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a b s t r a c t

A new deterministic model for the spread of a communicable disease that is controllable
using mass quarantine is designed. Unlike in the case of the vast majority of
prior quarantine models in the literature, the new model includes a quarantine-
adjusted incidence function for the infection rate and the quarantine of susceptible
individuals suspected of being exposed to the disease (thereby making it more realistic
epidemiologically). The earlier quarantine models tend to only explicitly consider
individuals who are already infected, but show no clinical symptoms of the disease
(i.e., those latently-infected), in the quarantine class (while ignoring the quarantine of
susceptible individuals). In reality, however, the vast majority of people in quarantine
(during a disease outbreak) are susceptible. Rigorous analysis of the model shows that
the assumed imperfect nature of quarantine (in preventing the infection of quarantined
susceptible individuals) induces the phenomenon of backward bifurcation when the
associated reproduction threshold is less than unity (thereby making effective disease
control difficult). For the case when the efficacy of quarantine to prevent infection during
quarantine is perfect, the disease-free equilibrium is globally-asymptotically stable when
the reproduction threshold is less thanunity. Furthermore, themodel has a unique endemic
equilibriumwhen the reproduction threshold exceeds unity (and the disease persists in the
population in this case).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Quarantine (of individuals feared exposed to a communicable disease) is one of the oldest public health control measures
for the spread of communicable diseases in given populations. More recently, this measure was successfully used to combat
the spread of some emerging and re-emerging human and animal diseases, such as the severe acute respiratory syndrome
(SARS) [1–8], foot-and-mouth disease [9] and the 2009 swine influenza pandemic [10]. Mathematical models have been
designed and used to gain qualitative insights into the spread of diseases in the presence of quarantine of individuals
suspected of being exposed to a disease, and the subsequent isolation or hospitalization of those with clinical symptoms
of the disease (see, for instance, [1–8,11–21]). In the aforementioned models, with the exception of the models in [2,5], the
dynamics of the quarantined susceptible individuals is not explicitly incorporated into the model (the models only count
quarantined individuals who are actually latently-infected, and essentially ignore those who remain susceptible at the end
of the quarantine period).
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In other words, in the aforementioned models (with the exception of the models in [2,5]) the class (or compartment) of
quarantined individuals contain only those who are latently-infected (and the temporary removal of susceptible individuals
from the susceptible pool is not accounted for). The justification given for this assumption (of ignoring the back-and-
forth dynamics of quarantined susceptible individuals: from susceptible to quarantine and back to susceptible class if
they show no disease symptoms) is that, in general, the fraction of infected contacts that can be traced and quarantined
at the time of infection is very small; and that the total population is large in comparison to the size of the infected
individuals [13]. In practice, however, quarantine involves the removal of all individuals suspected of being exposed to a
given disease (regardless of infection status) from the rest of the population (this often involves a lot of people; the termmass
quarantine is often used to describe this process). Those who show disease symptoms during quarantine are hospitalized (or
isolated), and those who remain susceptible at the end of the quarantine period are returned to the susceptible class. It is,
therefore, instructive to study the impact of the aforementioned assumption (of not explicitly accounting for the quarantine
of susceptible individuals) on the transmission dynamics of a disease that is controllable using quarantine.

The purpose of this study is to investigate the qualitative impact of explicitly including the dynamics of quarantined
susceptible individuals on the spread of a disease that is controllable by quarantine and isolation. To achieve this objective,
a new deterministic model, which includes the dynamics of quarantined susceptible individuals and quarantine-adjusted
incidence function, is designed and analyzed. It should be mentioned that quarantined-adjusted incidence has also been
used in a number of quarantine models, such as those in [5,14,15,20].

The model to be considered is that for the transmission dynamics of a communicable disease that can be controlled
using quarantine and isolation, such as ebola, measles, pandemic influenza and SARS [1–5,7,8,11,12,14,19,21]. It is based on
splitting the total population at time t , denoted by N(t), into the sub-populations of non-quarantined susceptible (S(t)),
quarantined susceptible (Sq(t)), non-quarantined latently-infected (i.e., infected but show no clinical symptoms of the
disease) (E(t)), quarantined latently-infected (Eq(t)), non-quarantined symptomatic (I(t)), quarantined symptomatic (Iq(t)),
hospitalized (H(t)) and recovered (R(t)) individuals, so that

N(t) = S(t)+ Sq(t)+ E(t)+ Eq(t)+ I(t)+ Iq(t)+ H(t)+ R(t).

