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With the accomplishment of human genome sequencing, the number of sequence-known proteins has

increased explosively. In contrast, the pace is much slower in determining their biological attributes. As a

consequence, the gap between sequence-known proteins and attribute-known proteins has become

increasingly large. The unbalanced situation, which has critically limited our ability to timely utilize the

newly discovered proteins for basic research and drug development, has called for developing

computational methods or high-throughput automated tools for fast and reliably identifying various

attributes of uncharacterized proteins based on their sequence information alone. Actually, during the

last two decades or so, many methods in this regard have been established in hope to bridge such a gap. In

the course of developing these methods, the following things were often needed to consider: (1) bench-

mark dataset construction, (2) protein sample formulation, (3) operating algorithm (or engine),

(4) anticipated accuracy, and (5) web-server establishment. In this review, we are to discuss each of

the five procedures, with a special focus on the introduction of pseudo amino acid composition (PseAAC),

its different modes and applications as well as its recent development, particularly in how to use the

general formulation of PseAAC to reflect the core and essential features that are deeply hidden in

complicated protein sequences.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

With the explosive growth of protein sequences generated in the
postgenomic age, scientists are anxious to know their attributes
because they are closely correlated with the structures and functions
of the proteins as well as their roles in biological processes, and hence
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Fig. 1. Illustration to show the four categories of protein structural class: (a) all-a,

(b) all-b, (c)a/b, and (d) a+b, where thea-helix is colored in red, b-strand in yellow,

and the other in green. The PDB codes used to draw the representatives of the four

structural classes are 1aep, 1gbg, 1enp, and 1aak, respectively. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version
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are very important to both basic research and drug target development.
For instance, given an uncharacterized protein sequence, what is its
folding rate? Which structural class and quaternary structural attribute
does it belong to? Which subcellular location site does it resides? Can it
simultaneously exist in or move between two and more subcellular
locations? How can we identify it as an enzyme or non-enzyme? If it is
an enzyme, to which enzyme functional class does it belong? Is it a
membrane protein or non-membrane protein? If the former, to which
membrane protein type does it belong? Is it a protease? If it is, to which
protease type does it belong? Is it a G protein-coupled receptor (GPCR)?
If it is, to which GPCR type does it belong? Which part of the protein
serves as its signal sequence? Where are its cleavage sites by proteases
such as HIV (human immunodeficiency virus) protease and SARS
(severe acute respiratory syndrome) enzyme? And so forth. Although
the answers to these questions can be determined by conducting
various biochemical experiments, it is both time-consuming and costly
by relying on experimental approaches alone. As a consequence, the
gap between the number of newly discovered protein sequences and
the knowledge of their attributes is continuing to expand. To bridge
such a gap and acquire these kinds of information in a timely manner,
scientists are challenged to develop computational methods for
predicting various attributes of proteins based on their sequence
information alone.

To establish a really useful predictor in this regard, one usually
needs to accomplish the following procedures: (1) construct a valid
benchmark dataset to train and test the predictor; (2) formulate the
protein samples with an effective mathematical expression that
can truly reflect their intrinsic correlation with the attribute to be
predicted; (3) introduce or develop a powerful algorithm (or
engine) to operate the prediction; (4) properly perform cross-
validation tests to objectively evaluate the accuracy of the pre-
dictor; and (5) establish a user-friendly web-server for the pre-
dictor that is accessible to the public.

This review will discuss each of the above five procedures, with
a special focus on procedure 2, particularly on how to use various
different modes of pseudo amino acid composition to represent
protein samples by incorporating their core and essential features.
of this article.)
2. Benchmark dataset

To develop a statistical prediction method for a given attribute,
the first important thing is to construct a benchmark dataset S

according to its possible classification, i.e.

S¼S1 [S2 [ � � � [Sm [ � � � [SM ð1Þ

where S1 represents the subset for category 1 of the attribute,
S2 for category 2, and so forth; while [ represents the symbol for
‘‘union’’ in the set theory, and M the number of different categories
for the attribute concerned. For example, when the attribute
concerned was about the protein structural classification as
investigated in Chou (1995a), Chou and Zhang (1994), Chou
(1989), Levitt and Chothia (1976), Nakashima et al. (1986) and
Zhou (1998), M would be four as illustrated in Fig. 1; when the
structural classification was defined according to the SCOP data-
base (Murzin et al., 1995) or investigated in Chou and Cai (2004b),
M would be seven as shown in Fig. 2; when the attribute was about
the membrane protein type as investigated in Chou and Shen
(2007d), M would be eight (Chou and Shen, 2007d) as illustrated in
Fig. 3; when the attribute was about the subcellular localization
of eukaryotic proteins as investigated in Chou and Shen (2010a),
M would be 22 as illustrated in Fig. 4.

To avoid homology bias and redundancy, it is important to
introduce a cutoff threshold when constructing a benchmark
dataset. Different cutoff threshold values were used, such as 90%
(Reinhardt and Hubbard, 1998), 80% (Small et al., 2004), 40% (Shen
and Chou, 2007a), and 25% (Chou and Shen, 2010a; Chou and Shen,
2010c). When a benchmark dataset was constructed with the cutoff
threshold of 25%, none of the proteins included would have Z25%
pairwise sequence identity to any other in the same subset
(category). Accordingly, the smaller the cutoff threshold is, the
more stringent the benchmark dataset will be in excluding the
homology bias.

