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Abstract

The marine spongePetrosia weinbergiwas found to contain isofucosterol and clionasterol as its major sterols. The rare cyclopropyl
sterol (24S,28S)-24,28-methylenestigmast-5-en-3b-ol, previously detected as only 0.07% of the total sterols of a pelagophytic alga
Pulvinaria sp., made up 6.6% of the total sterols. These sterols are believed to be the biosynthetic precursors of the antiviral orthoesterols
and weinbersterols found in the same sponge. Based on the side chains of the isolated sterols, the absolute configurations of the antiviral
steroid side chains are assigned to be (24R,28S)- for orthoesterol B, (24R)- for orthoesterol C, and (24S,28S)- for weinbersterols A and B.
© 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Recently, a number of biologically active steroids bear-
ing unusual side chains have been isolated from marine
sponges. Whereas NMR methods can generally be applied
to solve the stereochemical structure of the steroidal nu-
cleus, the conformationally flexible side chain is less trac-
table. For this reason, the structures of many new biologi-
cally active marine steroids have been reported without full
stereochemical assignment of the side chain [1–6]. In the
case of the potent antitumor compound aragusterol A (1),
the stereochemical configuration at C-24 of the side chain
was determined by the chemical synthesis of the possible
isomers [7]. This work showed that the stereochemical con-
figuration of the carbon framework of the side chain was
identical with that of the sponge sterol petrosterol (2). Be-
cause steroids are biosynthetically derived from sterols, it
appears likely that petrosterol (2) occurs in this sponge and
serves as the precursor of1. Petrosterol is a sponge sterol
that has been extensively studied by the Djerassi group.

Because petrosterol (2) as well as the unnatural C-24,25,26
stereoisomers are known compounds [8], sterol analysis of
the sponge may have been useful in assigning the C-24
configuration and could have saved some synthetic effort in
the structure determination of aragusterol A (1).

The Caribbean spongePetrosia weinbergiis another
source of structurally unusual, biologically active steroids.
Orthoesterols A, B, and C (3–5) contain bicyclic orthoesters
between the side chain and ring D, and have been reported
to be active against feline leukemia virus, mouse influenza
virus, and mouse coronavirus [9]. Weinbersterols A and B
(6,7), also isolated from this sponge, were shown to be
active against feline leukemia virus and human immunode-
ficiency virus with EC50 values in the micromolar range
[10]. Both weinbersterols A and B and orthoesterol B bear
a rare cyclopropyl side chain that has also been reported for
ibisterol (8), a human immunodeficiency virus-inhibitory
steroid from a deep waterTopsentiasp. [11,12], and topsen-
tiasterol E (9), a similar steroid from a shallow water
Topsentiasp. [13]. The complete stereochemical configu-
ration of the cyclopropyl side chain has not been reported
for any of these compounds. This rare cyclopropyl side
chain has previously only been detected once before, in a
trace sterol (0.07% of total sterols) from a marine alga [14].
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However, all four 24,28-stereoisomers of this cyclopropyl
sterol have been synthesized and stereochemically assigned
[15,16]. Based on the precursor–product relationship be-
tween sterols and steroids, we have undertaken an analysis
of the sterols ofPetrosia weinbergito shed light on the
stereochemical configurations of the side chains of the an-
tiviral steroidal metabolites.

2. Experimental

2.1. Sponge material

The spongePetrosia weinbergiVan Soest 1980 (Phylum
Porifera, Class Demospongiae, Order Haploslerida, Family
Petrosiidae) [17] was collected by scuba at a depth of 18 m
on the fore reef escarpment off Crooked Island, Bahamas.
The sponge was plate-shaped, approximately 8 mm thick.
The external color of the live sponge was olive green; the
internal color was cream. The sponge was brittle in consis-
tency. Scattered oscular sieve areas, 3–5 mm in diameter,
occurred only on the upper surface. A sample of the sponge

was preserved in ethanol as a taxonomic voucher; the re-
mainder of the sponge was stored frozen at220°C. The
voucher specimen is deposited at the Harbor Branch Ocean-
ographic Museum, catalog no. 003:00928 (DBMR no. 25-
V-93-4-004).

