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The inaccuracy of the early diagnosis of Parkinson's disease (PD) has been a major incentive for studies
aimed at the identification of biomarkers. Brain-derived cerebrospinal fluid (CSF) proteins are potential
biomarkers considering the major role that proteins play in PD pathogenesis. In this review, we discuss the
current hypotheses about the pathogenesis of PD and identify the most promising candidate biomarkers
among the CSF proteins studied so far. The list of potential markers includes proteins involved in various
pathogenetic processes, such as oxidative stress and protein aggregation. This list will undoubtedly grow in
the near future by application of CSF proteomics and subsequent validation of identified proteins. Probably a
single biomarker will not suffice to reach high sensitivity and specificity, because PD is pathogenetically
heterogeneous and shares etiological factors with other neurodegenerative diseases. Furthermore, identified
candidate biomarkers will have to be thoroughly validated before they can be implemented as diagnostic
aids.
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The need for biomarkers in Parkinson's disease

The diagnosis of Parkinson's disease (PD) is currently mainly based
on clinical features (Tolosa et al., 2006), i.e. the presence of
bradykinesia in combination with muscle rigidity, resting tremor or
postural instability, the absence of symptoms that indicate atypical
parkinsonian disorders and supporting findings including a positive
effect of dopaminergic medication (Hughes et al., 1992). Despite these
clear criteria, diagnosing PD can be difficult, especially in its early
stages. In particular, essential tremor and atypical parkinsonian
syndromes such as progressive supranuclear palsy (PSP) andmultiple
system atrophy (MSA) may initially mimic PD. The positive predictive
value of thefinal clinical diagnosis of idiopathic PDmade bymovement
disorder specialists was demonstrated to be very high, 98.6% (Hughes
et al., 2002). However, in the same study, almost one third of the
clinical diagnoses in patients with parkinsonism had been revised in
on average the first five years of the disease (Hughes et al., 2002).
Diagnostic accuracy in the early stages of the disease is important for
the patient and, moreover, facilitates evaluation of future neuropro-
tective therapies. To improve the accuracy of the early diagnosis of PD,
biomarkers are urgently needed. Biomarkers can be defined as
characteristics that are objectively measured as indicators of normal
and pathogenetic processes or responses to a therapeutic intervention.
Examples of biomarkers for PD are imaging markers such as striatal
dopamine transporter bindingmeasured using single photon emission
computed tomography (DaT-SPECT) or clinical markers of disease
includingmeasurement of non-motor functions such as sense of smell
or autonomic function. Proteins in csf and/or blood may also serve as
biomarkers for PD, but are not yet used in clinical practice. Ideally,
biomarkers should be sensitive, reproducible, closely associated with
the disease process, easy to measure, inexpensive, non-invasive and
thoroughly validated (Michell et al., 2004). Biomarkers fulfilling all of
these criteria have not yet been identified for PD.

The origin of CSF proteins and CSF physiology

Cerebrospinal fluid (CSF) is a potential source of PD biomarkers
in living patients, because it is in direct contact with the diseased
brain. Specific proteins play a major role in the pathogenesis of PD
and brain-derived CSF proteins are therefore promising candidate
biomarkers. However, the majority of the CSF proteins are believed
to originate from the blood rather than directly from the surround-
ing brain tissue. These blood-derived proteins enter the CSF at the
choroid plexus and along the flow of the CSF from the ventricles to
the subarachnoid space (Huhmer et al., 2006). As a consequence, the
concentration of blood-derived proteins differs between ventricular
and lumbar CSF (Reiber, 1994). In addition to blood-derived
proteins, brain tissue proteins contribute to the CSF pool. A recent
proteomics study reported that almost 10% of identified CSF proteins
overlapped with proteins detected in frontal cortex tissue of human
subjects (Pan et al., 2007). Vice versa, in the same study more than
20% of the proteins detected in frontal cortex tissue were detectable
in the CSF (Pan et al., 2007). Brain tissue proteins that are not
detectable in CSF may either not diffuse into the CSF because they
are for example membrane bound (Mogi et al., 1996a), or they may
be internally recycled in brain tissue, form insoluble aggregates, or
their levels may be too low to be detected (Shi et al., 2009). The total
protein concentration in CSF obtained by lumbar puncture is about
200 times lower than in blood plasma (Huhmer et al., 2006) and
normally varies between 150 and 500 mg/L. Because of the
relatively high concentration of proteins in blood, blood contami-
nation during lumbar puncture can have a significant effect on the
CSF proteome (Hong et al., 2010). The CSF protein concentration is
further influenced by the effect of circadian rhythms on the CSF
secretion rate, the maximum of which at 02.00 h is 3.5 times higher
than its minimum at 18.00 h (Nilsson et al., 1992). These pre-
analytical factors may profoundly influence protein levels which
emphasizes the importance of standardized protocols for CSF
collection (Teunissen et al., 2009).
Aim