The model is given by the following system of non-linear differential equations (a flow diagram of the model is depicted
in Fig. 1):

dS
dt

= Π + ψ1Sq(t)+ ψ2R(t)− λa(t)S(t)− γ S(t)− µS(t),

dSq
dt

= γ S(t)− rλa(t)Sq(t)− (ψ1 + µ)Sq(t),

dE
dt

= λa(t)S(t)− (σ1 + µ)E(t),

dEq
dt

= rλa(t)Sq(t)− (σ2 + µ)Eq(t),

dI
dt

= σ1E(t)− (α1 + φ1 + µ+ δ1)I(t),

dIq
dt

= σ2Eq(t)− (α2 + φ2 + µ+ δ2)Iq(t),

dH
dt

= α1I(t)+ α2Iq(t)− (φ3 + µ+ δ3)H(t),

dR
dt

= φ1I(t)+ φ2Iq(t)+ φ3H(t)− (ψ2 + µ)R(t),

(1)

where λa is the infection rate given by Safi et al. [20]:

λa(t) =
β{I(t)+ η1E(t)+ ηq[Iq(t)+ η2Eq(t)] + ηhH(t)}

Na(t)
, (2)

and Na(t) is the total actively-mixing population given by (see also [20])

Na(t) = S(t)+ E(t)+ I(t)+ ηq[Sq(t)+ Eq(t)+ Iq(t)] + ηhH(t)+ R(t). (3)

In (2), β is the effective contact rate, and themodification parameters 0 ≤ η1, ηh < 1 accounts for the assumed reduction of
infectiousness of exposed and hospitalized individuals, respectively, in relation to the symptomatically-infected (infectious)
individuals in the I class. Similarly, 0 ≤ ηq ≤ 1 accounts for the assumed reduction of infectiousness of infected quarantined
individuals in relation to individuals in the I class (the parameter 0 ≤ η2 ≤ 1 represents the assumed reduction of
infectiousness of exposed quarantined individuals, in the Eq class, in relation to infectious quarantined individuals in the
Iq class).
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Fig. 1. Flow diagram of the model.

In (3), ηq is a modification parameter that measures the efficacy of quarantine in preventing individuals in quarantine
from having contact with members of the general public. If ηq = 0, then quarantine is perfectly-implemented (so that
individuals in the quarantine classes are not part of the actively-mixing population, and do not transmit infection).

The non-quarantined susceptible population (S) is increased by the recruitment of individuals into the community, at
a rate Π . This population is reduced by infection (at the rate λa), quarantine (at a rate γ ) and natural death (at a rate
µ; populations in all epidemiological compartments are assumed to suffer natural death at this rate). This population is
increased by the return of quarantined susceptible individuals at the end of the quarantine period (at a rate ψ1) and the
loss of natural immunity by recovered individuals (at a rate ψ2). The population of quarantined susceptible individuals
(Sq) is generated by the quarantine of non-quarantined susceptible individuals (at the rate γ ). It is decreased by infection
(at a reduced rate rλa, with 0 < r < 1 accounting for the efficacy of quarantine in preventing infection of quarantined
susceptible individuals) and by the reversion to the non-quarantined susceptible class at the end of the quarantine period
(at the rate ψ1).

Non-quarantined latently-infected individuals (E) are generated at the rate λa and decreased by the development of
clinical symptoms of the disease (at a rate σ1). Similarly, the population of quarantined latently-infected individuals (Eq)
is generated at the rate rλa and decreased by the development of clinical symptoms (at a rate σ2). Non-quarantined
symptomatic individuals (I) are generated at the rateσ1. This population is decreased by hospitalization (at a rateα1), natural
recovery (at a rate φ1) and disease-induced mortality (at a rate δ1). The population of quarantined symptomatic individuals
(Iq) is generated at the rate σ2 and decreased by hospitalization (at a rate α2), recovery (at a rate φ2) and disease-induced
death (at a rate δ2).

The population of hospitalized individuals (H) is generated by the hospitalization of non-quarantined and quarantined
symptomatic individuals (at the rate α1 and α2, respectively). It is diminished by recovery (at a rate φ3) and disease-induced
death (at a rate δ3 < δ2 < δ1). The recovered population (R) is generated at the rates φi (i = 1, 2, 3) and diminished by loss
of natural immunity (at the rate ψ2).