2.2. Sterol analysis

Frozen sponge material (15.6 g wet weight) was ex-
tracted at room temperature with acetone (20 ml) followed
by dichloromethane/methanol 2:1 (75 ml). The dry weight
of the extracted sponge was 1.514 g. The combined extracts
were concentrated to dryness under reduced pressure and
extracted with two 20-ml portions of ethyl acetate. Silica gel
chromatography of the ethyl acetate extracts yielded 7.0 mg
of free sterols. Purification was performed by reverse-phase
HPLC (Waters 6000A pump, R401 differential refracto-
meter, two Altex Ultrasphere ODS 5-mm 10 3 250-mm
columns in series, 3 ml/min MeOH). The isolated sterols
were identified by comparison of their1H-NMR spectra
(300 MHz, CDCl3) with those of authentic samples. Refer-
ences for NMR data are found in Table 1 and data for the

Scheme 1. Scheme 2.

Table 1
Sterols ofPetrosia weinbergi

Sterol HPLC
retention
time (min)

Abundance

Isofucosterol (14) [22] 51.8 38%
Clionasterol (15) [23] 63.2 29%
Campesterol [24] 57.6 8%
Crinosterol [24] 46.4 7%
(24S,28S)-24,28-Methylene-stigmast-

5-en-3-ol (13) [15]
60.8 7%

Poriferasterol (16) [23] 55.8 4%
Brassicasterol [24] 48.4 3%
22-Dehydrocholesterol [24] 42.4 2%
Occelasterol [25] 41.0 1%
(24S)-24-Isopropenylcholesterol [26] 54.0 tr.
4-Demethyl-5-dehydrodinosterol [27] 54.0 tr.
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24,28-methylene-stigmast-5-en-3-ols10–13can be found in
Table 2.

3. Results

Sterol analysis ofPetrosia weinbergiwas performed
with the goal of isolating the rare cyclopropyl sterol that
is the biosynthetic precursor to antiviral steroids4, 6, and
7. The sterols ofPetrosia weinbergiwere separated by
reverse-phase high performance liquid chromatography
and analyzed by1H-NMR spectroscopy. The structures

of all sterols were unambiguously assigned by com-
parison of the spectra with those of authentic samples
(Table 1).

The cyclopropyl sterol13 was isolated as 6.6% of the
total Petrosia weinbergisterols. The identity of this sterol
with the (24S,28S)-isomer (13) was determined by compar-
ison with authentic synthetic samples. The (24R,28S)- and
(24S,28R)- (10,11) configurations of the cyclopropyl side
chain were easily ruled out based on differences in the
1H-NMR spectra (Table 2) [15]. The1H-NMR spectra of
the (24R,28R)- and (24S,28S)-isomers (12 and 13), how-
ever, are very similar, but can be distinguished by the C-29

Fig. 1.1H-NMR (300 MHz) spectra of cyclopropyl sterols12and13. Top spectrum: Methyl region of mixed cyclopropyl sterols12and13 (synthetic). Bottom
spectrum: Methyl region of cyclopropyl sterol13 from Petrosia weinbergi.

Table 2
1H-NMR data for 24,28-methylene-stigmast-5-en-3-ols

(24R,28S)- (10) (24S,28R)- (11) (24R,28R)- (12) (24S,28S)- (13)

C-3 3.523 (m) 3.523 (m) 3.523 (m) 3.523 (m)
C-5 5.351 (m) 5.351 (m) 5.351 (m) 5.351 (m)
C-18 0.672 (s) 0.672 (s) 0.664 (s) 0.662 (s)
C-19 1.005 (s) 1.005 (s) 1.004 (s) 1.005 (s)
C-21 0.917 (d,J 5 6.4) 0.914 (d,J 5 6.5) 0.881 (d,J 5 6.5) 0.881 (d,J 5 6.4)
C-26,27 0.806 (d,J 5 6.9) 0.825 (d,J 5 6.9) 0.956 (d,J 5 6.9) 0.954 (d,J 5 6.9)