In this review, we provide an overview of CSF proteins studied in
PD so far and use a pathogenetically driven approach to identify the
most promising diagnostic candidate biomarkers among them. For a
better understanding of the results, we first briefly review the
currently leading hypotheses about PD pathogenesis and discuss the
proteins that play a role in these pathogenetic processes. Promising
candidate CSF biomarkers are selected based upon their relationship
with the pathogenesis of PD and their different expression levels
compared to controls in both CSF and brain tissue. We discuss the
challenges encountered in the search for sensitive and specific
biomarkers and give recommendations for future biomarker studies.
Search strategy

A PUBMED search was done up to March 2010, for (“Parkinsonian
Disorders”[Mesh] OR Parkinson*) AND (“Proteins”[Mesh] OR
“Enzymes and Coenzymes”[Mesh] OR “Biological markers”[Mesh])
AND (“Cerebrospinal Fluid”[Mesh] OR “cerebrospinal fluid”[subhead-
ing]). In addition, protein names were entered as free terms. This
resulted in 712 hits. Only papers in English concerning human
subjects were included and only studies dealing with a comparison
between a PD group of at least 10 patients and a control group were
considered. For proteomic studies, differently expressed proteins had
to be validated in individual samples. Only studies using lumbar CSF
were used, excluding studies on ventricular or post-mortem CSF,
because of the different protein composition of ventricular CSF
compared to lumbar CSF (Reiber, 1994) and degradation of proteins
due to post-mortem delay, respectively. In total, 141 papers fulfilled
the criteria. Proteins included in these studies were classified
according to their expected function or their relationship to PD
pathogenesis. Several proteins hadmultiple alleged roles and could be
assigned to multiple groups. Therefore, we simplified the classifica-
tion by assigning proteins to the group of their expected main
contribution or relationship to PD pathogenesis.
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Main hypotheses about PD pathogenesis (Fig. 1)

Pathologically, PD is characterized by the presence of Lewy
bodies and Lewy neurites as well as the loss of catecholaminergic
neurons in the substantia nigra and locus ceruleus. The Lewy bodies
contain a large variety of aggregated proteins, including α-synuclein
and ubiquitin. Post-mortem studies and the identification of gene
mutations associated with parkinsonism, have led to increased
insight in the processes and proteins that play a role in PD
pathogenesis. These processes will be summarized in the following
paragraphs.