The model (1) is an extension of many of the models for quarantine published in the literature (including those in
[1,3,4,6,11–18]), by considering the dynamics of quarantined susceptible individuals (this entails adding the epidemiological
compartments Sq, Eq and Iq), in line with the models in [2,5]. Furthermore, the model (1) extends the model in [5] by:
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(i) including a compartment for hospitalized individuals (H);
(ii) allowing for the infection of quarantined susceptible individuals (at the rate rλa; that is, unlike in [5], it is assumed that

the efficacy of quarantine to prevent infection of quarantined susceptible individuals is not 100%);
(iii) allowing for disease transmission by infected quarantined and hospitalized individuals (i.e., it is assumed, unlike in [5],

that quarantine and hospitalization are not 100% effective in preventing transmission by infected quarantined or
hospitalized individuals).

The model (1) also extends the model in [2] by:

(a) incorporating demographic parameters (i.e., using an endemic model as against the epidemic model used in [2]);
(b) using a standard incidence function to model the infection rate (the mass action incidence function was used in [2] by

assuming constant total population);
(c) allowing for the infection of quarantined susceptible individuals (quarantinewas assumed to be perfect against infection

in [2]);
(d) allowing for disease transmission by non-quarantined latently-infected individuals.

Furthermore, detailed qualitative analysis of themodel will be carried out in this study (this is not done in [2]). Themodel
(1) extends the quarantinemodelswith quarantined-adjusted incidence in [15,20], by including thedynamics of quarantined
susceptible individuals (Sq) as well as adding classes for quarantined exposed (Eq) and symptomatic (Iq) individuals.

The model (1) will now be analyzed to gain insight into its dynamical features.

2. Analysis of the model

2.1. Basic properties

Since the model (1) monitors human populations, all its associated parameters are non-negative. The following basic
results can be established using the method in Appendix A of [22].

Theorem 1. The variables of the model (1) are non-negative for all time. In other words, solutions of the model system (1) with
positive initial data will remain positive for all time t > 0.

Lemma 1. The closed set

D =


(S, Sq, E, Eq, I, Iq,H, R) ∈ R8

+
: S + Sq + E + Eq + I + Iq + H + R ≤

Π

µ


is positively-invariant for the model (1).

Proof. Adding all the equations of the model (1) gives,

dN
dt

= Π − µN − (δ1I + δ2Iq + δ3H).

Since dN/dt ≤ Π − µN , it follows that dN/dt ≤ 0 if N ≥ Π/µ. Thus, a standard comparison theorem [23] can be used
to show that N ≤ N(0)e−µt

+
Π

µ
(1 − e−µt). In particular, N(t) ≤ Π/µ if N(0) ≤ Π/µ. Thus, the region D is positively-

invariant. Further, if N(0) > Π/µ, then either the solution entersD in finite time, or N(t) approachesΠ/µ asymptotically.
Hence, the region D attracts all solutions in R8

+
. �

2.2. Local stability of disease-free equilibrium (DFE)

The DFE of the model (1) is given by

E0 = (S∗, S∗

q , E
∗, E∗

q , I
∗, I∗q ,H

∗, R∗)

=


Π(µ+ ψ1)

µ(µ+ ψ1 + γ )
,

Πγ

µ(µ+ ψ1 + γ )
, 0, 0, 0, 0, 0, 0


. (4)

The local stability of E0 will be explored using the next generation operator method [24,25]. Using the notation in [25],
the non-negative matrix, F , of the new infection terms, and the M-matrix, V , of the transition terms associated with the
model (1), are given, respectively, by

F =


βη1ν1 βη2ηqν1 βν1 βηqν1 βηhν1
rβη1ν2 rβη2ηqν2 rβν2 rβηqν2 rβηhν2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
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and,

V =


k1 0 0 0 0
0 k2 0 0 0

−σ1 0 k3 0 0
0 −σ2 0 k4 0
0 0 −α1 −α2 k5

 ,
where,

ν1 =
µ+ ψ1

µ+ ψ1 + ηqγ
, ν2 =

γ

µ+ ψ1 + ηqγ
, k1 = σ1 + µ, k2 = σ2 + µ,

k3 = α1 + φ1 + µ+ δ1, k4 = α2 + φ2 + µ+ δ2, k5 = α3 + µ+ δ3.

It follows that the control reproduction number [26,27], denoted by Rq = ρ(FV−1), where ρ is the spectral radius, is given
by

Rq =
βν1[η1k2k3k4k5 + σ1k2k4k5 + ηhα1σ1k2k4]

k1k2k3k4k5
+

rβν2[η2ηqk1k3k4k5 + ηqσ2k1k3k5 + ηhα2σ2k1k3]
k1k2k3k4k5

.

Using Theorem 2 in [25], the following result is established.

Lemma 2. The DFE of the model (1), given by (4), is locally-asymptotically stable (LAS) if Rq < 1, and unstable if Rq > 1.

