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Abstract

This paper discusses the application of optimal and sub-optimal controls to a SEQIJR SARS model via the Pontryagin’s
Maximum Principle. To this end, two control variables representing the quarantine and isolation strategies are considered in the
model. The numerical optimal control laws are implemented in an iterative method, and the sub-optimal solution is computed using
a genetic algorithm. The simulation results demonstrate that the maximal applications of quarantining and isolation strategies in
the early stage of the epidemic are of very critical impacts in both cases of optimal and sub-optimal control. Otherwise, the control
effect will be much worse. This gives a theoretical interpretation to the practical experiences that the early quarantine and isolation
strategies are critically important to control the outbreaks of epidemics. Furthermore, our results also show that the proposed sub-
optimal control can lead to performances close to the optimal control, but with much simpler strategies for long periods of time in
practical use.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome (SARS), a new, highly contagious, viral disease, emerged in China late in 2002
and quickly spread to 32 countries and regions, causing in excess of 774 deaths and 8098 infections worldwide [1].
Since there are no valid medicines or vaccines for SARS, measures to control the spread of SARS had to take
two major forms: isolation of symptomatic individuals and quarantining and close observation of asymptomatic
individuals [2]. It had been shown that quarantining and isolating diseased individuals is a critically important
strategy that can control SARS outbreaks, because of a reduction in the contact rate between susceptible and diseased
individuals [2–4]. Moreover, Gumel [3] examines the impact of isolation and quarantine on the control of SARS
during the outbreaks in Toronto, Hong Kong, Singapore and Beijing in a mathematical way. It uses a deterministic
model that closely mimics the data for cumulative infected cases and SARS-related deaths.

In addition, mathematical models have recently been used to examine the transmission dynamics and to model
the control of SARS in the literature [3–15]. But most of them are mainly in the purely simulative levels [5–10].
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Wang and Ruan [9] propose a mathematical model consists of six subpopulations, namely susceptible, exposed,
quarantined, suspect, probable, and removed, to simulate the SARS outbreak in Beijing. Chowell and Castillo-
Chavez [10] use the uncertainty and sensitivity analysis of the basic reproductive number R0 to assess the role that the
model parameters play in outbreak control, and the results show that the transmission rate and isolation effectiveness
have the largest fractional effect on R0. Shi [11] and Lloyd-Smith [12] present a stochastic dynamic model of SARS
spreading, and a stochastic model of a SARS outbreak in a community and its hospital, respectively. Furthermore,
small-world networks have been introduced to study the propagation of SARS by Naoki Masuda [13] and Small [14]. It
has been shown that if all infectious individuals are isolated as rapidly as they are identified, the severity of the outbreak
would be minimal [14]. Moreover, Gumel [3] and Chowell [4] attempt to obtain a threshold for the basic reproductive
number R0 for assessing the strategies of quarantine and isolation, and discuss the control of SARS by looking at the
role of disease transmission parameters in the reduction of R0 and the prevalence of the disease, while the discrete
case has been studied by Zhou and Ma [15]. However, those models do not consider control strategies, since their
discussions are based on prevalence of disease at equilibria. In Swan’s work [16], optimal control theory is applied
to obtain maximal benefits in terms of social benefits from the parsimonious use of insufficient public funds in the
control of epidemics. Moreover, the Pontryagin’s Maximum Principle [17] and the time dependent control strategies
are also applied for the studies of HIV models [18], mosquito-borne diseases [19], insect transmitted diseases [20],
dengue models [21], tuberculosis models [22] and others [23].

In this paper, we consider the optimal and sub-optimal control strategies associated with quarantining asymptomatic
individuals and isolating symptomatic individuals for a SARS SEQIJR model presented by Gumel [3]. The model
monitors the dynamics of six sub-populations (classes), namely susceptible, asymptomatic, quarantined, symptomatic,
isolated, and recovered individuals. We introduce, for the first time, into this model two control variables representing
the rate of quarantining of asymptomatic individuals who have been exposed to the virus, but have not yet developed
clinical symptoms, and the rate of isolating of symptomatic individuals, respectively.

The rest of the paper is organized as follows. Section 2 describes the SEQIJR SARS model. The analysis of
optimization problems and the sub-optimal solution are presented in Sections 3 and 4, respectively. In Section 5, we
present the numerical method and the simulation results. Finally, the conclusions are summarized in Section 6.