The benchmark datasets constructed in the earlier stage (see,
e.g., Cedano et al., 1997; Chou, 1989; Nakashima et al., 1986)
usually consisted of a learning (or training) dataset and an
independent testing dataset, as can be formulated as

S¼SL
[ST

+¼S
L
\S

T

(
ð2Þ

where SL is the learning dataset, ST the training dataset, + the
empty set, and\ the symbol for ‘‘intersection’’ in the set theory. The
learning dataset is used for training the predictor’s ‘‘engine’’, while
the testing dataset used for evaluating the predictor’s accuracy via a
cross-validation. As we can see from Eq. (2), none of the proteins in
the testing dataset S

T should occur in the learning dataset S
L.

Therefore, ST is also called an independent dataset for performing
cross-validation. However, as will be shown later, there is no need
to artificially separate the benchmark dataset into a learning
dataset and a testing dataset when the cross-validation is per-
formed by the jackknife test, in which case one benchmark dataset
can serve both the training and testing purposes.



Fig. 2. Illustration to show the seven categories of protein structural class: (a) all-a, (b) all-b, (c) a/b, (d) a+b, (e) m (multi-domain), (f) s (small protein), and (g) r (peptide),

where the a-helix is colored in red, b-strand in yellow, and the other in green. The PDB codes used to draw the representatives of the seven structural classes are 1a6m, 1uzv,

2f62, 2bf5, 1vqq, 4hir, and 1ter, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Schematic drawings to show the eight categories of membrane protein types: (1) type I transmembrane, (2) type II, (3) type III, (4) type IV, (5) multipass

transmembrane, (6) lipid-chain-anchored membrane, (7) GPI-anchored membrane, and (8) peripheral membrane. As shown in the figure, types I, II, III, and IV are all of single-

pass transmembrane proteins; see Spiess (1995) for a detailed description about their difference.
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3. Protein sample representation

Two kinds of models were usually used to represent protein
samples. One is the sequential model, and the other the discrete
model. The most straightforward sequential model for a protein
sample is its entire amino acid sequence, as expressed by

P¼ R1R2R3R4R5R6R7 � � �RL ð3Þ

where R1 represents the 1st residue of the protein P, R2 the 2nd
residue,y, RL the L-th residue, and they each belong to one of the 20
native amino acid types. To get the desired results, the sequence-
similarity-search-based tools, such as BLAST (Altschul, 1997;
Wootton and Federhen, 1993), are usually utilized to conduct
the prediction. However, this kind of approach failed to work when
the query protein did not have significant sequence similarity
to any attribute-known proteins. Thus, various non-sequential
models, or discrete models, were proposed, as illustrated below.
The simplest discrete model used to represent a protein sample
is its amino acid (AA) composition or AAC (Nakashima et al., 1986).
According to the AAC-discrete model, the protein P of Eq. (3) can be
expressed by (Chou, 1995a)

P¼ f1 f2 � � � f20

h iT
ð4Þ

where fi (i¼1, 2 ,y,20) are the normalized occurrence frequencies of
the 20 native amino acids in P, and T the transposing operator. Many
methods for predicting various protein attributes were based on the
AAC-discrete model (see, e.g., Cedano et al., 1997; Chou, 1999, 2000,
2005b; Chou and Zhang, 1992, 1995; Chou and Maggiora, 1998; Chou
and Elrod, 1999, 2002; Chou et al., 1998; Chou, 1989; Du et al., 2006;
Feng et al., 2005; Jahandideh et al., 2007a; Klein, 1986; Klein and Delisi,
1986; Liu and Chou, 1998; Metfessel et al., 1993; Nakashima and
Nishikawa, 1994; Niu et al., 2006; Zhou, 1998; Zhou and Assa-Munt,
2001; Zhou and Doctor, 2003). However, as one can see from Eq. (4), all
the sequence-order effects would be missing using the AAC-discrete
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(14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome,
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model, and hence the prediction quality thus obtained might be
limited. This is the main shortcoming of the AAC discrete model. To
avoid completely losing the sequence-order information, a completely
different discrete model, or the so-called ‘‘pseudo amino acid composi-
tion’’ (PseAAC) model (Chou, 2001), was proposed to represent the
sample of a protein, as formulated by

P¼ p1 p2 � � � p20 p20þ1 � � � p20þL

h iT
ð5Þ

where the first 20 elements are associated with the 20 elements in
Eq. (4) or the 20 amino acid components of the protein, while the
additional L factors are used to incorporate some sequence-order
information via various modes. Typically, these additional factors are a
series of rank-different correlation factors along a protein chain, but
they can also be any combinations of other factors so long as they can
reflect some sorts of sequence-order effects in one way or the other. For
the convenience of users, a web-server called ‘‘PseAAC’’ (Shen and
Chou, 2008) was established at http://www.csbio.sjtu.edu.cn/bioinf/
PseAAC/, by which some commonly used PseAAC forms can be
automatically generated.