The threshold quantity Rq measures the average number of new infections generated by a single infectious individual in
a population where a certain fraction of the susceptible population is vaccinated. Lemma 2 implies that the disease can be
eliminated from the community (when Rq < 1) if the initial sizes of the sub-populations of the model are in the basin of
attraction of the DFE (E0).

2.3. Backward bifurcation analysis

In this section, the existence of endemic equilibria (that is, equilibria where the infected compartments of the model are
non-zero) of the model (1) is established. Let,

E1 = (S∗∗, S∗∗

q , E
∗∗, E∗∗

q , I
∗∗, I∗∗

q ,H
∗∗, R∗∗)

represents any arbitrary endemic equilibrium point (EEP) of the model (1). Further, define

λ∗∗

a =
β{I∗∗

+ η1E∗∗
+ η∗∗

q [I∗∗
q + η2E∗∗

q ] + ηhH∗∗
}

N∗∗
a

, (5)

(the force of infection of the model (1) at steady-state). It follows, by solving the equations in (1) at steady-state, that

S∗∗
=

Π(rλ∗∗
a + ψ1 + µ)

r(λ∗∗
a )

2 + [r(γ + µ)+ ψ1 + µ]λ∗∗
a + (ψ1 + µ)(γ + µ)− γψ1

,

S∗∗

q =
Πγ

r(λ∗∗
a )

2 + [r(γ + µ)+ ψ1 + µ]λ∗∗
a + (ψ1 + µ)(γ + µ)− γψ1

,

E∗∗
=
λ∗∗
a S∗∗

k1
, E∗∗

q =
rλ∗∗

a S∗∗
q

k2
,

I∗∗
=
λ∗∗
a S∗∗σ1

k1k3
, I∗∗

q =
rλ∗∗

a S∗∗
q σ2

k2k4
,

H∗∗
=
λ∗∗
a S∗∗σ1α1

k1k3k5
+

rλ∗∗
a S∗∗

q σ2α2

k2k4k5
,

R∗∗
=
λ∗∗
a S∗∗σ1φ1

k1k3k6
+

rλ∗∗
a S∗∗

q σ2φ2

k2k4k6
+
λ∗∗
a S∗∗σ1α1φ3

k1k3k5k6
+

rλ∗∗
a S∗∗

q σ2α2φ3

k2k4k5k6
.

(6)

Substituting the expressions in (6) into (5) shows that the non-zero equilibria of the model satisfy the following quadratic
equation (in terms of λ∗∗

a ):

a0(λ∗∗

a )
2
+ a1λ∗∗

a + a2 = 0, (7)
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where,

a0 = rk2k4(k3k5k6 + k5k6σ1 + k5σ1φ1 + k6σ1α1ηh + φ3α1σ1),

a1 = r(ηqγ k1k3k4k5k6 + ηqγ σ2k1k3k5k6 + k1k2k3k4k5k6 + γ σ2α2φ3k1k3)
+ r(γ σ2φ2k1k3k5 + ηhγα2σ2k1k3k6)− rβ(ηhα1σ1k2k4k6 + η1k2k3k4k5k6 + σ1k2k4k5k6)
+ (ψ1 + µ)(α1σ1φ3k2k4 + σ1φ1k2k4k5 + ηhα1σ1k2k4k6 + σ1k2k4k5k6 + k2k3k4k5k6),

a2 = k1k2k3k4k5k6(ηqγ + ψ1 + µ)(1 − Rq).

The endemic equilibria of the model (1) can then be obtained by solving for λ∗∗
a from (7), and substituting the positive

values of λ∗∗
a into the expressions in (6). The quadratic equation (7) can be analyzed for the possibility of multiple endemic

equilibria when Rq < 1. It should be noted that the coefficient, a0, of the quadratic (7) is always positive and a2 is positive
(negative) if Rq is less (greater) than unity. Hence, the following result is established.

Theorem 2. The model (1) has

(i) a unique endemic equilibrium if a2 < 0 ⇔ Rq > 1;
(ii) a unique endemic equilibrium if (a1 < 0 and a2 = 0) or a21 − 4a0a2 = 0;
(iii) two endemic equilibria if a2 > 0, a1 < 0 and a21 − 4a0a2 > 0;
(iv) no endemic equilibrium otherwise.