2. Dynamic model for SARS epidemics

In this section, we use the dynamic SEQIJR model for SARS presented by Gumel [3]. By choosing the proper
parameters, the simulation results from such a model fit the available data fairly well (see Section 3 in [3]).

Ṡ = Λ −
S(β I + εEβE + εQβQ + εJ β J )

N
− µS

Ė = p +
S(β I + εEβE + εQβQ + εJ β J )

N
− (u1(t) + k1 + µ)E

Q̇ = u1(t)E − (k2 + µ)Q

İ = k1 E − (u2(t) + d1 + σ1 + µ)I

J̇ = u2(t)I + k2 Q − (d2 + σ2 + µ)J

Ṙ = σ1 I + σ2 J − µR (1)

with S(0), E(0), Q(0), I (0), J (0), R(0) given. Here, the host population is divided into the following epidemiological
classes (state variables):

S: Susceptible individuals;
E : Asymptomatic individuals who have been exposed to the virus but have not yet developed clinical symptoms of

SARS;
Q: Quarantined individuals;
I : Symptomatic individuals;
J : Isolated individuals;
R: Recovered individuals;

N = S + E + Q + I + J + R.
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The model synthesizes some demographic effects by assuming a proportional natural death rate µ > 0 in each of
the six sub-populations of the model and the constant recruitment rate Λ. In addition, it also includes a net inflow of
asymptomatic individuals into the region at a rate p per unit time. This parameter includes new births, immigration
and emigration. Owing to the continuing inflow of travellers into the community during the SARS outbreaks, and
the absence of a rapid and effective screening test, it is assumed that some of these travellers are asymptomatically
infected and enter the community at a rate p per day. In this work, we set p to zero for simplicity. We assume that a
susceptible individual may be infected through contacts with an asymptomatic individual, a quarantined individual,
an infected individual, or an isolated individual.

The transmission coefficients for these four classes of infected individuals are β, εEβ, εQβ, and εJ β respectively.
Although SARS is believed to be transmitted exclusively by symptomatic individuals, a very low rate of transmission
by asymptomatic individuals cannot yet be ruled out. In the model this possibility is depicted by employing the
modification parameter εE , where 0 6 εE < 1.

The modification parameter εQ > 0 represents varying levels of hygiene precautions during quarantine, and a
similar interpretation is given to the modification parameter εJ during isolation [3]. An asymptomatic individual is
transferred into the symptomatic class (at a rate k1), and a quarantined individual is transferred into the isolated class
(at a rate k2) because of the development of clinical symptoms. d1 and d2 are per-capita disease induced death rates
for the symptomatic individuals and isolated individuals, respectively. In addition, σ1 and σ2 are per-capita recovery
rates for the symptomatic individuals and isolated individuals, respectively.

The control variables, u1(t) and u2(t), are bounded, Lebesgue integrable functions [22]. The control u1(t)
represents the rate of quarantining of people who have been in contact with an infected individual by a quarantine
program and educational campaigns. The control u2(t) represents the rate of isolating of symptomatic individuals by
an isolation program. Furthermore, from the epidemiological modeling viewpoint, the transfer rate u1 E corresponds
to an exponential waiting time e−u1t , as the fraction that is still in the asymptomatic class t units after entering this
class and to 1/u1 as the mean waiting time [24]. And the interpretation of u2 I is similar to u1 E .

3. The optimal control problems

The problem is to minimize the cost function

J (u1, u2) =

∫ t f

0

[
B1 E(t) + B2 Q(t) + B3 I (t) + B4 J (t) +

C1

2
u2

1(t) +
C2

2
u2

2(t)
]

dt (2)

subject to the differential equations (1), where t f is the final time. This performance specification involves the
numbers of individuals of symptomatic, asymptomatic, quarantined, or isolated, respectively, as well as the cost for
applying quarantine control (u1) and isolation control (u2). The total cost includes not only the consumption for every
individual, but also the cost of organization, management, and cooperation etc. Hence, the cost function should be
nonlinear. In this paper, a quadratic function is implemented for measuring the control cost by reference to many
papers in epidemic control [18–22]. The coefficients,B1, B2, B3, B4, C1 and C2, are balancing cost factors due to size
and importance of the six parts of the objective function. We seek to find an optimal control pair, u∗

1 and u∗

2, such that

J (u∗

1, u∗

2) = min
Ω

J (u1, u2). (3)

