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We consider the fractional order epidemic model based on assumption that people will recover after dis- 

ease and may be infected again on a time interval of non fatal disease. Our mathematical formulation is 

based on the fractional Caputo derivative. The existence and uniqueness of the solution is discussed. Fur- 

thermore, numerical solution is studied by variational iteration method and Euler method. Consequently, 

some numerical results are presented within. 
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1. Introduction 

The formulation in mathematical language of a concrete phe-

nomenon has aroused always arouses the curiosity of many math-

ematicians. This modeling dates from the time of Fibonacci (the

growth of a rabbit populations). It can be said that the foundations

of mathematical epidemiology are based on models of compart-

ments, and the structure of epidemic models is determined by the

flow of individuals from one compartment to another in a popula-

tion. Hence, in the literature various models are proposed namely,

a simple model is the susceptible-infected model, in the SI model

individuals can be in two states susceptible (healthy) and infected,

SIR model is the susceptible-infected-recovered model, it’s based

on the assumption that an infected individual can recover after

disease and can not be infected again, that is in contrast to SIS

model in which individual can recover after disease and may be in-

fected again and so on. The model prey-predator (1926), or model

of Lotka-Volterra, plays a determinant role in dynamics of popula-

tion and is considered as a basic conceptual model in population

dynamics and also in mathematical epidemiology. 

Fractional calculus as generalization of differentiation and inte-

gration of a function to arbitrary order has gained a considerable

amount of interest by many authors, hence they have used this

mathematical tool to describe many phenomenon with non local

behavior (memory effect) in different areas of research. 
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In the classical integer order epidemic models, (SIS, SI or SIR

odels) the disease is transmitted with the same probability be-

ween compartments of the model studied, then rates of contact

nd transmission of disease are supposed to be constant, in other

ords, classical models ’state does not depend on its history, how-

ver, the state of evolution of epidemic depends not only upon its

resent state but also upon its past states, it’s related to the indi-

idual’s experiences, hence it’s more acceptable to study the evo-

ution of an epidemic in a human society by taking into account

he history of the system, virtually this could be possible by re-

lacing the ordinary derivative by a fractional one, in fact the def-

nition of any fractional derivation contains a memory kernel or

emory function, expressing a system with such derivative makes

very state of the system in study depend on past states, Saeedian

 et al. explain in details the memory effects on epidemic evo-

ution using fractional derivative [1] , the reader can refer to this

rticle and references cited there. 

Various epidemic models have successful being proposed and

tudied as generalized of classical integers ones. The fractional SIR

odel have been first considered in 20 0 0 [2] , where Hethcote pro-

osed a comprehensive analysis on the SIR model with a constant

opulation, in the same year Driessche PVD and Watmough J pre-

ented a classical simple SIS model with a contact rate depend-

ng on time [3] . Moreover in 2014 the fractional order SIS model

as been developed with a constant population size [4] and with a

ariable population size [5] , in both works the stability of equilib-

ium points of the model is studied, two years later mathematical

odel for the transmission of Ebola in human society has been

resented [6] , in the same year Ameen I and Novati P proposed

https://doi.org/10.1016/j.chaos.2018.10.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.10.023&domain=pdf
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umerical solution for fractional SIR model with constant popula-

ion [7] by using discrete methods: Generalized Euler Method and

redictor Corrector Adams method, which is an implicit numeri-

al scheme, also Okyere E et al. studied a fractional order exten-

ion of the SIR and SIS model by replacing the ordinary deriva-

ive by the Caputo fractional derivative [8] , they used also Adams

ethod to illustrate model solutions and Banerjee SK studied a

ractional order SIS epidemic model with constant recruitment rate

nd variable population size [9] , in 2017 Sun GQ et al. suggested

 mathematical model to describe the transmission of cholera in

he population of China [10] , what is particular in this model is

he environment-to-human transmission of the disease, Li L pre-

ented a dynamical model on hemorrhagic fever with renal syn-

rome in China [11] , within the same frame Ahmed EM and El-

aka HA studied the transmission of a dangerous epidemic, called

ERS-CoV using fractional order derivative [12] , recently in 2018

igh J et al. considered a fractional epidemiological SIR model to

escribe the spread of computer virus [13] . 