Thus, it is clear from Case (i) of Theorem 2 that the model (1) has a unique EEP (of the form E1) whenever Rq > 1.
Furthermore, Case (iii) of Theorem 2 indicates the possibility of backward bifurcation, where a LAS DFE co-exists with a
LAS endemic equilibrium when the associated reproduction number Rq is less than unity (see, for instance, [28–30] for
discussions on backward bifurcation) in the model (1). The epidemiological importance of the phenomenon of backward
bifurcation is that the classical requirement of having Rq < 1 is, although necessary, not sufficient for disease elimination.
In this case, disease eliminationwill depend upon the initial sizes of the sub-populations of themodel. Thus, the existence of
backward bifurcation in the transmission dynamics of a diseasemakes its effective control difficult. Amore rigorous proof of
the backward bifurcation property of themodel (1), based on using center manifold theory (see, for instance, [25,29,31,32]),
is given in the Appendix.

2.3.1. Non-existence of backward bifurcation
In this section, the scenario where the backward bifurcation property of the model can be lost is explored. Consider the

model (1) with a perfect quarantine efficacy against infection (so that, r = 0). In this case, the coefficients a0, a1 and a2 of the
quadratic equation (7) reduce to a0 = 0, a1 > 0 and a2 ≥ 0 whenever R̃q = Rq|r=0 ≤ 1. Thus, for this case, the quadratic
equation (7) has one solution (λ∗∗

a =
−a2
a1

≤ 0.) Therefore, the model (1) with a perfect quarantine has no positive endemic
equilibriumwhenever R̃q < 1. This rules out the possibility of backward bifurcation in this case (since backward bifurcation
requires the existence of at least two endemic equilibria whenever R̃q ≤ 1 [28–30]). Furthermore, it can be shown that, for
the case when r = 0, the DFE (E0) of the model (1) is globally-asymptotically stable (GAS) under some conditions, as shown
below.

Setting r = 0 in the model (1) gives the following reduced model (it should be noted from (1) that, for the case when
r = 0, (Eq(t), Iq(t)) → (0, 0) as t → ∞; hence, these variables are omitted from the asymptotic analysis of the model for
the special case with r = 0):

dS
dt

= Π − λ1(t)S(t)− γ S(t)+ ψ1Sq(t)+ ψ2R(t)− µS(t),

dSq
dt

= γ S(t)− (ψ1 + µ)Sq(t),

dE
dt

= λ1(t)S(t)− (σ1 + µ)E(t),

dI
dt

= σ1E(t)− (α1 + φ1 + µ+ δ1)I(t),

dH
dt

= α1I(t)− (φ3 + µ+ δ3)H(t),

dR
dt

= φ1I(t)+ φ3H(t)− (ψ2 + µ)R(t),

(8)

with the associated force of infection λa = λ1, where

λ1 = λa|r=0 =
β{I(t)+ η1E(t)+ ηhH(t)}

S(t)+ ηqSq(t)+ E(t)+ I(t)+ ηhH(t)+ R(t)
. (9)
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It can be shown that the reproduction number associated with the reduced model (8), with (9), is given by

R̃q = Rq|r=0 =
βν1(η1k3k5 + σ1k5 + ηhσ1α1)

k1k3k5
.

Define,

D1 =


(S, Sq, E, I,H, R) ∈ R6

+
: S + Sq + E + I + H + R ≤

Π

µ


.

The model (8) has a DFE, given by E01 = (S∗, S∗
q , 0, 0, 0, 0).

Theorem 3. The DFE (E01) of the reduced model (8), with (9), is GAS in D1 whenever R̃q ≤ ν1 < 1.

Proof. Consider the following Lyapunov function

F =


k5R̃q

ν1ηhβ


E +


k5 + ηhα1

k3ηh


I + H,

with Lyapunov derivative (where a dot represents differentiation with respect to time) given by

Ḟ =


k5R̃q

ν1ηhβ


Ė +


k5 + ηhα1

k3ηh


İ + Ḣ

=
k5R̃q

ν1ηhβ


βS(I + η1E + ηhH)

S + ηqSq + E + I + ηhH + R
− k1E


+


k5 + ηhα1

k3ηh


(σ1E − k3I)+ α1I − k5H

≤
k5R̃q

ν1ηh
(I + η1E + ηhH)−

k1k5R̃q

ν1ηhβ
E +

σ1(k5 + ηhα1)

k3ηh
E −

(k5 + ηhα)

ηh
I

+α1I − k5H, since S ≤ S + ηqSq + E + I + ηhH + R in D1

=


k5R̃q(η1β − k1)

ν1ηhβ
+
σ1(k5 + ηhα1)

k3ηh


E +


α1 +

k5R̃q

ν1ηh
−

k5 + ηhα1

ηh


I + k5


R̃q

ν1
− 1


H

=
k5
ηh


R̃q

ν1
− 1


(I + η1E + ηhH) ≤ 0 whenever R̃q ≤ ν1 < 1.