The concept of PseAAC has been widely used to study various
problems in proteins and protein-related systems, such as pre-
dicting enzymes and their family/sub-family classification (Cai and
Chou, 2005; Cai et al., 2005; Qiu et al., 2010; Wang et al., 2010b;
Zhou et al., 2007), protein subcellular location prediction (Cai and
Chou, 2003; Chou and Cai, 2003c, 2004e; Gao et al., 2005; Li and Li,
2008b; Pan et al., 2003; Shi et al., 2007, 2008; Xiao et al., 2006b;
Zhang et al., 2008c), apoptosis protein subcellular location predic-
tion (Chen and Li, 2007; Jiang et al., 2008b; Kandaswamy et al.,
2010; Lin et al., 2009a; Liu et al., 2010b), mycobacterial protein
subcellular location prediction (Lin et al., 2008), predicting protein
subnuclear localization (Jiang et al., 2008a; Li and Li, 2008a; Shen
and Chou, 2005b), predicting protein subchloroplast locations
(Du et al., 2009), predicting protein submitochondria locations
(Du and Li, 2006; Nanni and Lumini, 2008; Zeng et al., 2009),
predicting membrane proteins and their types (Cai and Chou, 2006;
Chou and Shen, 2007d; Liu et al., 2005; Shen and Chou, 2005a; Shen
et al., 2006; Wang et al., 2004; Wang et al., 2006), discrimination of
outer membrane proteins (Gao et al., 2010; Lin, 2008), identifying
transmembrane regions in proteins (Diao et al., 2008), identifying
proteases and their types (Chou and Shen, 2008a; Zhou and
Cai, 2006), predicting protein solubility (Xiaohui et al., 2010),
identifying GPCRs and their classes (Gu et al., 2010a, 2010b; Lin
et al., 2009b; Qiu et al., 2009; Xiao et al., 2009b, 2010b), prediction
of nuclear receptors (Gao et al., 2009), prediction of cyclin proteins
(Mohabatkar, 2010), identifying bacterial secreted proteins (Yu
et al., 2010), identifying risk type of human papillomaviruses
(Esmaeili et al., 2010), prediction of cell wall lytic enzymes (Ding
et al., 2009), prediction of lipases types (Zhang et al., 2008a),
predicting conotoxin superfamily and family (Lin and Li, 2007a;
Mondal et al., 2006), predicting the cofactors of oxidoreductases
(Zhang and Fang, 2008), predicting DNA-binding proteins (Fang
et al., 2008), predict protein structural classes (Chen et al., 2006a;
Chen et al., 2006b; Ding et al., 2007; Li et al., 2009; Lin and Li, 2007b;
Wu et al., 2010; Xiao et al., 2008a; Xiao et al., 2008b; Xiao et al.,
2006a; Zhang and Ding, 2007; Zhang et al., 2008d), supersecondary
structure prediction (Zou et al., 2011), protein secondary structure
content prediction (Chen et al., 2009), predicting protein quatern-
ary structural attributes (Chou and Cai, 2003a; Shen and Chou,
2009b; Xiao et al., 2009a; Xiao et al., 2010a; Zhang et al., 2008b;
Zhang et al., 2006), fold pattern prediction (Shen and Chou, 2006;
Shen and Chou, 2009a), and others (e.g., Georgiou et al., 2009).

Meanwhile, various modes of PseAAC by extracting different
features from protein sequences were proposed, including sto-
chastic signal processing mode (Pan et al., 2003), Fourier spectrum
analysis mode (Liu et al., 2005), special functions mode (Gao et al.,
2005), complexity measure factor mode (Xiao et al., 2005, 2006a),
cellular automaton mode (Xiao et al., 2006b, 2008b, 2009b),
geometric moments mode (Xiao et al., 2008b), gray dynamic mode
(Xiao et al., 2008a), approximate entropy mode (Jiang et al., 2008a),
continuous wavelet transform mode (Li et al., 2009), discrete
wavelet transform mode (Qiu et al., 2009, 2010), sequence-
segmented mode (Zhang et al., 2008b), evolutionary information
and von Neumann entropy mode (Zhang et al., 2008c), and so forth.

However, according to its original concept, the essence of
PseAAC is to keep using a discrete model to represent a protein
yet without completely losing its sequence-order information.
Therefore, in a broad sense, the PseAAC of a protein is actually a
set of discrete numbers that is derived from its amino acid
sequence and that is different from the classical AAC and able to
harbor some sort of sequence order or pattern information. There-
fore, the PseAAC for a protein P should be generally formulated as

P¼ c1 c2 � � � cu � � � cO

h iT
ð6Þ

where the subscript O is an integer, and its value and the
components c1, c2,y will depend on how to extract the desired
information from the amino acid sequence of P (cf. Eq. (3)). The
form of Eq. (6) can cover all the aforementioned modes of PseAAC.
For example, when

cu ¼

fu

. P20
i ¼ 1 fiþw

Pl
j ¼ 1 yj

� �
, ð1rur20Þ

wyu�20

. P20
i ¼ 1 fiþw

Pl
j ¼ 1 yj

� �
, ð20þ1rur20þl¼O; loLÞ

8><
>:

ð7Þ

we immediately obtain the formulation of PseAAC originally
introduced in Chou (2001), where the meanings for w, yj, and l
were clearly elaborated and hence there is no need to repeat here.
When

cu ¼

fu

. P20
i ¼ 1 fiþw

P2l
j ¼ 1 tj

� �
, ð1rur20Þ

wtu�20

. P20
i ¼ 1 fiþw

P2l
j ¼ 1 tj

� �
ð20þ1rur20þ2l¼O; loLÞ

8><
>:

ð8Þ

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/
http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/
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we obtain the formulation for the amphiphilic PseAAC (Chou,
2005a), where the meanings of w, tj, and l were also clearly given.

It is instructive to point out that, with the general formulation of
Eq. (6), the PseAAC can be used to reflect much more essential core
features deeply hidden in complicated protein sequences through
the following modes.
3.1. Functional domain mode

The functional domain (FunD) is the core of a protein. Therefore,
in determining the 3-D (dimensional) structure of a protein by
experiments (see, e.g., Call et al., 2010; Pielak and Chou, 2010;
Schnell and Chou, 2008; Wang et al., 2009) or by computational
modeling (see, e.g., Chou, 2004a; Chou, 2004b), the first priority
was always focused on its FunD.