In the same area of research, some mathematical studies use re-

ent analytic methods for solving fractional epidemic systems like

he adomian decomposition method ADM [14] , variational iterative

ethod VIM [15] , homotopy perturbation method HPM [16] and

omotopy analysis method HAM [17,18] . Those methods are pow-

rful tools to provide rapidly convergent successive approximations

f exact solution for non linear fractional problems. Mathematical

pidemic compartment models have been studied by several re-

earchers. For more details, the reader can refer to: [19–23] . 

The main objective of our work is to introduce the fractional-

rder approach for the study of particular SIS model in a con-

tant population. In this case the fractional order system of the

IS model will be transformed to one fractional equation that de-

cribes the trajectory of infected individuals. 

The paper is organized as follows: In Section 2 , some basic re-

ults on fractional Caputo derivative are given. Section 3 , is devoted

o present the mathematical modeling of the ordinary SIS model.

n Section 4 , we introduce the fractional SIS model, in Section 5 ,

e investigate existence and uniqueness of solution of the frac-

ional system. Section 6 , is devoted to describing the numerical

ethods that are used to solve the fractional SIS epidemic system,

hich is following in Section 7 by numerical solutions. Our paper

s concluded by some comments and conclusion. 

. Some basic results on fractional Caputo derivative 

In this section, we review some definitions and some results

f fractional Caputo derivative. To get more details, the reader can

efer to: [24–27] for example. 

The Caputo fractional derivative of order α is defined as 

 

α
0 ,t f (t) := 

1 

�(n − α) 

∫ t 

0 

( t − τ ) n −α−1 f (n ) ( τ )d τ, (1)

here n = [ α] + 1 , with [ α] is the integer part of the positive real

umber α. 

The Riemann-Liouville fractional integral of order α is defined

y 

 

−α
0 ,t f (t) := 

1 

�(α) 

∫ t 

0 

(t − s ) α−1 f (s )d s, (2)

here α ∈ R 

+ is the order of integration, and 

(α) = 

∫ + ∞ 

0 

e −t t α−1 d t, (3)

s the Euler Gamma function. 

Caputo derivative and the Riemann-Liouville integral satisfy the

ollowing properties [24] 

 

α
0 ,t D 

−α
0 ,t f (t) = f (t) , (4)
 

α
0 ,t C = 0 , α > 0 , C ∈ R , (5)

 

−α
0 ,t D 

α
0 ,t f (t) = f (t) −

n −1 ∑ 

k =0 

f (k ) (0) 
t k 

k ! 
. (6)

n this work, we study fractional differential system where

 < α < 1, so the last formula becomes 

 

−α
0 ,t D 

α
0 ,t f (t) = f (t) − f (0) . (7)

. Mathematical modeling of the ordinary SIS model 

The evolution of this epidemic in a population of large size N is

odeled by the following differential system [28] 

 

 

 

dS 
dt 

= 

−β
N 

SI + (e + γ ) I, 

dI 
dt 

= 

β
N 

SI − (e + γ ) I, 

(S(0) , I(0)) = (N − I 0 , I 0 ) , 

(8) 

here parameters e > 0, γ > 0 and β > 0 are respectively, the per

eath rate of infected, the healing rate and the contact rate. In

he SIS model, the population in question is divided into two com-

artments: S ( t ) denotes susceptible individuals while I ( t ) is the in-

ected individuals. In this model, a susceptible individual becomes

nfected and infectious after contact with an infectious individual,

e becomes again susceptible to the rate γ (the cure rate). In this

ase, newborns are not infected and deaths are from compartment

. Hence, I + S = N, and the population is constant. 