Since all the parameters and variables of the model (1) are non-negative (Theorem 1), it follows that Ḟ ≤ 0 for R̃q ≤ ν1 (it
should be noted that ν1 =

S∗

N∗ < 1) with Ḟ = 0 if and only if E = I = H = 0. Hence, F is a Lyapunov function on D1. Thus,
it follows, by LaSalle’s Invariance Principle [33], that

(E(t), I(t),H(t)) → (0, 0, 0) as t → ∞. (10)

Since lim supt→∞ I(t) = 0 and lim supt→∞ H(t) = 0 (from (10)), it follows that, for sufficiently small ϖ ∗ > 0, there
exist constants M1 > 0 and M2 > 0 such that lim supt→∞ I(t) ≤ ϖ ∗ for all t > M1 and lim supt→∞ H(t) ≤ ϖ ∗ for all
t > M2. Hence, it follows from the last equation of the model (8) that, for t > max{M1,M2},

Ṙ ≤ φ1ϖ
∗
+ φ3ϖ

∗
− µR.

Thus, by comparison theorem [23],

R∞
= lim sup

t→∞

R ≤
φ1ϖ

∗
+ φ3ϖ

∗

µ
,

so that, by lettingϖ ∗
→ 0,

R∞
= lim sup

t→∞

R ≤ 0. (11)

Similarly (by using lim inft→∞ I(t) = 0 and lim inft→∞ H(t) = 0), it can be shown that

R∞ = lim inf
t→∞

R ≥ 0. (12)

Thus, it follows from (11) and (12) that

R∞ ≥ 0 ≥ R∞.
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Hence,

lim
t→∞

R(t) = 0. (13)

Similarly, it can be shown that

lim
t→∞

S(t) =
Π(µ+ ψ1)

µ(µ+ ψ1 + γ )
= S∗, lim

t→∞
Sq(t) =

Πγ

µ(µ+ ψ1 + γ )
= S∗

q . (14)

Thus, by combining Eqs. (10), (13) and (14), it follows that every solution of the equations of the model (8), with initial
conditions in D1, approaches E0 as t → ∞ (for R̃q ≤ ν1 < 1). �

The above result shows that, for the case when the efficacy of quarantine in preventing infection is perfect (i.e., r = 0),
the disease can be eliminated from the community if the associated reproduction number of the model is less than unity.
Furthermore, this result clearly shows that the backward bifurcation property of the model (1) is caused by the imperfect
nature of the efficacy of quarantine to prevent infection (see the Appendix).

Conditions for the persistence of the disease in the population will be investigated below.

2.4. Persistence

The model system (1) is said to be uniformly-persistent if there exists a constant c such that any solution (S(t),
Sq(t), E(t), Eq(t), I(t), Iq(t),H(t), R(t)) satisfies [34,35]:

lim inf
t→∞

S(t) ≥ c, lim inf
t→∞

Sq(t) ≥ c, lim inf
t→∞

E(t) ≥ c, lim inf
t→∞

Eq(t) ≥ c,

lim inf
t→∞

I(t) ≥ c, lim inf
t→∞

Iq(t) ≥ c, lim inf
t→∞

H(t) ≥ c, lim inf
t→∞

R(t) ≥ c,

provided that (S(0), Sq(0), E(0), Eq(0), I(0), Iq(0),H(0), R(0)) ∈ D .

Theorem 4. System (1) is uniformly-persistent in D if and only if Rq > 1.

Proof. The theorem can be proved by using the approach used to prove Proposition 3.3 of [36], by applying a uniform
persistence result in [34] and noting that the DFE of the model (1) is unstable whenever Rq > 1 (Lemma 2). �

The consequence of this result is that each infected variable (E, Eq, I, Iq,H) of the model will persist above a certain
threshold value at steady-state, so that the disease will persist (become endemic) in the population. It should be mentioned
that some othermodels for quarantine,which did not explicitly include the dynamics of quarantined susceptible individuals,
also showed the presence of a unique endemic equilibrium and disease persistence when the associated reproduction
number exceeds unity (see, for instance, [13,17,18]).
Conclusions

