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A B S T R A C T

3-Acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives were synthesized and evaluated to show high
anti-MERS-CoV inhibitory activities. Among them, 6,8-difluoro-3-isobutyryl-2-((2,3,4-trifluorophenyl)amino)
quinolin-4(1H)-one (6u) exhibits high inhibitory effect (IC50 = 86 nM) and low toxicity (CC50 > 25 μM).
Moreover, it shows good metabolic stability, low hERG binding affinity, no cytotoxicity, and good in vivo PK
properties.

Middle East respiratory syndrome coronavirus (MERS-CoV) is an
emerging, fatal virus that causes severe respiratory symptoms in hu-
mans with high mortality (about 38%), such as high fever, cough,
shortness of breath, and acute pneumoniae.1,2 MERS-CoV is a zoonotic
coronavirus that can spread non-sustained person-to-person transmis-
sion.3 Travel-related MERS-CoV infections continued to spread from the
Arabian Peninsula to several other countries and caused epidemics with
high fatal rates.4

MERS-CoV is a single-stranded, positive-sense RNA virus and uses
host cellular components to accomplish various physiological processes,
including internalization of the virion, genome replication, packaging
and budding of the virions. Therefore, each stage of these steps of the
virus life cycle can be targets for therapeutic inhibition. Screening of
FDA-approved drugs for MERS-CoV identified many drugs with anti-
viral effects.5,6 These drugs can be categorized into inhibitors dis-
rupting endocytosis, interrupting MERS-CoV RNA replication and
translation, and inhibitors with undefined mechanisms. To date, there
are still no approved antiviral drugs.2 Therefore, the development of
therapeutics against MERS has received more and more attention.

We began our investigation by screening 200,000 compounds of
Korean Chemical Bank (KCB) against MERS-CoV using high content
screening (HCS) platform of Institut Pasteur Korea (IPK).7 Through this

effort, 3-acetyl-6-chloro-2-(isopropylamino)-8-(trifluoromethyl)qui-
nolin-4(1H)-one 1 was identified as a primary hit (Fig. 1). 1,4-Dihy-
droquinolin-4-one derivatives showed a broad range of pharmacolo-
gical activities, such as antibacterial,8 anti-neurodegenerative,9 and
anti-infammatory.10 Here we report on the synthesis and biological
effects of 3-acyl-2-amino-1,4-dihydroquinolin-4(1H)-one derivatives.

All series of 3-acyl-2-amino-1,4-dihydroquinolin-4-one analogues
were synthesized using Scheme 1. β-Keto amides 2 were prepared ei-
ther by reaction of diketene and anilines in the presence of basic cat-
alyst or condensation reaction of substituted-acetyl acetate and ani-
lines. Bis(methylthio) compounds 3 were synthesized by reacting β-
keto amides 2 with carbon disulfide and dimethylsulfate in the presence
of potassium carbonate. Refluxing bis(methylthio) compounds 3 in an
inert solvent like 1,2-dichlorobenzene was transformed into 3-acyl-2-
methylsulfanyl-quinoline-4(1H)-ones 4.11 Treatment of 3-acyl-2-me-
thylsulfanyl-quinolin-4(1H)-ones 4 with hydrogen peroxide in acetic
acid leaded to the corresponding sulfoxides 5, which are more reactive
to substitution reaction. Nucleophilic substitution reactions with var-
ious amines with sulfoxides 5 afforded 2-amino-1,4-dihydroquinolin-
4(1H)-ones 6.12

The anti-MERS-CoV activities of the synthesized compounds for
Vero cells infected with a Korean clinical MERS-CoV isolate were
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determined by monitoring the cells expressing viral spike (S) protein
using immunofluorescence assay (IFA).7 Extensive SAR investigations
to assess the effects of 3-acyl moieties, substituents on aryl, and various
amines are shown in Table 1.

We started SAR studies by varying the substituents of 5 to 8 posi-
tions of quinolone ring of compound 1, having fixed with acetyl group
at 3 position and isopropyl amine at 2 position. Compounds with
electron donating groups, such as 8-isopropyl (6a) and 6,8-dimethyl
(6b), showed no inhibitory effects. Application of phenyl substituent at
3 position (6c) was detrimental for inhibitory effect. 2,4-Difluoroaniline
substituent at 2 position (6d) resulted in significant higher activity
(IC50 = 0.15 μM). Given the beneficial effect of 2,4-difluoroaniline at 2
position, we explored the effects of electron-withdrawing groups of left-
hand ring of quinolone part of 6d by preparing analogues 6e–6h.
Replacement of the C(8)-trifluoromethyl with fluorine (6e) and nitro
functionality at 2 position (6f) were moderately tolerated (IC50 = 0.98
and 1.16 μM, respectively). 6,8-Difluoro (6g) and 5,6,8-trichloro (6h)
derivatives also retained the inhibitory effects (IC50 = 1.06 and
0.29 μM, respectively). This observation showed that electron-with-
drawing substituents of left-ring of quinolone scaffold were fruitful to
inhibitory activity, while electron-donating substituents were detri-
mental.