Since dS 
dt 

+ 

dI 
dt 

= 0 , therefore, for all t ≥ 0, we obtain S(t) + I(t) =
. So, we have 

dI 

dt 
= 

β

N 

I (N − I ) − (e + γ ) I = (β − (e + γ )) I − β

N 

I 2 . (9)

e denote c = β − (e + γ ) , the ordinary differential equation sat-

sfied by I, becomes 

 

′ (t) = cI (t) − β

N 

I (t) 2 , (10)

ubject to the initial condition I(0) = I 0 . Hence, looking for solu-

ions of the fractional differential Eq. (10) needs three cases to be

iscussed 

- If I 0 = 

c 
β

N and c � = 0 then, ∀ t ≥ 0, we obtain I(t) = I 0 , by

niqueness of solution. 

- If c = 0, the Eq. (10) becomes 

 

′ (t) = −β

N 

I(t) 2 , (11)

ubject to the initial condition I(0) = I 0 . Its solution is given by,

 t ≥ 0, 

(t) = 

I 0 

1 + β I 0 
N 

t 
. (12) 

 If I 0 � = 

c 
β

N and c � = 0 so, ∀ t ≥ 0, we get 

(t) = 

c 
β
N 

− ( β
N 

− c 
I 0 
) e −ct 

. (13) 

The ordinary classical SIS model obviously has these limits be-

ause the epidemiological parameters e, β and γ could change

long the experiment, they depend on the past of the experiment,

f which the ordinary model assumes that disease spreads in a

inear manner, which is not always true. The real understanding

f this epidemic is crucial. To do this, we propose the fractional

odel. 
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4. Mathematical modeling of the fractional SIS model 

The fractional model of the actual evolution of this epidemic

in a population of large size N is given by the following fractional

differential system ⎧ ⎨ 

⎩ 

D 

α
0 ,t S = 

−β
N 

SI + (e + γ ) I, 

D 

α
0 ,t I = 

β
N 

SI − (e + γ ) I, 

(S(0) , I(0)) = (N − I 0 , I 0 ) . 

(14)

The studied model amounts on solving the following Riccati frac-

tional differential equation 

D 

α
0 ,t I(t) = cI(t) − β

N 

I(t) 2 , (15)

subject to the initial condition I(0) = I 0 . We note that as in the

regular model c = β − (e + γ ) . Then, three cases are to be dis-

cussed 

- If I 0 = 

c 
β

N and c � = 0 so ∀ t ≥ 0, we get I(t) = I 0 , by uniqueness

of solution. 

- If c = 0 , the differential Eq. (15) becomes 

D 

α
0 ,t I(t) = −β

N 

I(t) 2 , (16)

subject to the initial condition I(0) = I 0 . 

- If I 0 � = 

c 
β

N and c � = 0 in this case, the differential equation is 

D 

α
0 ,t I(t) = cI(t) − β

N 

I(t) 2 , (17)

with the initial condition I(0) = I 0 . 

5. Existence and uniqueness of the solution 

First, we recall a basic result theorem of existence and unique-

ness for a solution of a fractional differential equation of the fol-

lowing form [29] {
D 

α
0 ,t y (t) = f (t, y (t)) , m − 1 < α < m ∈ Z + 

y ( j) (0) = y j 
0 
, j = 0 , 1 , . . . ., m − 1 . 

(18)

Theorem 1. Let D =: [ 0 , b ] ×
[
y 0 

0 
− δ, y 0 

0 
+ δ

]
with (b > 0 and δ > 0 )

and let f : D −→ R , be a continuous function. Furthermore, we de-

fine b ∗ := min { b, 

(
δ�(α+1) 
|| f || ∞ 

)1 /α} . Then, there exists a function y :

[ 0 , b ∗] −→ R solution of the Eq. (18) . In the case, f is bounded on D

and Lipschitz with respect to the second variable then, the solution y

is unique. 