Using the FunD information to formulate protein samples was
originally proposed in Cai et al. (2003) and Chou and Cai (2002)
based on the 2005 FunDs in the SBASE-A database (Murvai et al.,
2001). Since then, a series of new protein FunD databases were
established, such as COG (Tatusov et al., 2003), KOG (Tatusov et al.,
2003), SMART (Letunic et al., 2006), Pfam (Finn et al., 2006), and
CDD (Marchler-Bauer et al., 2007). Of these databases, CDD
contains the domains imported from COG, Pfam, and SMART,
and hence is relatively much more complete (Marchler-Bauer
et al., 2007) and was adopted in most of the recent publications
(see, e.g., Chou and Shen, 2010a, 2010c; Shen and Chou, 2009d). The
version 2.11 of CDD contains 17,402 characteristic domains. Thus,
when using the general formulation of PseAAC (Eq. (6)) to
incorporate the FunD information, we have O¼17,402, i.e.

PFunD ¼ cD
1 cD

2 � � � cD
u � � � cD

17402

h iT
ð9Þ

where T has the same meaning as in Eq. (4), and

cD
u ¼

1, when a hit is found for P in CDD

0, otherwise

(
ð10Þ

For the detailed procedure of how to find the hit for P in CDD,
refer to Chou and Shen (2010a).

Similar approaches of representing protein samples with the
FunD mode were also used for predicting protein subcellular
localization (Chou and Cai, 2002; Chou and Cai, 2004d), membrane
protein types (Cai and Chou, 2006; Cai et al., 2003), enzyme
functional classes (Shen and Chou, 2007a), protease types (Chou
and Shen, 2008a; Shen and Chou, 2009c), GPCRs types (Xiao et al.,
2010b), protein structural class (Chou and Cai, 2004b), protein fold
pattern (Shen and Chou, 2009a), and protein quaternary structural
attributes (Shen and Chou, 2009b; Xiao et al., 2009a, 2010a).
3.2. Gene ontology mode

Gene ontology (GO) database (Ashburner et al., 2000) was
established according to the molecular function, biological process,
and cellular component. Accordingly, protein samples defined in a
GO database space would be clustered in a way better reflecting
some of their important attributes, such as subcellular localization
and biological function (Chou and Shen, 2007c, 2008b).

The GO database (version 70.0 released 10 March 2008)
contains 60,020 GO numbers. Thus, when using the general
formulation of PseAAC to incorporate the GO information, we have
O¼60,020, i.e.

PGO ¼ cG
1 cG

2 � � � cG
u � � � cG

60020

h iT
ð11Þ
where

cG
u ¼

1, if a hit is found against the u-th GO number for protein P

0, otherwise

(
ð12Þ

For the detailed procedure of how to find the hit for P in the GO
database, refer to Chou and Shen (2010a).

The information extracted from the GO database (Ashburner
et al., 2000; Camon et al., 2004; Harris et al., 2004) was used to
formulate PseAAC for predicting protein subcellular localization
(Cai and Chou, 2003; Chou and Cai, 2003b; Chou and Cai, 2004d;
Chou and Shen, 2006a; Chou and Shen, 2006b; Chou and Shen,
2006c; Chou and Shen, 2007a; Chou and Shen, 2007b; Chou and
Shen, 2007c; Chou and Shen, 2008b; Lee et al., 2005; Shen and
Chou, 2007b; Shen and Chou, 2007c; Shen and Chou, 2007d; Shen
et al., 2007), enzyme functional class (Chou and Cai, 2004a; Chou
and Cai, 2004c), membrane protein types (Chou and Cai, 2005),
protease types (Zhou and Cai, 2006), and protein–protein interac-
tions (Chou and Cai, 2006).

3.3. Sequential evolution mode

Biology is a natural science with historic dimension. All
biological species have developed continuously starting out from
a very limited number of ancestral species. It is true for protein
sequence as well (Chou, 2004b). Their evolution involves changes
of single residues, insertions, and deletions of several residues
(Chou, 1995b), gene doubling, and gene fusion. With these changes
accumulated for a long period of time, many similarities between
initial and resultant amino acid sequences are gradually elimi-
nated, but the corresponding proteins may still share many
common attributes, such as having basically the same biological
function and residing in the same subcellular location.

The general formulation of PseAAC can be used to incorporate
this kind of information via its sequential evolution mode, i.e.

Pl
Evo ¼ cl

1 cl
2 � � � cl

u � � � cl
O

h iT
ð13Þ

where

cl
u ¼

1

L

PL
i ¼ 1 Ei-u, ðu¼ 1,2,. . .,20Þ

1

L�l

XL�l
i ¼ 1

½Ei-ðu�20Þ�EðiþlÞ-ðu�20Þ�
2, ðu¼ 21,22,. . .,40¼O; loLÞ

8>>>><
>>>>:

ð14Þ

where l is an uncertain number that will be further discussed later,
L is the length of P (counted in the total number of its constituent
amino acids), and Ei-j represents the score of the amino acid
residue in the i-th position of the protein sequence being changed
to amino acid type j during the evolutionary process (Schaffer et al.,
2001), which can be derived by using PSI-BLAST (Schaffer et al.,
2001) to search the Swiss-Prot database as described in Chou and
Shen (2010c). Here, the numerical codes 1, 2,y,20 are used to
denote the 20 native amino acid types according to the alphabetical
order of their single character codes.

The above equations were used to identify membrane proteins
and their types (Chou and Shen, 2007d), enzymes and their
functional classes (Shen and Chou, 2007a), proteases and their
types (Chou and Shen, 2008a), protein quaternary structural
attributes (Shen and Chou, 2009b), as well as protein subcellular
localization (Chou and Shen, 2010a; Chou and Shen, 2010b).