Here Ω = {(u1, u2) ∈ L1(0, t f )|ai 6 ui 6 bi , i = 1, 2} and ai , bi , i = 1, 2, are fixed positive constants.
Pontryagin’s Maximum Principle [17] provides the necessary conditions for an optimal control problem. This

principle converts (1)–(3) into a problem of minimizing a Hamiltonian, H , pointwise with respect to u1 and u2:

H = B1 E(t) + B2 Q(t) + B3 I (t) + B4 J (t) +
C1

2
u2

1(t) +
C2

2
u2

2(t) +

6∑
i=1

λi fi (4)

where fi is the right hand side of the differential equation of i-th state variable. By applying Pontryagin’s Maximum
Principle [17], we have the adjoint equations

dλ1

dt
= −

∂ H
∂S

, λ1(t f ) = 0,
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. . .
dλ6

dt
= −

∂ H
∂ R

, λ6(t f ) = 0

i.e.

λ̇1 = λ1
(β I + εEβE + εQβQ + εJ β J )N − S(β I + εEβE + εQβQ + εJ β J )

N 2

− λ2
(β I + εEβE + εQβQ + εJ β J )N − S(β I + εEβE + εQβQ + εJ β J )

N 2

λ̇2 = −B1 − λ1

[
µ −

εEβSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
− λ2

[
εEβSN − S(β I + εEβE + εQβQ + εJ β J )

N 2 − (u1(t) + k1 + µ)

]
− λ3u1(t) − λ4k1

λ̇3 = −B2 − λ1

[
µ −

εQβSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
− λ2

[
εQβSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
+ λ3(k2 + µ) − λ5k2

λ̇4 = −B3 − λ1

[
µ −

βSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
− λ2

[
βSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
+ λ4(u2(t) + d1 + σ1 + µ) − λ5u2(t) − λ6σ1

λ̇5 = −B4 − λ1

[
µ −

εJ βSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
− λ2

[
εJ βSN − S(β I + εEβE + εQβQ + εJ β J )

N 2

]
+ λ5(d2 + σ2 + µ) − λ6σ2

λ̇6 = −λ1

[
µ +

S(β I + εEβE + εQβQ + εJ β J )

N 2

]
+ λ2

[
S(β I + εEβE + εQβQ + εJ β J )

N 2

]
+ λ6µ (5)

with transversality conditions

λi (t f ) = 0, i = 1, . . . , 6. (6)

By the bounds in Ω = {(u1, u2) ∈ L1(0, t f )|ai 6 ui 6 bi , i = 1, 2}, the optimal control is given by

u1(t) = min
{

max
{

a1,
1

C1
(λ2 − λ3)E

}
, b1

}
(7)

and

u2(t) = min
{

max
{

a2,
1

C2
(λ4 − λ5)I

}
, b2

}
(8)

which are derived from the condition
∂ H
∂u1

= 0,
∂ H
∂u2

= 0.

Remark 1. Due to the a priori boundedness of the state and adjoint functions and the resulting Lipschitz structure of
the ODEs, we obtain the uniqueness of the optimal control for small t f [22]. The uniqueness of the optimal control
pair follows from the uniqueness of the optimality system, which consists of (1), (5) and (6) with characterizations (7)
and (8). There is a restriction on the length of the time interval in order to guarantee the uniqueness of the optimality
system. This smallness restriction on the length on the time interval is due to the opposite time orientations of (1), (5)
and (6); the state problem has initial values and the adjoint problem has final values. This restriction is very common
in control problems (see [18,22]).
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Remark 2. The problem described above is a Two Point Boundary Value Problem (TPBVP), with specified initial
conditions for the state equation (1), and terminal boundary conditions (6) for the adjoint equation (5). It can be
numerically solved by the iteration method presented in Section 5.

4. A sub-optimal solution

In this section, the sub-optimal solution is obtained by a genetic algorithm which follows the idea of [21]. Let the
class of admissible controls be restricted to the collection of functions of type

uk(t) =

{
ui

k if t ∈ Ii
0 otherwise,

k = 1, 2, (9)

where ui
k ∈ Ω are constants, and Ii are closed intervals [ti , ti + ∆i ] such that Ii ∩ I j = ∅ if i 6= j . Therefore, the

restricted class admissible controls consist of pulses of height ui
k (k = 1, 2) and width ∆i , starting at time ti .