Mitochondrial dysfunction and increased oxidative stress

Already in the eighties and nineties of the 20th century,
mitochondrial dysfunction was implicated in PD pathogenesis
through a reduction of mitochondrial complex I activity in the
substantia nigra of PD patients compared to controls (Schapira et al.,
1989). The realisation that a metabolite of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), which exhibits its effect by
interference in the mitochondrial electron transport chain by
inhibiting mitochondrial complex I (Tipton and Singer, 1993),
could cause parkinsonism and the development of an MPTP animal
model for PD further stressed the role of mitochondrial dysfunction.
Mitochondrial complex I was also shown to be inhibited by the
Fig. 1. Main hypotheses about PD pathogenesis based on current literature involve mitoch
aggregation, inflammation and glial activation, apoptosis and cell death and their interactio
support these hypotheses are shown in this figure.
pesticide rotenone. Chronic exposure to this pesticide can result in
symptoms that resemble Parkinson's disease (Betarbet et al., 2000).
Furthermore, altered levels of the mitochondria-related proteins
prohibitin, ATP synthase and superoxide dismutase 2 (SOD2) were
demonstrated in the substantia nigra and frontal cortex tissue of PD
patients compared to controls (Ferrer et al., 2007). Moreover, the
protein products of many genes associated with monogenetic forms
of parkinsonism, including α-synuclein, Parkin, DJ-1, PINK1, LRRK2
and HTRA2, have been implicated in mitochondrial dysfunction and/
or oxidative stress (Lin and Beal, 2006). Loss of mitochondrial
function is likely to play a major role in apoptosis-mediated cell
death via release of pro-apoptotic proteins like cytochrome C,
second messenger of mitochondrial activator of caspases (SMAC)
and HTRA2 (Lin and Beal, 2006), and reduced ATP formation by
oxidative phosphorylation. Moreover, dysfunction of mitochondria
leads to an increase in oxygen free radicals and, consequently,
increased oxidative stress (Schapira, 2008). Indeed, in the substantia
nigra of PD patients increased amounts of oxidatively modified
proteins have been observed, such as oxidatively modified UCH-L1
(Choi et al., 2004) and nitrated α-synuclein (Giasson et al., 2000). In
addition to increased levels of oxidatively modified proteins,
alterations in antioxidant protective systems, most notably reduced
levels of the antioxidant glutathione (GSH) have been identified in
the substantia nigra of PD patients compared to controls (Sian et al.,
1994).
ondrial dysfunction, increased oxidative stress, impaired protein degradation, protein
ns. The post-mortem findings and gene mutations associated with parkinsonism that
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Impaired protein degradation

Impairments in protein degradation systems have also been
implicated in the pathogenesis of PD. These systems, including the
lysosomal degradation pathway and the ubiquitin–proteasome
system, are involved in the degradation of misfolded, mutant,
denatured or otherwise damaged proteins (Betarbet et al., 2005).
The lysosomal degradation pathway is for example concerned with
the degradation of oligomeric intermediates ofα-synuclein (Lee et al.,
2004). These oligomeric intermediates are considered the toxic forms
of α-synuclein, which cause cellular dysfunction and cell death (El-
Agnaf et al., 2003).

Involvement of the lysosomal degradation pathway in the patho-
genesis of PD is supported by alterations in the glucocerebrosidase gene
sequence, a lysosomal enzyme, in post-mortem brain tissue of PD
patients (Lwin et al., 2004). Twelve out of 57 PD patients hadmutations
in this gene, compared to none of 44 control subjects. Mutations in the
ubiquitin–proteasome system, a system that labels proteins with
ubiquitin and guides them to the proteasome for degradation, can also
result in parkinsonism (Schapira, 2008). The ubiquitin dependent
proteolytic pathway is affected in patients with a mutation in the
ubiquitin carboxyl-terminal esterase L1 (UCH-L1) gene, a mutation
reported in two German siblings (Leroy et al., 1998), and in patients
with Parkin mutations that accounts for almost 50% of familial young-
onset PD (Lucking et al., 2000).

Protein aggregation and Lewy body formation

The production of misfolded, mutant, denatured or otherwise
damaged proteins and their impaired degradation results in the
accumulation and aggregation of proteins and the formation of Lewy
bodies and Lewy neurites. A highly prevalent protein in Lewy type
pathology is α-synuclein, a protein that is normally present in the
presynaptic terminals of most neurons. Point mutations, duplications
and triplications of the α-synuclein gene are associated with
hereditary forms of PD (Polymeropoulos et al., 1997; Kruger et al.,
1998; Zarranz et al., 2004; Chartier-Harlin et al., 2004; Singleton et al.,
2003). α-Synuclein is present in its monomeric form, although
trimers may also be present in physiological conditions (Leng et al.,
2001). In PD and other synucleinopathies, monomeric α-synuclein
aggregates into insoluble fibrils. Intermediate stages in the formation
of these aggregates are soluble oligomers and the subsequently
formed α-synuclein protofibrils (El-Agnaf et al., 2003). These
intermediates are considered to be the toxic forms of α-synuclein
(El-Agnaf et al., 2003; Schapira, 2006; Kazantsev and Kolchinsky,
2008). Several factors facilitate fibril formation and subsequent
aggregation, for example point mutations in the α-synuclein gene,
phosphorylation of α-synuclein at Ser129, a decrease in pH, an
increase in temperature or the presence of metal ions and other small
charged molecules (reviewed in Uversky (2007)). In addition, the
aggregation of α-synuclein can be induced by the protein tissue
transglutaminase. Tissue transglutaminase may contribute to the
formation of Lewy bodies by crosslinking α-synuclein proteins (Junn
et al., 2003). A recent proteomic analysis revealed that in addition to
α-synuclein, many other proteins are present in Lewy bodies,
including several kinases, ligases and proteins involved in protein
folding, membrane trafficking and oxidative stress (Xia et al., 2008).