0.833 (d,J5 6.9) 0.832 (d,J 5 6.9) 0.984 (d,J 5 6.9) 0.985 (d,J 5 6.9)
C-28 0.590 (m) 0.601 (m) 0.634 (m) 0.635 (m)
C-29 1.032 (d,J 5 6.3) 1.042 (d,J 5 6.3) 1.075 (d,J 5 6.3) 1.080 (d,J 5 6.3)
C-30 20.232 20.245 20.242 20.247

(dd,J 5 4.3, 5.4) (dd,J 5 4.3, 5.4) (dd,J 5 4.2, 5.4) (dd,J 5 4.2, 5.4)
0.385 0.359 0.416 0.415

(dd,J 5 8.7, 4.3) (dd,J 5 8.6, 4.2) (dd,J 5 8.6, 4.2) (dd,J 5 8.6, 4.2)
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methyl signals, which are found at 1.075 ppm and 1.080
ppm, respectively (Fig. 1). Comparison of the isolated cy-
clopropyl sterol with authentic13 by 1H-NMR showed that
these were identical [15].

4. Discussion

A wealth of information is available for the structures of
marine sterols [18]. Because of the precursor–product rela-
tionship between sterols and steroids, knowledge of struc-
ture of the sterols found in an organism can be used to
assign the stereochemical configuration of the side chains of
the biosynthetically derived steroids. Unlike many metabo-
lites found in sponges, sterols are not produced by prokary-
otic symbionts, but are produced largely via de novo bio-
synthesis and are characteristic for the sponge species where
they are found [18,19]. Although the stereochemical assign-
ment based on reasonable biosynthetic relationships cannot
be considered a rigorous proof, knowledge of the stereo-
chemical configuration of the sterol side chains found in a
sponge provides useful information in the assigning the side
chain configurations of the steroids found in the same
sponge.

In Petrosia weinbergi, the major sterol was found to be
isofucosterol (14, 37.6%), which has the same carbon
framework of the side chain as has been assigned to or-
thoesterol A (3) [9]. The next most abundant sterol was the
24-ethyl sterol clionasterol (15, 29.3%). The configuration
at C-24 of the 24-ethyl steroid orthoesterol C (5) had not
previously been specified. Because both of the 24-ethyl
sterols (15 and 16) found in Petrosia weinbergishare the
same configuration at C-24,5 can be assigned to share the
same configuration, in this case (24R)-. The isolation of the
rare cyclopropyl sterol13 in Petrosia weinbergias a single
stereoisomer implies that the cyclopropyl antiviral steroids
isolated from this sponge (4,6,7) also share the same con-
figuration. This configuration is (24S,28S)- in the case of
weinbersterols A and B (6,7) and (24R,28S)- for orthoes-
terol B (4).

It is noteworthy that acis relationship had originally
been proposed for the cyclopropyl methyl and C-23 in4 [9].
However, in sterol13 a trans relationship is found, consis-
tent with its probable biosynthesis from isofucosterol (14)
[20]. The cis assignment had been made based on NOE
difference spectra of4, which showed an enhancement of
signals at 1.13 ppm (cyclopropyl methyl) and 1.30 ppm
(assigned as H-23) after irradiation of the high-field cyclo-
propyl proton at20.20 ppm [9]. In our NOE experiments
with 13, we observed enhancement of similar signals at
1.080 ppm (cyclopropyl methyl) and 1.266 ppm after irra-
diation of the high-field C-30 cyclopropyl proton (20.247
ppm). However, COSY cross peaks between the 26- and
27-methyl signals (0.985 and 0.954 ppm) and 1.266 ppm
show that this signal does not correspond to H-23, but to
H-25. It should be noted that our assignment of structure13

is not made on the basis of a NOE experiments, but is based
on comparison with synthetic samples whose absolute ste-
reochemical configurations rest on X-ray crystallography
[15,21].
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