In order to simplify the actual policy implementation, we assume that the two controls are to be of
pulsed form. Let uk(t) = uN

k (t) (k = 1, 2) be admissible controls with N pulses, characterized by
(t1,∆1, u1

1, u1
2, t2,∆2, u2

1, u2
2, . . . , tN ,∆N , uN

1 , uN
2 ). Therefore, the sub-optimal control problem is to minimize

J ′(t1,∆1, u1
1, u1

2, t2,∆2, u2
1, u2

2, . . . , tN ,∆N , uN
1 , uN

2 ) := J [uN
1 (·), uN

2 (·)]

where J [·, ·] is the same as defined in (2).
Let π = (t1,∆1, u1

1, u1
2, t2,∆2, u2

1, u2
2, . . . , tN ,∆N , uN

1 , uN
2 ) ∈ R4N for the case of N pulses, and the sub-optimal

control problem is simply

min
π=R4N

J ′(π).

In this work, the search for a global minimum of J ′(π) is implemented by an extended method based on the Genetic
Algorithm [25]. This extension admits the constraints ti + ∆i = ti+1, tN + ∆N = t f , ti > 0, ∆i > 0 and
ak 6 ui

k 6 bk ,k = 1, 2.

5. Numerical simulation

In this section, we investigate the numerical algorithm for optimal control in SARS model. The optimal Quarantine
and Isolation Control is obtained by solving the optimality conditions, consisting of twelve ODEs from the state and
their adjoint equations. This problem (TPBVP) is solved by using the multiple shooting method (see, for instance, [21,
26,27]) as follows:

(1) Select n nodes to divide the interval [0, t f ], or, 0 = t1 6 t2 6 · · · 6 tn = t f .
(2) Choose yi := [x(ti ), λ(ti )], i = 1, . . . , n.
(3) Integrate (1) and (5) for each time interval [ti , ti+1) using yi as the initial conditions, and obtaining y(ti−1) =

[x(ti−1), λ(ti−1)].
(4) Compute h := [hi ] where hi := yi − y(ti ).
(5) If |h| is sufficiently close to a minimum value, then stop; Else modify the initial conditions yi for the next iteration

(using, for instance, the Newton–Raphson algorithm to make hi := ynew
i − y(ti ) = 0) and go to step (3).

In this work, the optimal control was computed using the multiple shooting method with 30 nodes, up to a tolerance of
10−5 for |h|. Considering the four weight factors associated with E , Q, I and J , we choose B1 = B2 = B3 = B4 = 1,
C1 = 300 and C2 = 600 to illustrate the optimal strategies.

Remark 3. We assume that the weight factor C2 associated with control u2 is much larger than C1, which is associated
with control u1. This assumption is based on the following facts: The cost associated with u1 mainly includes the cost
of monitoring and quarantining programs, while the cost associated with u2 includes the cost of monitoring and
isolating programs, and the hospital treatment resource. The ideal weights are very hard to obtain in practice. It needs
a lot of work on data mining, analyzing, and fitting. Hence, the acquisition of appropriate practical weights is a difficult
problem and it still remains for further investigations. It should be pointed out that the weights in the simulations here
are of only theoretical interest to illustrate the control strategies proposed in this paper.
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Table 1
Values of the model parameters

Parameters Values Computational parameters Values

β 0.2 S(0) 12 million
εE 0.3 E(0) 1565
εQ 0 Q(0) 292
εJ 0.1 I (0) 695
µ 0.000034 J (0) 326
Λ µN R(0) 20
p 0 Final time t f 1 year
k1 0.1 Time step duration dt 1 day
k2 0.125 Upper bound for u1 0.50
d1 0.0079 Lower bound for u1 0.05
d2 0.0068 Upper bound for u2 0.50
σ1 0.0337 Lower bound for u2 0.05
σ2 0.0386

Fig. 1. The optimal and sub-optimal control laws.