Next, using the above result to prove the existence and the

uniqueness of the solution of Eq. (17) . Hence, we have the follow-

ing result 

Theorem 2. The solution of the fractional Eq. (17) exists and is

unique 

Proof. By putting c = β − (e + γ ) , and d = −β
N , we get f (t, I) =

cI + dI 2 . Let D =: [ 0 , b ] ×
[
y 0 

0 
− δ, y 0 

0 
+ δ

]
with b > 0 and δ > 0. 

The function f : D −→ R is continuous and it depends explicitly

only on I. As this function is continuous on the compact interval[
y 0 

0 
− δ, y 0 

0 
+ δ

]
then, it is bounded on this interval. 

Furthermore, if we calculate the derivative of f ( t, I ) with respect

to the second variable, we obtain f ′ I (t, I) = c + 2 dI, this derivative

is continuous on the compact 
[
y 0 

0 
− δ, y 0 

0 
+ δ

]
then, it is bounded

on this interval. 

Consequently, we define 

M = Sup I∈ [ y 0 0 
−δ,y 0 

0 
+ δ] | f ′ I (t, I) | . 

Then, ∀ (I 1 , I 2 ) ∈ 

[
y 0 

0 
− δ, y 0 

0 
+ δ

]2 
, we obtain 

| f (t, I 1 ) − f (t, I 2 ) | ≤ M| I 1 − I 2 | . 
ence, from the last formula, we conclude that f is lipschitz then,

ccording to the last theorem, there exists a unique function I :

 

0 , b ∗] −→ R solution of the Eq. (17) . �

. Variational iteration method and Euler method 

.1. Variational iteration method (VIM) 

- If c = 0 : By putting d = −β
N , in the Eq. (16) and according

o the variational iteration method described in [30] and [31] we

btain the iterative formula 

 n +1 (t) = I n (t) − D 

−α
0 ,t (D 

α
0 ,t I n (t) − dI 2 n (t)) . (19)

hus, the exact solution according to the VIM method is given by

(t) = lim 

n →∞ 

I n (t) . (20)

pplying the iterative formula (19) , we take I 0 = b, then we ob-

ain 

 0 (t) = I 0 = b, (21)

 1 (t) = b + 

db 2 

�(α + 1) 
t α, (22)

 2 (t) = b + 

db 2 

�(α + 1) 
t α + 

2 b 3 d 2 

�(2 α + 1) 
t 2 α

+ 

d 3 b 4 

�2 (α + 1) 

�(2 α + 1) 

�(3 α + 1) 
t 3 α, (23)

 3 (t) = b + 

db 2 

�(α + 1) 
t α + 

2 b 3 d 2 

�(2 α + 1) 
t 2 α

+ 

d 3 b 4 

�2 (α + 1) 

�(2 α + 1) 

�(3 α + 1) 
t 3 α

+4 

b 4 d 3 

�(3 α + 1) 
t 3 α + 

4 d 4 b 5 �(3 α + 1) 

�(2 α + 1)�(α + 1)�(4 α + 1) 
t 4 α

+ 

2 d 4 b 5 �(2 α + 1) 

�2 (α + 1)�(4 α + 1) 
t 4 α + 

4 b 6 d 5 �(4 α + 1) 

�2 (2 α + 1)�(5 α + 1) 
t 5 α

+ 

2 d 5 b 6 �(2 α + 1)�(4 α + 1) 

�3 (α + 1)�(3 α + 1)�(5 α + 1) 
t 5 α

+ 

4 d 6 b 7 �(5 α + 1) 

�2 (α + 1)�(3 α + 1)�(6 α + 1) 
t 6 α

+ 

d 7 b 8 �2 (2 α + 1)�(6 α + 1) 

�4 (α + 1)�2 (3 α + 1)�(7 α + 1) 
t 7 α. (24)

. . . 

emark 1. We notice that this fractional model generalizes the or-

inary model. For t close to 0 and α → 1, we get 

I 0 (t) = b, 

 1 (t) = b(1 + dbt) = b(1 + dbt + o(t 2 )) , 

 2 (t) = b + db 2 t + b 3 d 2 t 2 + bo(t 3 ) = b(1 + dbt + (bdt) 2 + o(t 3 )) , 

. . . 