Besides the aforementioned PseAAC modes, there may be some
other feature extraction methods to represent protein samples, but
they can always be formulated with the form of Eq. (6), the general
formulation of PseAAC.

It is instructive to point out that, regardless of which kind of PseAAC
mode is adopted for protein samples, the query proteins and the
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proteins used to train the prediction engine must be defined in the
same infrastructural frame with exactly the same dimension. For
instance, if a query protein is defined in the 17402-D FunD space (see
Eq. (9)), then the prediction should be carried out based on those
proteins in the training set that can be defined in the exactly same
17402-D FunD space as well. If a query protein is defined in the 60020-
D GO space (see Eq. (11)), then the prediction should be carried out
based on those proteins in the training set that can be defined in the
exactly same 60020-D GO space as well. If the query protein in both the
17402-D FunD space and 60020-D GO space is a naught vector and
hence must be defined instead in the sequential evolution space
(see Eq. (13)), then all the proteins used to train the prediction engine
must also be formulated in the same sequential evolution space. It is
particularly important to follow such a self-consistency principle when
hybridizing different PseAAC modes or building an ensemble classifier
by fusing many individual classifiers (Chou and Shen, 2006d).
Fig. 5. Illustration to show how the KNN classifier depends on the selection of

parameter K in identifying the attribute category of a query protein, where the query

protein P is represented by the character q with a filled circle, proteins belonging to

subsetS1 (category 1) are represented by the open circle with number 1, proteins of

S2 by the open circle with number 2, and so forth. When K¼1, the query protein is

predicted belonging to category 2 as its nearest protein does; when K¼3, the query

protein is predicted belonging to category 3 because two of its three nearest proteins

belong to that category; when K¼9, the query protein is predicted belonging to

category 2 again because the majority of its nine nearest proteins belong to

category 2.
4. Prediction algorithm (operating engine)

The problem of predicting protein attributes can be generally
described as follows. Suppose a system containing N proteins
(P1,P2,y,PN), which have been classified into M subsets (categories)
as formulated by Eq. (1), where each subset Sm (m¼1,2,y,M) is
composed of proteins with the same attribute category and its size
(the number of proteins therein) is Nm. Obviously, we have
N¼N1+N2+?+NM. According to Eq. (6), we can suppose without
losing generality that the k-th protein in the subset Sm (see Eq. (1)) is
expressed by

Pk
m ¼ ck

m,1 ck
m,2 � � � ck

m,j � � � ck
m,O

h iT
ð15Þ

where ck
m,j ð j¼ 1,2,. . .,OÞ is the j-th component of the k-th protein

in Sm. Now, for a query protein P as defined by Eq. (6), how can we
identify which subset it belongs to?

Many different prediction algorithms have been introduced to
address this problem, such as discriminant algorithm (Chou and
Maggiora, 1998; Chou and Elrod, 1999), neural network algorithm
(Cai et al., 2000; Cai et al., 2001), support vector machine (SVM) (Cai
et al., 2003; Cai et al., 2004; Chou and Cai, 2002), and K-nearest
Neighbor algorithm (Cai and Chou, 2003; Chou and Shen, 2006b). In
this paper we shall focus on the K-nearest neighbor algorithm
(Denoeux, 1995) and show how to generate a powerful ensemble
classifier by fusing many individual basic classifiers characterized
with different control parameters.

The K-nearest neighbor (KNN) classifier is quite popular in
pattern recognition community owing to its good performance and
simple-to-use feature. According to the KNN rule (Denoeux, 1995;
Keller et al., 1985), named also as the ‘‘voting KNN rule’’, the query
protein should be assigned to the subset represented by a majority
of its K nearest neighbors, as illustrated in Fig. 5

There are many different definitions to measure the ‘‘nearness’’
for the KNN classifier, such as Euclidean distance, Hamming
distance (Mardia et al., 1979), and Mahalanobis distance (Chou,
1995a; Mahalanobis, 1936; Pillai, 1985). Usually, the following
equation was adopted to measure the nearness between proteins
P and Pk

m (cf. Eqs. (6) and (15)):

DðP,Pk
mÞ ¼ 1�

PUPk
m

:P::Pk
m:

ð16Þ

where PUPk
m is the dot product of the two vectors, and :P: and

:Pk
m: their modulus, respectively. According to Eq. (16), when

P� Pk
m we have DðP,Pk

mÞ ¼ 0, indicating the ‘‘distance’’ between
these two proteins is zero and hence they have perfect or 100%
similarity. In using the KNN rule, the predicted result will depend
on the selection of the parameter K, the number of the nearest
neighbors to the query protein P, as described below.
4.1. Nearest neighbor classifier

The nearest neighbor classifier (Cover and Hart, 1967), also
called NN classifier, is a special case of KNN classifier with K¼1
(Fig. 5). With the NN classifier, the protein P will be predicted
belonging to the same attribute category of the protein in the
learning dataset that has the shortest ‘‘distance’’ to P, i.e., the query
protein will be classified in the m-th attribute category if

m¼ arg minm minPk
m ASm

DðP,Pk
mÞ

h in o
, ðm¼ 1,2,. . .,MÞ ð17Þ

where minPk
m ASm

means taking the minimum value of DðP,Pk
mÞ for the

proteins in the subset Sm (cf. Eqs. (1) and (16)), and the operator
arg minm means taking the argument of m that minimizes the
quantity right after the operator. In other words, m in Eq. (17) is

equal to the argument of m that minimizes minPk
m ASm

DðP,Pk
mÞ

h in o
. If

there are two and more arguments leading to the same minimum
value, the query protein will be randomly assigned to one of the
subsets associated with these arguments although this kind of tie case
rarely happens. Owing to its simplicity and apparent efficiency, the
NN classifier is still a favorite method used by many investigators (see,
e.g., Chen et al., 2010; He et al., 2010; Huang et al., 2010).
4.2. KNN classifier