Inflammation and glial activation

In the substantia nigra of PD patients inflammation has repeatedly
been demonstrated, comprising microglial activation, astrogliosis and
lymphocytic infiltration (Hirsch and Hunot, 2009). Increased levels of
interleukins (Mogi et al., 1994a) and alterations in growth factor
levels (Mogi et al., 1999; Parain et al., 1999; Mogi et al., 1994a) in the
substantia nigra and striatum of PD patients are molecular indicators
of inflammation and glial involvement. It is hypothesized that the
inflammatory changes contribute to the cascade of events leading to
neurodegeneration and hence disease progression (Hirsch and Hunot,
2009). However, inflammation may also be a response to the
neurodegenerative process. Supportive of a contributory role of
inflammation in PD pathogenesis is the relationship between
polymorphisms in neuro-inflammation associated genes, such as
tumor necrosis factor-alpha (TNF-α), interleukin-1-beta and inter-
leukin-6, and the risk of PD (Hirsch and Hunot, 2009) as well as the
protective effect of non-steroidal anti inflammatory drugs (NSAIDs)
(Chen et al., 2003). However, neuro-inflammatory processes are not
specific for PD, but are also observed in other neurodegenerative
disorders associated with parkinsonism, such as PSP and MSA
(McGeer and McGeer, 2004; Sakurai et al., 2002).

Apoptosis and cell death

Apoptosis-mediated cell deathhas also beenput forward as a possible
pathogenetic factor in PD. Mochizuki et al. histochemically detected
apoptosis in themidbrainof8outof 11PDpatients compared to1outof 6
control subjects (Mochizuki et al., 1996). Furthermore, the concentration
of anti-apoptotic protein bcl-2 (Yuan and Yankner, 2000) was compen-
satorily increased in nigrostriatal dopaminergic neurons in PD patients
compared to controls (Mogi et al., 1996a). Also soluble Fas, an apoptosis-
signaling receptor molecule, and Annexin V, which plays a role in
apoptotic cell death and necrosis, were increased in the substantia nigra
in PD suggesting a role for apoptosis in PD pathogenesis (Mogi et al.,
1996b; Werner et al., 2008). The fact that mutations in the apoptosis
related HTRA2 gene were demonstrated in PD patients (Strauss et al.,
2005) further strengthens the likelihood of involvement of apoptosis in
the pathogenesis of PD. The HTRA2 gene encodes serine protease, a
mitochondrial protein that degrades apoptosis inhibitors inside mito-
chondria, and promotes apoptosis in the cytosol (Lin and Beal, 2006).

CSF proteins reflecting PD pathogenesis (Table 1)

Mitochondrial dysfunction and oxidative stress

Studies investigating CSF levels of the mitochondria-related antioxi-
dant DJ-1 have yielded conflicting results. Waragai et al. reported
increased levels of DJ-1 in PD patients compared to non-PD controls,
especially in the early stages of PD (Waragai et al., 2006). A more recent
study however reported decreased DJ-1 levels in CSF of PD patients
compared to Alzheimer's disease patients and controls. The discrepancy
between the results of the two studies was ascribed to either cross-
reactive molecules detected by the ELISA technique, limitations of the
ELISA kit itself, or the degree of blood contamination (Hong et al., 2010).
Changes in the levels of oxidative stress related proteins have also been
demonstrated in the CSF of PD patients. For example the concentration of
nitrated manganese superoxide dismutase (Mn-SOD), an assumed
marker for peroxynitrite-mediated oxidative stress was increased in a
group of 10 PD patients compared to controls (Aoyama et al., 2000).

