.

The second robot is a PR2 equipped with two fingers and tactile pads as shown in Fig. 3 in Ref. [3].
The robot handwas guided to touch the objects at different locations to gather tactile observations. The
action space was defined by 9 different heights (with a spacing of 2 cm) and 7 different approaching
angles (approaching objects from angles between �60� and þ60� with a spacing of 20�). Thus at most
63 tactile readings were recorded, complementing the original visual data. For many objects fewer
touches were applied due to their size, e.g. box1 with the fewest touches (21 in total). Details about the
objects used in the experiments are given in Table 1. Note that objects belong to three different shape
categories, namely boxes, cylinders and spray bottles or bottles. We also provide scans of the objects
using a Makerbot Digitizer [14].
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