I n (t) = b(1 + dbt + . . . + (bdt) n + o(t n +1 )) . (25)

ence, we obtain 

(t) = 

b 

1 − dbt 
= 

I 0 

1 + I 0 
β
N 

t 
, (26)

hus, we retrieve the same solution obtained in (12) . 
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- If I 0 � = 

c 
β

N and c � = 0. In this case, if we put d = −β
N , and we

pply the VIM method as in the previous case, we obtain the iter-

tive formula 

 n +1 (t) = I n (t) − D 

−α
0 ,t (D 

α
0 ,t I n (t) − dI 2 n (t) − cI n (t)) . (27)

o, the exact solution according to the VIM method is given by 

(t) = lim 

n →∞ 

I n (t) , (28)

ith this iterative formula, we take always I 0 = b, we get 

 0 (t) = b, (29) 

 1 (t) = b + 

cb + db 2 

�(α + 1) 
t α, (30) 

 2 (t) = b + 

cb + db 2 

�(α + 1) 
t α + 

(cb + db 2 )(c + 2 db) 

�(2 α + 1) 
t 2 α

+ 

d (cb + d b 2 ) 2 �(2 α + 1) 

�2 (α + 1)�(3 α + 1) 
t 3 α, (31) 

 3 (t) = b + 

cb + db 2 

�(α + 1) 
t α + 

(cb + db 2 )(c + 2 db) 

�(2 α + 1) 
t 2 α

+ 

(
d (cb + d b 2 ) 2 �(2 α + 1) 

�2 (α + 1)�(3 α + 1) 
+ 

(2 db + c) 2 (cb + db 2 ) 

�(3 α + 1) 

)
t 3 α

+ 

(cb + db 2 ) 2 �(2 α + 1)(cb + 2 d 2 b) 

�2 (α + 1)�(4 α + 1) 
t 4 α

+ 

2 d (cb + d b 2 ) 2 (c + 2 d b)�(3 α + 1) 

�(α + 1)�(2 α + 1)�(4 α + 1) 
t 4 α

+ 

d (cb + d b 2 ) 2 (c + 2 d b) 2 

�2 (2 α + 1) 

�(4 α + 1) 

�(5 α + 1) 
t 5 α

+ 

2 d 2 (cb + db 2 ) 3 �(2 α + 1) 

�3 (α + 1)�(3 α + 1) 

�(4 α + 1) 

�(5 α + 1) 
t 5 α

+ 

2 d 2 (cb + db 2 ) 3 (c + 2 db)�(5 α + 1) 

�2 (α + 1)�(3 α + 1)�(6 α + 1) 
t 6 α

+ 

d 3 (cb + db 2 ) 4 �2 (2 α + 1)�(6 α + 1) 

�4 (α + 1)�2 (3 α + 1)�(7 α + 1) 
t 7 α. 

. . . (32) 

e notice that this fractional model generalizes the ordinary

odel. For t close to 0 and α → 1, then 

lim 

n →∞ 
α→ 1 

I n (t) = 

c 

−d + (d + 

c 
I 0 
) e −ct 

= 

c 
β
N 

− ( β
N 

− c 
I 0 
) e −ct 

. (33)

emark 2. If we isolate the infected population from the suscepti-

le one (i.e β = 0 ) then, the studied equation in this case becomes

D 

α
0 ,t I(t) = cI(t) , 

I(0) = b, 
(34) 

ith c = −e − γ < 0 . From the iterative formula, we have 

lim 

 →∞ , β=0 
I n (t) = b 

∞ ∑ 

k =0 

(ct α) k 

�(αk + 1) 
= bE α, 1 (ct α) . (35)

hich is in harmony with a real evolution of an infected isolated

opulation, see Figs. 1 and 2 . From those figures we can remark

hat number of infected individuals decreases gradually and tends

o 0 when t tends to infinity, also from the first figure the frac-

ional order derivative has an effect on the evolution of the epi-

emic: where α decreases the total number of infected individuals

akes more time to vanish, in history the isolation of infected indi-

iduals is an old method that had been adopted to prevent the

pread of infections, and Public health laws may authorize it in
ome particular cases. b
.2. Euler method 