The antioxidant activity of the Cu/Zn-dependent superoxide dismu-
tase (SOD1) was reduced in the CSF of PD, Alzheimer's disease (AD),
Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS)
patients (Boll et al., 2008). Oxidatively modified forms of this same
protein were increased the CSF of PD patients compared to controls (Guo
et al., 2009). Ceruloplasmin and transferrin are other antioxidant proteins
studied in CSF (Abdi et al., 2006; Boll et al., 1999; Loeffler et al., 1994; van
Kamp et al., 1995; Boll et al., 2008). The ferroxidase enzyme in
ceruloplasmin converts Fe2+ into Fe3+that is transportedby transferrin.
Together they limit the Fe2+-catalyzed generation of toxic hydroxyl
radicals (Loeffler et al., 1994). CSF transferrin levels in PD patients did not
differ from the CSF levels in controls (Loeffler et al., 1994; van Kamp et al.,
1995), but ferroxidase activity and CSF ceruloplasmin levelswere reduced



Table 1
Studied CSF proteins in PD patients compared to controls that reflect PD pathogenesis.

Mitochondrial dysfunction and oxidative stress
Nitrated manganese superoxide dismutase (Mn-SOD) ↑ (Aoyama et al., 2000)
Oxidatively modified SOD1 ↑ (Guo et al., 2009)
Cu/Zn-dependent SOD1 activity ↓ (Boll et al., 2008)
SOD activity = (De Deyn et al., 1998; Marttila et al., 1988)
Serum transferrin N-terminal lobe ↑ (Sinha et al., 2009)
DJ-1 ↑ (Waragai et al., 2006); ↓ (Hong et al., 2010)
Glutathione = (Konings et al., 1999; Marttila et al., 1988)
Glutathione peroxidase activity = (Marttila et al., 1988)
Ceruloplasmin (ferroxidase) ↓ (Abdi et al., 2006); = (Loeffler et al., 1994)
Ferroxidase activity ↓ (Boll et al., 1999, 2008)
Ferritin = (Dexter et al., 1990; Kuiper et al., 1994; Pall et al., 1990)
Transferrin = (Loeffler et al., 1994; van Kamp et al., 1995)
Haptoglobin ↑ (Abdi et al., 2006)

Protein degradation
Beta-glucocerebrosidase activity ↓ (Balducci et al., 2007)
Alpha-mannosidase activity ↓ (Balducci et al., 2007)
Beta-mannosidase activity ↓ (Balducci et al., 2007)
Beta-hexoaminidase activity = (Balducci et al., 2007)
Beta-galactosidase activity = (Balducci et al., 2007)

Lewy body associated proteins
α-Synuclein = (Borghi et al., 2000; Ohrfelt et al., 2009); ↓ (Tokuda et al., 2006; Hong et al., 2010)
Tissue transglutaminase ↑ (Vermes et al., 2004)
Neurofilament heavy chain (NFH-SMI35) = (Brettschneider et al., 2006)
Phosphorylated neurofilament heavy chain (NFHp35) = (Abdo et al., 2007)
Neurofilament light chain (NFL) = (Abdo et al., 2007; Holmberg et al., 1998; Constantinescu et al., 2010)
Osteopontin ↑ (Maetzler et al., 2007)

Inflammation and glial activation
Interleukins

Interleukin-1-beta = (Pirttila et al., 1994); ↑ (Blum-Degen et al., 1995); not detectable (Mogi and Nagatsu, 1999)
Interleukin-2 = (Blum-Degen et al., 1995); not detectable (Mogi and Nagatsu, 1999)
Interleukin-4 Not detectable (Mogi and Nagatsu, 1999)
Interleukin-6 ↑ (Blum-Degen et al., 1995; Muller et al., 1998); not detectable (Mogi and Nagatsu, 1999)
Interleukin-8 ↑ (Zhang et al., 2008)
Interleukin-10 = (Rota et al., 2006)
Interleukin-12 = (Rota et al., 2006)