In the simulation, we study the impact of optimal quarantine and isolation control on SARS during the outbreaks
in Beijing. We choose the upper bound of u1 equals 0.50, according to the reasonable case in China that it took at
least an average of 2 days to quarantine the asymptomatic individuals who had been exposed to the virus, but had
not yet developed clinical symptoms. And the choice of upper bound of u2 is similar to u1. The sub-optimal control
was computed for the case N = 3 and specified time intervals: ∆1 = 60, ∆2 = 240 and ∆3 = 60. Parameters
such as population size for the genetic algorithm, generation gap and others were adjusted ad hoc [21]. The data and
parameters we used, as shown in Table 1, are mainly from the published data [3,9]. In order to evaluate the effect of
the uncertainty on the model parameters, simulations were repeated with values of β, εE , εQ , εJ , µ, k1, k2, d1, d2,
σ1 and σ2, altered by random values in the range ±10% (normal distribution), while the inputs u1 and u2 were kept
identical to the computed optimal values.

Fig. 1 shows the time dependent optimal and sub-optimal quarantine and isolation control laws. In order to
minimize the total infected individuals, E + Q + I + J , the optimal control u1 is at its upper bound during more
than the half of the year, and then u1 is steadily decreased to the lower bound, while the optimal control u2 stays at
its upper bound for a short time, about 70 days and then steadily decreases to the lower bound over the rest simulated
time. The sub-optimal control laws u1 and u2 stay at the upper bound during the first two time intervals and the first
time interval, respectively.

In fact, at the beginning of simulated time, both the optimal control and sub-optimal control are staying at their
upper bounds in order to quarantine and isolate as many as asymptomatic individuals (E) and symptomatic individuals
(I ) to prevent the increasing of the number of the infected individuals. For both u1 and u2, the steady decrease to the
lower bound in the optimal control case, and the staying at a proper value in the sub-optimal case, are determined by
the balance between the cost of the infected individuals and the cost of the controls.
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Fig. 2. Number of infected individuals under the optimal control, sub-optimal control and constant control.

Fig. 3. Number of infected individuals under the lower bound control.

A comparison of the optimal control, the sub-optimal control and the constant controls u1 ≡ 0.2 and u2 ≡ 0.2
throughout the simulated time are also implemented (Fig. 2). It is easy to see that the optimal control and sub-optimal
control are much more effective for reducing the number of infected individuals and decreasing the time-span of the
epidemic. As normally expected, in the early phase of the epidemic breakouts, keeping the quarantine and isolation
controls at their upper bounds will directly lead to decreasing of the number of the infected people. Moreover, Fig. 3
shows that if we take the lower bound values for each control throughout the simulated time, the number of infected
individuals would reach about 4.1919 × 106 (nearly 35% of the total population). This illustrates that the quarantine
and isolation strategies are critically important to control the outbreaks of SARS. In addition, in order to illustrate the
overall of picture of the epidemic, the number of infected and recovered individuals under the optimal control, the
sub-optimal control, the constant control and the lower bound control are shown, respectively, in Figs. 4–9.

The costs achieved by the optimal control and sub-optimal control are much less than the constant control and the
lower bound control, as shown in Figs. 10 and 11. It is interesting to note that the cost achieved by the sub-optimal
control is very close to that of the optimal control, despite the fact that the sub-optimal control is much easier to
implement than the optimal control.

6. Conclusions

In this paper, we introduced, for the first time, two control variables to represent the quarantine and isolation
strategies in epidemic control. The optimal and sub-optimal quarantine and isolation controls for a SEQIJR SARS
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Fig. 4. Number of susceptible individuals under the optimal control and sub-optimal control.

Fig. 5. Number of susceptible individuals under the constant control.

Fig. 6. Number of susceptible individuals under the lower bound control.

model were studied. The numerical results show both the optimal and sub-optimal strategy for SARS epidemic control
are effective. Furthermore, this idea of introducing these two new control variables is helpful for further discussions on
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Fig. 7. Number of recovered individuals under the optimal control and sub-optimal control.

Fig. 8. Number of recovered individuals under the constant control.

Fig. 9. Number of recovered individuals under the lower bound control.

catastrophic epidemic control. It should be pointed out that, as was mentioned in [23], the ideal time-varying optimal
strategy might not be applied in practice easily. Nevertheless, it does provide a reference basis on which to design
the practical quasi-optimal control strategies or policies, and to assess their effectiveness. However, the proposed sub-
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Fig. 10. Costs of the controls and the disease under the optimal control, sub-optimal control and constant control.

Fig. 11. Cost of the control and the disease under the lower bound control.

optimal control in this paper can provide much simpler strategies, which, as verified by numerical simulations, can
also lead to a performance very similar to that achieved by the optimal control. In practical implementations, it is
considerably easier to use such a sub-optimal control.
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