Next, substituent effects at 2 position of 1,4-dihydroquinolin-4(1H)-
one scaffold were evaluated. Although less active than quinolone de-
rivative 6d (IC50 = 0.15 μM) with 6-chloro-8-trifluoromethyl group,
6,8-difluoro substituent analogue 6g opens the possibility to extensively
explore SAR studies via modifications of 2 position. Therefore, we have
focused on the optimization of 6g. 3-Acetyl-6,8-difluoro-1,4-dihy-
droquinolin-4(1H)-ones with piperidine (6i) and morpholine (6j), n-
butyl amine (6k) at 2 position showed no inhibitory effect. 3,4-
Dichlorobenzyl alcohol (6l) and 2,4-difluorobenzyl amine (6m) were

only moderated tolerated (IC50 = 7.8 and 5.9 μM, respectively),
whereas 4-fluorobenzyl amine (6n) and 4-methoxybenzyl amine (6o)
functionalities are detrimental for the binding affinities. Compounds
with 3-methoxyaniline (6p) and 4-methoxyaniline (6q) showed no in-
hibitory effects, indicating that aniline substituents with electron-do-
nating groups were detrimental. 4-Bromoaniline (6r) and 4-chloroani-
line group (6s) showed similar inhibitory effects (IC50 = 1.13 and
1.44 μM, respectively) to 6g. 2,3,4-Trifluoroaniline analogue 6t dis-
played increased inhibitory effect (IC50 = 0.53 μM). Through the in-
vestigation into wide range of substituent effects at 2 position, aniline
groups with electron-withdrawing substituents showed high binding
affinities (0.53–1.44 μM).

In the next phase of optimization, substituent effects at 3 position
were investigated. As the benzoyl substituent (6c) at 3 position com-
pletely abolished activity and pivaloyl group at 3 position blocked the
nucleophilic substitution of anilines at 2 position, compounds with
isobutyryl substituent at 3 position were deeply examined (6u–z). 6,8-
Difluoro Compound 6u and 6v, including 2,3,4-trifluoroaniline and 2,4-
difluoro aniline group at 2 position, showed higher inhibitory effects
than its corresponding compounds with acetyl group at 3 position
(IC50 = 0.086 and 0.79 μM, respectively). 5,6,8-Trichloro (6w) and 5,8-
dichloro compound (6x) with 2,3,4-trifluoaniline substituent at 2 po-
sition also displayed higher inhibitory effects (IC50 = 0.100 and
0.166 μM, respectively) than their corresponding ones. 5,6,8-Trichloro
(6y) and 6-chloro,8-trifluoro compound (6z) with 2,4-difluoroaniline
substituent at 2 position also showed potent biological activities
(IC50 = 0.129 and 0.13 μM, respectively). Of note, all the above com-
pounds except 6d, 6w, and 6z displayed no obvious cytotoxicity
(CC50 > 10 μM).

Compound 6u was found to be a very potent MERS-CoV inhibitor
and evaluated further for its metabolic stability, hERG, cytotoxicity,
and in vivo pharmacokinetic profile (Table 2). 6u displays good meta-
bolic stability in human, rat, and mouse liver microsomes. 6u shows a
low hERG binding affinity and no cytotoxicity toward VERO, HFL-1,
L929, NIH 3T3, and CHO-K1 cell lines and it exhibits good oral bioa-
vailability of 56% with promising Cmax, T1/2, AUC values and clearance.

In Summary, we have developed a novel class of 3-acyl-2-amino-
1,4-dihydroquinolin-4(1H)-one based MERS-CoV inhibitors through
systemic SAR optimization from lead compound 1. Compound 6u, in-
cluding isobutyryl substituent at 3 position and 6,8-difluorophenyl
group, is a good MERS-CoV inhibitor with IC50 of 86 nM. In addition,
this substance shows good metabolic stability, low hERG binding affi-
nity, no cytotoxicity, and good in vivo PK properties with an oral
bioavailability of 56% in rat. Future optimization of these 3-acyl-2-
amino-1,4-dihydroquinolin-4(1H)-one based MERS-CoV inhibitors on

Fig. 1. Hit compound obtained from HTS.

Scheme 1. Synthesis pathway towards derivatives 6. Reagents and conditions: (a) Diketene, Et3N, benzene, 110 °C; or Substituted-acetyl acetate, Et3N, toluene,
125 °C; (b) CS2, Dimethyl sulfate, n-Bu4NBr, K2CO3, DMF, rt; (c) o-Dichlorobenzene, 180 °C; (d) H2O2, AcOH, 50 °C; (e) Amines or alcohol, Ph2O, 180 °C.

J.H. Yoon, et al. Bioorganic & Medicinal Chemistry Letters 29 (2019) 126727

2



the in vivo efficacy of 6u in animal models will mainly be performed in
due course.
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T1/2 (h), i.v. 4.6 ± 0.66
AUC0−24h (μg·h/mL), i.v. 28.3 ± 4.18
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a % original compound remained after 30 min incubation.
b IC50 (µM) values (binding assay).
c IC50 (μM) values in various mammalian cell lines. Cell informa-

tion. VERO: African green monkey kidney cell line, HFL-1: human
embryonic lung cell line, L929: mouse fibroblast cell line, NIH 3T3:
mouse embryonic fibroblast cell line, CHO-K1: Chinese hamster ovary
cell line.

d Data were generated in rats from three determinations, and dosed
at 2 mg/kg for i.v. and at 5 mg/kg for p.o. (n = 3).
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