With the KNN classifier when K41, the attribute of the query
protein P will be determined by the majority of its K nearest
neighbors via a vote (Fig. 5), as can be formulated as follows.
Suppose ðP�1,P�2,. . .,P�K Þ are the K proteins in S that have the closest
distances to P, the query protein will be predicted belonging to
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the m-th subset (attribute category) if

m¼ arg maxm

XK

i ¼ 1

DðP�i ,SmÞ

( )
, ðm¼ 1,2,. . .,MÞ ð18Þ

where m is the argument of m that maximize
PK

i ¼ 1

DðP�i ,SmÞ

( )
and

DðP�i ,SmÞ ¼
1, if P�i ASm

0, otherwise

(
ð19Þ

whereA is a symbol in the set theory meaning ‘‘member of’’. If there
is a tie for the voting results, the query protein will be randomly
assigned to one of the locations associated with the tie case.
Generally speaking, the greater the K (the number of the nearest
neighbors counted), the less likely the tie case occurs.

As mentioned above, the sequential evolution PseAAC mode of
Eq. (13) contains a parameter l, which is associated with what tier
of sequence correlation is taken into account for the PseAAC. As we
can see from Eq. (14), the only constraint to l is that it must be
smaller than L, the number of the amino acids in the protein
concerned. Suppose the length of the shortest protein investigated
is 50, then l can be any of the following 50 numbers: 0, 1, 2,y,49.
Although in principle we can include all these possibilities for l by
enlarging the dimension of the PseAAC to contain 20�50¼1000
components, it may cause various unfavorable problems for
statistical prediction, such as ‘‘high dimension disaster’’ and ‘‘over-
fitting redundancy’’ (Wang et al., 2008a). Actually, it may reduce
the cluster-tolerant capacity (Chou, 1999) and lower down the
success rate of cross-validation if the PseAAC contains too many
trivial components. Accordingly, for a given training dataset, there
is an optimal number for l. However, it would be time-consuming
and tedious to find the optimal l by changing its value and doing
tests one-by-one.

Likewise, the KNN classifier (cf. Eq. (18)) also contains a
parameter K, the number of the nearest neighbors to a query
protein (Fig. 5). It will affect the predicted result by choosing a
different value for K. In other words, for a given training dataset,
there is an optimal value for K as well.

The parameters such as l and K are called uncertain parameters.
The number of the uncertain parameters depends on which model
is used to represent the protein samples and what classifier is used
for the prediction engine. It can be seen from Eqs. (9), (11), (13), and
(18) that one uncertain parameter, K, needs to be determined if
using KNN classifier based on the FunD (or GO) mode of PseAAC,
and that two uncertain parameters, K and l, need to be determined
if using KNN classifier based on the sequential evolution mode. It
would be much more tedious and time-consuming to determine
the optimal values for two uncertain parameters. To deal with this
kind of uncertain parameters, let us introduce the fusion approach.
4.3. One-dimensional fusion

For most cases in using the KNN classifier to predict protein
attributes, when K420, the success rate by the KNN classifier
would decrease remarkably. Therefore, the basic individual classi-
fiers to be considered can be generally expressed as

KNNx P¼M1ðK ,PÞAS, when P is in the PFunD or PGO mode

ðK ¼ 1,2,. . .,20Þ ð20Þ

where KNN represents the KNN classifier that is a function of
K, the symbol x is the identification operator meaning usingKNN

to identify the attribute of the query protein P among the M subsets
of S in Eq. (1). Suppose the accumulated score thus obtained
(with K¼1,2,y,20) for the protein P belonging to the m-th subset
SmAS is given by

Y ð1Þm ðPÞ ¼
X20

K ¼ 1

D M1ðK ,PÞ, Sm

� �
, ðm¼ 1,2,. . .,MÞ ð21Þ

where

D M1ðK ,PÞ, Sm

� �
¼

1, if M1ðK ,PÞASm

0, otherwise

(
ð22Þ

Thus the query protein P is predicted belonging to the subset
with which its score of Eq. (21) is the highest, i.e., the query protein
P is identified as belonging to the m-th subset if

m¼ arg maxm Y ð1Þm ðPÞ
� �

, ðm¼ 1,2,. . .,MÞ ð23Þ

wherem is the argument of m that maximizes the score function Y ð1Þm

of Eq. (21). If there are two and more arguments leading to the same
maximum value, the query protein will be randomly assigned to
one of the subset associated with these arguments although this
kind of tie case rarely happens.

4.4. Two-dimensional fusion

When the KNN classifier is operated on the query protein
formulated with the sequential evolution mode (cf. Eq. (13)), we
are facing a problem with two uncertain parameters, K and l. In
general, the shortest protein sequence investigated is 50 amino
acids (Chou and Shen, 2008a; Chou and Shen, 2010c), hence we
can set the maximum value allowed for l is 49. Thus, the
basic individual classifiers to be considered would become as
follows:

KNNx P¼M2ðK ,l,PÞAS, when P is in the Pl
Evo mode

ðK ¼ 1,2,. . .,20; l¼ 0,1,2,. . .,49Þ ð24Þ

and the corresponding accumulated score for the query protein
Pl

Evo belonging to the m-th subset SmAS is given by

Y ð2Þm ðPÞ ¼
X49

l ¼ 0

X20

K ¼ 1

D M2ðK ,l,PÞ, Sm

� �
, ðm¼ 1,2,. . .,MÞ ð25Þ

where

D M2ðK ,l,PÞ, Sm

� �
¼

1, if M2ðK ,l,PÞASm

0, otherwise

(
ð26Þ

and the query protein Pl
Evo is predicted belonging to the subset with

which its score of Eq. (25) is the highest, i.e., the query protein P is
identified as belonging to the m-th subset if

m¼ arg maxm Y ð2Þm ðPÞ
� �

, ðm¼ 1,2,. . .,MÞ ð27Þ

where m is the argument of m that maximizes the score function
Y ð2Þm ðPÞ of Eq. (25). If there are two and more arguments leading to
the same maximum value, the query protein will be randomly
assigned to one of the subcellular locations associated with these
arguments although this kind of tie case rarely happens.