We recall the fractional Euler method [32] . We consider the

ractional problem 

D 

α
0 ,t y (t) = f (t , y (t )) , 0 < α < 1 

y (0) = y 0 . 
(36) 

hen, applying the fractional integral operator D 

−α
0 ,t 

to the initial

alue problem (36) , one can obtain 

 (t) = y (0) + 

1 

�(α) 

∫ t 

0 

(t − s ) α−1 f (s, y (s ))d s = y 0 + D 

−α
0 ,t f (t , y (t )

(37) 

he aim is to approximate the quantity D 

−α
0 ,t 

f (t, y (t)) in each point

 = t n . 

With the Explicit Euler Method [32] , the quantity 

D 

−α
0 ,t f (t, y (t)) 

]
t= t n +1 

, (38) 

s approximated by 

 

α
n ∑ 

j=0 

b j,n +1 f (t j , y j ) . (39)

hen, 

 n +1 = y 0 + h 

α
n ∑ 

j=0 

b j,n +1 f (t j , y j ) , (40)

here 

 j,n +1 = 

1 

�(α + 1) 
[ (n − j + 1) α − (n − j) α] . (41) 

. Numerical results 

In this section, we carry out some numerical results with for-

ard Euler method and variational iteration method for the frac-

ional order SIS model (19) by using different values for the epi-

emiological parameters b, β and γ . In our case, we use α =
 . 95 , 0 . 9 , 0 . 99 , 1 . 

We consider the fractional problem (19) . If we apply fractional

IM method so, the successive approximations I n ( t ) of the solution

 ( t ) could be manually obtained. Consequently, the solution is given

y Eq. (20) . 

In hand manipulation, one can not easily calculate beyond the

hird term which is given by formula (32) . I 3 ( t ) is a polynomial of

egree d = 7 α, also we can see that all solutions I n ( t ) are poly-

omials. With python software, the fractional VIM method can be

rogrammed with the function Vimfrac(b, c, d, alpha, n) which per-

its to return the polynomial solution for n = 7 which is of degree

 = 173 α. We mention that, this numerical solution becomes effec-

ive for long time intervals. 

The effect of fractional derivative order on numerical solutions,

ollowing variational iteration method and Euler method, is illus-

rated by the figures below with different values of model param-

ters. 

In Figs. 3 and 5 we present the numerical solutions of our frac-

ional model for some values of α near to 1, then we choose for

xample α = 0 . 9 , α = 0 . 95 and α = 0 . 99 , we can see that the nu-

erical solution’s trajectory is approaching to the ordinary solution

s where as when α is approaching to 1, this numerical analysis

s often used in different papers see [4,7,9,12] and [13] , we con-

lude that the fractional model generalizes the ordinary one (19) ,

urthermore, from the same figures, we remark that if the frac-

ional derivative order decreases, the disease takes more time to

e eradicated (presence of memory effect). 
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Fig. 1. Mittag-Liffler function for I ( t ) with isolated population such that c = −0 . 3 , I(0) = 30 , and α = 0 . 99 , 0.95 and 0.9. 

Fig. 2. Mittag-Leffler function for I ( t ) with isolated population such that I(0) = 30 , c = −0 . 01 and c = −0 . 3 and α = 0 . 95 . 

Fig. 3. Plots numerical solutions for I(t) such that N = 10 0 0, c = 0.01, b = 0.2, γ = 0 . 1 , I(0) = 30, β= 0.31 and α = 0 . 99 , 0.95 and 0.9. 
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Fig. 4. Plots numerical solutions for I(t) such that N = 10 0 0, c = 0.01, b = 0.2, γ = 0 . 1 , I(0) = 30, β= 0.31 and α = 0 . 9 . 