Growth factors
Brain-derived neurotrophic factor (BDNF) ↓ (Zhang et al., 2008); ↑ (Salehi, Mashayekhi, 2009)
Growth associated protein (GAP-43) ↓ (Sjogren et al., 2000)
Vascular endothelial growth factor = (Nagata et al., 2007)
Striatal derived neurotrophic factor (not further specified) ↑ (Carvey et al., 1991)
Transforming growth factor-beta1 (TGF-beta1) = (Rota et al., 2006); not detectable (Mogi and Nagatsu, 1999)
Basic fibroblast growth factor (bFGF) Not detectable (Mogi and Nagatsu, 1999)
Transforming growth factor-alpha (TGF-α) Not detectable (Mogi and Nagatsu, 1999)
Epidermal growth factor (EGF) Not detectable (Mogi and Nagatsu, 1999)
Insulin-like growth factor-1 (IGF-1) ↑ (Mashayekhi et al., 2010)
Insulin-like growth factor binding proteins (IGFBPs) ↑ (Mashayekhi et al., 2010)

Complement system
Complement protein C3b ↓ (Finehout et al., 2005)
Complement protein C4alpha ↓ (Guo et al., 2009)
Complement protein C4b ↓ (Finehout et al., 2005)
Complement protein C4d = (Yamada et al., 1994)
Factor B (complement factor B) ↓ (Finehout et al., 2005)
Factor H (complement factor H) = (Finehout et al., 2005)
Circulation immune complex (CIC) to C1q = (Yamada et al., 1994)

Antibodies
Antibodies to arboviruses Not detectable (Elizan et al., 1978)
Antibodies to measles virus ↑ (Marttila et al., 1982)
Antibodies to HSV ↑ (Marttila et al., 1982)
Antibodies to HSV1 = (Elizan et al., 1979); slightly detectable (Marttila et al., 1981)
Antibodies to HSV2 = (Elizan et al., 1979); slightly detectable (Marttila et al., 1981)
Antibodies to CMV = (Elizan et al., 1979); slightly detectable (Marttila et al., 1981)
Antibodies to coronavirus ↑ (Fazzini et al., 1992)
Antibodies to hsp 65 ↑ (Fiszer et al., 1996)
Antibodies to hsp 70 ↑ (Fiszer et al., 1996)
CSF antibodies reacting with structures of rat pons/medulla = (Imrich et al., 2006)
IgG immunoreactive to rat brain tissue neuronal cell bodies in SN
and ventral tegmental region

↑ (Carvey et al., 1991)

IgG = (Haussermann et al., 2001)
IgG index = (Haussermann et al., 2001)
Oligoclonal bands = (Haussermann et al., 2001)

(continued on next page)
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Inflammation and glial activation
Unclassified immune system or glial proteins

Glial fibrillary acidic protein (GFAP) = (Holmberg et al., 1998; Constantinescu et al., 2010)
Matrix metalloproteinase (MMP)-2 (indirectly related to immune system) = (Lorenzl et al., 2003)
Matrix metalloproteinase (MMP)-9 (indirectly related to immune system) = (Lorenzl et al., 2003)
Tissue inhibitor of MMP 1 (TIMP-1) (indirectly related to immune system) ↑ (Lorenzl et al., 2003)
Tissue inhibitor of MMP 2 (TIMP-2) (indirectly related to immune system) = (Lorenzl et al., 2003)
CSF/serum ratio for albumin (indirectly related to immune system) = (Haussermann et al., 2001)
Beta-fibrinogen (indirectly related to immune system) = (Abdi et al., 2006)
Ulinastatin-like immunoreactive substance (UTIRS) = (Shikimi et al., 1997)
Monocyte chemotactic protein-1 ↑ (Nagata et al., 2007)
Interferon-gamma (IFN-gamma) = (Rota et al., 2006)
Tumor necrosis factor-alpha (TNF-α) ↑ (Le et al., 1999; Mogi and Nagatsu, 1999)
Beta-2-microglobulin ↓ (Mogi et al., 1989); ↑ (Zhang et al., 2008); not detectable (Mogi and Nagatsu, 1999)
Alpha-1-antichymotrypsin = (Pirttila et al., 1994)