A new deterministic model for the spread of a disease in a population in the presence of quarantine is designed. A
major feature of the model is that it incorporate the dynamics of quarantine-adjusted incidence and the quarantine of
susceptible individuals (that is, quarantine is modeled in terms of the temporarily removal of susceptible individuals from
the susceptible pool as well as the removal of new infected individuals, detected via the contact tracing of known infectious
individuals). Rigorous analysis of the model reveals that it undergoes the phenomenon of backward bifurcation when the
associated reproduction number (Rq) is less than unity. The presence of this phenomenon, which does not arise if the
quarantine is 100% effective, implies that the effective control of the spread of the disease, using an imperfect quarantine,
depends on the initial sizes of the sub-populations of the model (when Rq < 1). The model has a unique endemic
equilibrium whenever Rq > 1. Furthermore, it is shown that the disease will persist in the population whenever Rq > 1.
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Appendix. Proof of backward bifurcation property of model (1)

The proof is based on using centermanifold theory [31,32]. In particular, Theorem 4.1 of [32] will be used. It is convenient
to make the following change of variables:

S = x1, Sq = x2, E = x3, Eq = x4, I = x5, Iq = x6, H = x7, R = x8.

Furthermore, let X = (x1, x2, x3, x4, x5, x6, x7, x8)T . Thus, the model (1) can be re-written in the form dX
dt = F(X), with

F = (f1, f2, f3, f4, f5, f6, f7, f8)T , as follows:
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dx1
dt

= f1 = Π −
β[x5 + η1x3 + ηq(x6 + η2x4 + ηhx7)]x1

x1 + x3 + x5 + ηq(x2 + x4 + x6)+ x7 + x8
+ ψ1x2 − (µ+ γ )x1,

dx2
dt

= f2 = γ x1 −
rβ[x5 + η1x3 + ηq(x6 + η2x4 + ηhx7)]x1
x1 + x3 + x5 + ηq(x2 + x4 + x6)+ x7 + x8

− (µ+ ψ1)x2,

dx3
dt

= f3 =
β(x5 + η1x3 + ηq[x6 + η2x4 + ηhx7])x1

x1 + x3 + x5 + ηq(x2 + x4 + x6)+ x7 + x8
− k1x3,

dx4
dt

= f4 =
rβ(x5 + η1x3 + ηq[x6 + η2x4 + ηhx7])x1
x1 + x3 + x5 + ηq(x2 + x4 + x6)+ x7 + x8

− k2x4,

dx5
dt

= f5 = σ1x3 − k3x5,

dx6
dt

= f6 = σ2x4 − k4x6,

dx7
dt

= f7 = α1x5 + α2x6 − k5x7,

dx8
dt

= f8 = φ1x5 + φ2x6 + φ3x7 − k6x8.

(15)

The Jacobian of the system (15), at the associated DFE (E0), is given by
J(E0) = [M4×8 U4×8],

where

M =



−(γ + µ) ψ1 −
βη1x∗

1

x∗

1 + ηqx∗

2
−
βηqη2x∗

1

x∗

1 + ηqx∗

2

γ −(ψ1 + µ) −
rβη1x∗

2

x∗

1 + ηqx∗

2
−

rβηqη2x∗

1

x∗

2 + ηqx∗

2

0 0
βη1x∗

1

x∗

1 + ηqx∗

2
− k1

βηqη2x∗

1

x∗

1 + ηqx∗

2

0 0
rβη1x∗

2

x∗

1 + ηqx∗

2

rβηqη2x∗

1

x∗

2 + ηqx∗

2
− k2

0 0 σ1 0
0 0 0 σ2

0 0 0 0
0 0 0 0



,

U =



−
βx∗

1

x∗

1 + ηqx∗

2
−

βηqx∗

1

x∗

1 + ηqx∗

2
−

βηhx∗

1

x∗

1 + ηqx∗

2
0

−
rβx∗

2

x∗

1 + ηqx∗

2
−

rβηqx∗

2

x∗

1 + ηqx∗

2
−

rβηhx∗

2

x∗

1 + ηqx∗

2
0

βx∗

1

x∗

1 + ηqx∗

2

βηqx∗

1

x∗

1 + ηqx∗

2

βηhx∗

1

x∗

1 + ηqx∗

2
0

rβx∗

2

x∗

1 + ηqx∗

2

rβηqx∗

2

x∗

1 + ηqx∗

2

rβηhx∗

2

x∗

1 + ηqx∗

2
0

−k3 0 0 0
0 −k4 0 0
α1 α2 −k5 0
φ1 φ2 φ3 −k6



.

Consider the case when Rq = 1. Furthermore, suppose that β is chosen as a bifurcation parameter. Solving for β from
Rq = 1 gives

β∗
=

k1k2k3k4k5
ν1M1 + rν2M2

,

where
M1 = η1k2k3k4k5 + σ1k2k4k5 + ηhα1σ1k2k4,
M2 = η2ηqk1k3k4k5 + ηqσ2k1k3k5 + ηhα2σ2k1k3.
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The transformed system (15), with β = β∗, has a hyperbolic equilibrium point (i.e., the linearized system has a simple
eigenvalue with zero real part, and all other eigenvalues have negative real part), so that the center manifold theory [31,32]
can be used to analyze the dynamics of (15) near β = β∗.