If a basic individual classifier involves with three or more
uncertain parameters, by following the similar procedures as
described above, we can perform three or higher dimensional
fusion.
5. Cross-validation test

After a prediction method has been developed, a subsequent
and natural question to ask is: What is its accuracy?

In statistical prediction, it would be meaningless to simply say a
success rate of a predictor without specifying what cross-validation
method and benchmark dataset were used to test its accuracy.



K.-C. Chou / Journal of Theoretical Biology 273 (2011) 236–247 243
In literatures, the following three cross-validation methods are
generally used for examining the effectiveness of a statistical
prediction method: (1) the independent dataset test, (2) the
subsampling (G-fold such as 5- or 10-fold cross-validation) test,
and (3) the jackknife test (Chou and Zhang, 1995).

For the independent dataset test, although all the proteins used
to test the predictor are outside the training dataset used to train it
so as to exclude the ‘‘memory’’ effect or bias, the way of how to
select the independent proteins to test the predictor could be quite
arbitrary unless the number of independent proteins is sufficiently
large. This kind of arbitrariness might result in completely different
conclusions. For instance, a predictor achieving a higher success
rate than the other predictor for a given independent testing
dataset might fail to keep so when tested by another independent
testing dataset (Chou and Zhang, 1995). Accordingly, the indepen-
dent dataset test is not a fairly objective test method although it
was often used to demonstrate the practical application of a
predictor (see, e.g., Cedano et al., 1997; Chou and Elrod, 1999;
Chou and Shen, 2006c; Chou and Shen, 2007a).

For the subsampling test, the concrete procedure usually used in
literatures is the 5-fold, 7-fold, or 10-fold cross-validation. The
problem with the G-fold cross-validation test as such is that the
number of possible selections in dividing a benchmark dataset is an
astronomical figure even for a very simple dataset. This is because
for a benchmark dataset as formulated in Eq. (1), the number of
possible combinations of taking oneG-th or 1/G proteins from each
of the subsets in Eq. (1) will be

P¼P1UP2 � � �Pm � � �PM ð28Þ

where

Pm ¼
Nm!

½Nm�IntðNm=GÞ�! IntðNm=GÞ!
, ðm¼ 1,2,. . .,MÞ ð29Þ

where Nm is the number of proteins in the m-th subset Sm, and the
symbol Int is the integer-truncating operator meaning to take the
integer part for the number in the brackets right after it.

For example, without losing generality let us consider the case
of 5-fold cross-validation (i.e., G¼5) for a very simple benchmark
dataset that contains 250 proteins, of which N1¼65 belongs to
subset S1, N2¼60 to subset S2, N3¼55 to subset S3, and N4¼70
to subset S4. Substituting these figures into Eqs. (28–29), we have
that the number of possible combinations of taking one-fifth
proteins from each of the four subsets will be

P¼P1UP2UP3UP4

¼
65!

ð65�13Þ!13!
U

60!

ð60�12Þ!12!
U

55!

ð55�11Þ!11!
U

70!

ð70�14Þ!14!

45:3135� 1050
ð30Þ

indicating that for such a simple and small benchmark dataset, the
number of possible combinations of taking one-fifth proteins from
each of the four subsets for 5-fold cross-validation will be an
astronomical number.

Now let us consider a moderate-size dataset that consists of 640
proteins classified into M¼8 subsets with each containing 80
proteins, i.e., N1¼N2¼?¼N8¼80. According to Eqs. (28–29), the
number of possible combinations of taking one-fifth proteins from
each of the 8 subsets for 5-fold-cross-validation will be

P¼P1UP2UP3 � � �P8 ¼
80!

ð80�16Þ!16!

� 	8

42:7907� 10131
ð31Þ

If the above benchmark dataset is slightly larger and complicated,
i.e., the number of proteins is increased from 640 to 800, and the
number of subsets from 8 to 10 with each still containing 80 proteins,
then the number of possible combinations of taking one-fifth proteins
from each of the 10 subsets for 5-fold-cross-validation will be

P¼P1UP2UP3 � � �P10 ¼
80!

ð80�16Þ!16!

� 	10

4the maximum number allowed to be calulated in a computer

ð32Þ

Actually, many typical benchmark datasets contain more than
1000 proteins (see, e.g., Chou and Shen, 2008a; Chou and Shen, 2010a;
Chou and Shen, 2010c). Therefore, in any actual subsampling cross-
validation tests, only an extremely small fraction of the possible
selections are taken into account. Since different selections will
always lead to different results even for a same benchmark dataset
and a same predictor, the subsampling test (such as 5-fold cross-
validation) cannot avoid the arbitrariness either. A test method unable
to yield a unique outcome cannot be deemed as an ideal one.