Fig. 5. Plots numerical solutions for I(t) such that N = 10 0 0, c = -0.01, b = 0.2, γ = 0 . 1 , I(0) = 30, β= 0.29 and α = 0 . 99 , 0.95 and 0.9. 

Fig. 6. Plots numerical solutions for I(t) such that N = 10 0 0, c = -0.01, b = 0.2, γ = 0 . 1 , I(0) = 30, β= 0.29 and α = 0 . 9 . 
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In Figs. 4 and 6 we compare the numerical solution with for-

ward Euler method and variational iteration method, the polyno-

mial used to approximate the solution in Fig. 6 is the vim polyno-

mial of degree 37 α, where the polynomial using in Fig. 4 is the vim

polynomial of degree 3 α. The theoretical VIM method produces a

section of symbolic terms of analytical solution, that are hardly

to be calculated manually beyond first terms, which makes this

method only effective for small time intervals, by the programmed

function Vimfrac(b, c, d, alpha, n) we have avoided this restriction,

by comparing Figs. 4 and 6 , one can remarks the following: the

numerical solution is more effective as n increases ( I n ( t )). 

8. Conclusion 

The memory is an effect that plays an important role in the

evolution of every process related to human societies and the

spread of an epidemic is not an exception. 

In this paper, we have studied the fractional epidemic SIS model

in long time period. We have established the existence and the

uniqueness of solution of the fractional system. In order to derive

numerical solutions, we have used different methods: the forward

Euler method and a recent analytic method for solving nonlinear

problem which is variational iteration method (VIM). This method

is generally effective only for small time intervals. However, us-

ing programming tools, this method becomes efficient to produce

numerical results on a long time interval. In our model, some as-

sumptions are taken in order to transform the system to one frac-

tional differential equation for which the ordinary exact solution is

calculated formally. 

In this perspective, we notice that this fractional model gener-

alizes the ordinary model by comparing the fractional VIM solu-

tion and the ordinary exact solution. Finally, the memory effect of

the fractional order derivative affects the dynamic of the system,

it is noticed from the numerical results that when the value of α
is decreased, the disease takes more time to be eradicated and it

reflects the memory effect. We strongly believe that this particu-

lar SIS model generalizes the ordinary model. Comparing the nu-

merical results and the exact solutions of the ordinary model, the

obtained studies can arise some new questions about the specific

relations between the fractional order α and the history of biolog-

ical parameters of the model. 

Our analysis has been restricted to a simple local temporal dy-

namic process in which all epidemiological parameters are sup-

posed to be constant, however, in the field of epidemiology differ-

ent factors may affect the process of the system like policy, migra-

tion and vaccination, taking into account the non locality of ge-

ographical spread, is more reasonable to take into consideration

special effects in the study of some specific epidemics that can-

not supposed to be local like the Black Death in Europe [33] , for

other mathematical studies on geo-temporal diffusion of epidemics

see [34] and [35] . In other context in the classical spread rules of

infections the population is divided into a finite number of com-

partments and infections are controlled by the mass-action law

( −β
N SI), in other words we suppose that each individual has the

same probability to contact another one in the population, how-

ever, in a more realistic study, social relations and families sizes

are not identical in the society, so the numbers of contacts dif-

fer from a susceptible individual to another, that gives rise to an-

other possible study by modeling the epidemic as network with

nods and edges, where nods represent individuals and edges rep-

resent a possible contact between two nods this complex study is

proposed by Diekmann et al. [36] . 

Finally, the comprehensive study of basic epidemiological mod-

els is essential, our model is a elementary model that could be

generalized to a geo-temporal epidemic model or network one, we

want also emphasize on the possible extension of our mathemat-
cal epidemiological study on analogous models like spreading of

umors, opinions and computer virus. 
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