It can be shown that the right eigenvector of J(E0)|β=β∗ , denoted byw, is given byw = (w1, w2, . . . , w7, w8)
T , where,

w1 =
k2w4 + (µ+ ψ1)w2

γ
, w2 =


−γ

µ(µ+ γ + ψ1)


[k1w3 + k2w4(µ+ γ )] ,

w5 =
σ1w3

k3
, w6 =

σ2w4

k4
, w7 =

α1w5 + α2w6

k5
,

w8 =
φ1w5 + φ2w6 + φ3w7

k6
, w3 > 0, w4 > 0.

Similarly, J(E0)|β=β∗ has a left eigenvector, v given by v = (v1, v2, . . . , v7, v8), where,

v1 = 0, v2 = 0, v7 =
βηhx∗

1v3

k5(x∗

1 + ηqx∗

2)
+

rβηhx∗

1v4

k5(x∗

1 + ηqx∗

2)
,

v6 =
α2v7

k4
+

βηqx∗

1v3

k4(x∗

1 + ηqx∗

2)
+

rβηqx∗

1v4

k4(x∗

1 + ηqx∗

2)
,

v5 =
α1v7

k3
+

βx∗

1v3

k3(x∗

1 + ηqx∗

2)
+

rβx∗

1v4

k3(x∗

1 + ηqx∗

2)
, v3 > 0, v4 > 0, v8 = 0.

Consequently, it follows that the associated bifurcation coefficients, a and b (defined in Theorem 4.1 of [32]), are given,
respectively, by

a =

8
k,i,j=1

vkwiwj
∂2fk(0, 0)
∂xi∂xj

= (rηqv4w4 − ηqv3w4)


µ+ σ2

µ+ ψ1 + ηqγ


−
(rv4x∗

2 + v3x∗

1)

k3k4k5k6
(a1 + a2 + a3 + a4), (16)

b =

8
k,i=1

vkwi
∂2fk(0, 0)
∂xi∂β∗

=
(v3x∗

1 + rv4x∗

2)(η1w3 + η2ηqw4 + w5 + ηqw6 + ηhw7)

x∗

1 + ηqx∗

2
> 0,

where

a1 = k3k4k5k6w3 + k3k4k5k6ηqw4,

a2 = k4k5k6σ1w3 + k3k5k6ηqσ2w4,

a3 = k4k6ηhα1σ1w3 + k3k6ηhα2σ2w4,

a4 = k4k5φ1σ1w3 + k3k5φ2σ2w4 + k4φ3α1σ1w3 + k3φ3α2σ2w4.

Since the bifurcation coefficient b is always positive, it follows (from Theorem 4.1 of [32]) that the system (15) will
undergo backward bifurcation if the bifurcation coefficient a is positive. This result is summarized below.

Theorem 5. The transformed model (15), or equivalently (1), exhibits backward bifurcation at Rq = 1whenever the bifurcation
coefficient, a, given by (16), is positive.

It should be noted from (16) that the bifurcation coefficient a, is positive whenever

r >
ηqv3w4(µ+ σ2)

v4(ηqw4 − x∗

2)(µ+ ψ1 + ηqγ )
+
v3x∗

1(a1 + a2 + a3 + a4)
v4(ηqw4 − x∗

2)k3k4k5k6
= rc .

Thus, the transformed model (15), exhibits backward bifurcation at Rq = 1 whenever r > rc . Furthermore, it should be
noted that for the case when quarantined susceptible individuals do not acquire infection during quarantine (i.e., r = 0),
the bifurcation coefficient a becomes

a = −ηqv3w4


µ+ σ2

µ+ ψ1 + ηqγ


−

v3x∗

1

k3k4k5k6
(a1 + a2 + a3 + a4) < 0

since ai > 0 for i = 1, . . . , 4 (since all themodel parameters are non-negative). Thus, since a < 0 in this case, it follows from
Theorem 4.1 of [32] that the model (1) will not exhibit backward bifurcation if r = 0. In other words, this study shows that
the backward bifurcation property of the model (1) arises due to the infection of susceptible individuals in quarantine. This
result is consistent with Theorem 3 (where it was shown that the DFE of themodel (1) with r = 0 is globally-asymptotically
stable).
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