In the jackknife test, all the proteins in the benchmark dataset
will be singled out one-by-one and tested by the predictor trained
by the remaining protein samples. During the process of jack-
knifing, both the training dataset and testing dataset are actually
open, and each protein sample will be in turn moved between the
two. The jackknife test can exclude the ‘‘memory’’ effect. Also, the
arbitrariness problem as mentioned above for the independent
dataset test and subsampling test can be avoided because the
outcome obtained by the jackknife cross-validation is always
unique for a given benchmark dataset. As for the possible over-
estimation in success rate by jackknife test because of only one
sample being singled out at a time for testing, the answer is that as
long as the jackknife test is performed on a stringent benchmark
dataset in which none of proteins has Z25% pairwise sequence
identity to any other in a same subset such as those mentioned in
the Section 2, it is highly unlikely to yield an overestimated rate
compared with the actual success rate in practical applications, as
demonstrated in Chou and Shen ( 2010c) and Shen and Chou
(2010). Besides, when the jackknife test was used to compare two
predictors, even if there was some overestimate due to using a less
stringent benchmark dataset for one predictor, the same over-
estimate would exist for the other as long as they were both tested
by the same dataset.

Accordingly, the jackknife test has been increasingly and widely
used by investigators to examine the quality of various predictors
(see, e.g., Anand and Suganthan, 2009; Cai et al., 2010; Chen et al.,
2008a; Chen et al., 2008b; Chen and Han, 2009; Du and Li, 2008; Du
et al., 2009; Fang et al., 2008; Feng and Luo, 2008; Gu and Chen,
2009; Gu et al., 2010a; Jahandideh et al., 2007a; Jahandideh et al.,
2007b; Jahandideh et al., 2009; Ji et al., 2010; Kannan et al., 2008; Li
et al., 2009; Lin, 2008; Lin et al., 2009a; Liu et al., 2010a; Munteanu
et al., 2008; Nanni and Lumini, 2008; Nanni and Lumini, 2009;
Rezaei et al., 2008; Shao et al., 2009; Shi et al., 2008; Shi and Hu,
2010; Vilar et al., 2009; Wang and Yang, 2010; Wang et al., 2010a;
Wang et al., 2008b; Yang and Jiang, 2010; Yang et al., 2009; Yang
et al., 2010; Zhao et al., 2008; Zhou et al., 2008).

However, even if using the jackknife approach for cross-validation,
the same predictor may still generate obviously different success rates
when tested by different benchmark datasets. This is because the more
the stringent of a benchmark dataset in excluding homologous and
high similarity sequences, the more the difficult for a predictor to
achieve a high overall success rate (Chou and Shen, 2010a). Also, the
more the number of subsets (attribute categories) a benchmark dataset
covers, the more the difficult to achieve a high overall success rate. This
can be easily conceivable via the following consideration. Suppose a
benchmark dataset consists of two subsets (attribute categories) with
each containing the same number of proteins. The overall success rate
in identifying their attribute categories by random assignment would
be 1/2¼50%. However, for a benchmark dataset consisting of 20
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subsets, the corresponding overall success rate by the random assign-
ment would be 1/20¼5%, which is only one-tenth of the former.
6. Web-server

Even if a powerful predictor has been developed by accomplishing
the above four procedures, namely constructing a valid benchmark
dataset, formulating protein samples with PseAAC to successfully catch
their essential and core features, introducing a powerful and efficient
algorithm or engine to operate the prediction, and achieving a high
overall success rate by jackknife test on a stringent dataset in which
none of the proteins included has Z25% pairwise sequence identity to
any other in the same subset (attribute category), it does not mean that
the predictor has been really completed. This is because we are living in
the Internet Age. To make a new prediction method really useful for the
majority of people, it is an important direction or necessary procedure
to provide a user-friendly and publicly accessible web-server for the
method (Chou and Shen, 2009). Technically speaking, a web-server
means a computer program that is responsible for accepting Hypertext
Transfer Protocol (HTTP) requests from clients. By means of web-
servers, many computational prediction methods, regardless how
difficult their mathematics or how complicated their algorithms are,
can be easily used by the vast majority of scientists to generate their
desired data without the need to understand the mathematical details.
7. Conclusion and perspectives

In order to timely utilize the huge amount of newly discovered
protein sequences generated in the postgenomic era for basic
research and drug development, scientists are anxious to know
their biological attributes. Many studies from various research
laboratories around the world have indicated that mathematical
analysis, computational modeling, and introducing novel physical
concept to biology and medicine, such as graphical analysis
(Andraos, 2008; Myers and Palmer, 1985; Zhou and Deng, 1984),
modeling three-dimensional structures of targeted proteins/pep-
tides for drug design (Sharma et al., 2008; Zhou and Troy, 2003;
Zhou and Troy, 2005a; Zhou and Troy, 2005b; Zhou et al., 2004),
diffusion-controlled reaction simulation (Zhou et al., 1981; Zhou
and Zhong, 1982; Zhou et al., 1983), cellular responding kinetics
(Qi et al., 2007), and biological functions of solitons in DNA (Zhou,
1989) can provide useful insights for both basic research and drug
design and hence are widely welcome by science community. In
view of this, it is highly desirable to develop automated methods by
introducing new concepts and approaches for fast and accurately
predicting the attributes of uncharacterized proteins based on their
sequence information alone. During the past two decades or so,
many statistical methods for predicting various protein attributes
have been proposed. In this review, the key steps for establishing a
powerful predictor in this regard have been analyzed in hopes that
the points raised here may help stimulate the further development
of new and more powerful predictors in this area. It is anticipated
that the general form of PseAAC as formulated in this review may
further stimulate the efforts to find various new modes of optimal
PseAAC, which is one of the most important future directions we
should focus on in order to substantially improve the power of
predicting protein attributes.
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