Apoptosis and cell death
Soluble form of Fas (sFas) Not detectable (Mogi et al., 1996b)
Bcl-2 Not detectable (Mogi et al., 1996a)
Annexin V ↓ (Vermes et al., 1999)

Note that the classification of proteins into groups is simplified; several proteins are involved inmultiple pathways and can be assigned tomultiple groups. ↑ indicates elevated levels
in PD compared to control patients; ↓ indicates decreased levels in PD compared to control patients; = indicates no difference between PD and control patients.
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in PD (Boll et al., 1999, 2008) (ceruloplasmin: sensitivity of 0.556 at 95%
specificity of ROC curve; area under ROC curve 0.809 (Abdi et al., 2006)).

Impaired protein degradation

In CSF of PD patients, the activities of three out of five studied
lysosomal enzymes were reduced with 24–71%: α-mannosidase
(pb0.01), β-mannosidase (0.05NpN0.01) and β-glucocerebrosidase
(0.05NpN0.01) (Balducci et al., 2007). To the best of our knowledge,
none of the proteins that are directly involved in the ubiquitin–
proteasome system has been studied in CSF for PD biomarker purposes.

Protein aggregation and Lewy body formation

Alpha-synuclein, themain component of Lewy bodies, is detectable in
both CSF and blood. Most applied ELISAs have detected totalα-synuclein
(Borghi et al., 2000; Lee et al., 2004; Li et al., 2007; Mollenhauer et al.,
2008; Ohrfelt et al., 2009; Tokuda et al., 2006; Hong et al., 2010), but for
plasma, andmore recently for CSF, a specific ELISA for its oligomeric forms
has been developed (El-Agnaf et al., 2006; Maetzler et al., 2009c). This
oligomeric formofα-synucleinwas increased inCSFofpatientswithLewy
body disease (PD and DLB combined) compared to non-Lewy body
disease subjects (controls and tauopathies) (Maetzler et al., 2009c).
However, these results have not been included in our Table 1, because
levels of oligomeric α-synuclein of the PD patients were not reported
separately byMaetzler et al. Totalα-synuclein inCSFwas eitherdecreased
(Tokuda et al., 2006; Mollenhauer et al., 2008; Hong et al., 2010) or
unchanged (Borghi et al., 2000; Ohrfelt et al., 2009) in PD patients
compared to controls. The largest study on CSF levels of α-synuclein was
recently published by Hong et al. who observed reduced levels of α-
synuclein in 117 PD patients compared to both 50 Alzheimer's disease
patients and 132 controls after controlling for blood contamination (Hong
et al., 2010). No association between α-synuclein levels and disease
severity was found in this study, in contrast to the results of a previous
study that showed an inverse correlation between α-synuclein and
disease severity (Tokuda et al., 2006).

Tissue transglutaminase, which may contribute to α-synuclein
aggregation by promoting crosslinks (Junn et al., 2003) was increased
almost tenfold in PD patients in comparison to controls (p=0.001),
although the overlap between controls and certain PD patients indicated
low sensitivity of this potential diagnostic marker (Vermes et al., 2004).
Osteopontin levels, one of several other proteins expressed in Lewy
bodies, were also increased in CSF of PD patients compared to controls
(Maetzler et al., 2007). Thisproteinmaybe involved inmanypathogenetic
mechanisms including oxidative stress, mitochondrial impairment,
apoptosis and cytokine regulation.Other proteins that havebeendetected
in Lewy bodies are neurofilaments (Hill et al., 1991) that are part of the
cytoskeleton. Levels of both neurofilament heavy chain and light isoforms
were similar in the CSF of PD patients compared to controls (Abdo et al.,
2007; Brettschneider et al., 2006; Holmberg et al., 1998). However,
neurofilament levels were increased in CSF of PSP and MSA patients
compared to PD patients, an observation that has been interpreted to
reflect the progressive nature of the disease process in these diseases
(Abdo et al., 2007; Brettschneider et al., 2006; Holmberg et al., 1998).

Inflammation and glial activation

The involvement of inflammatory mechanisms in PD is supported by
increased CSF levels of interleukins, including interleukin-1-beta, inter-
leukin-6 and interleukin-8 (Blum-Degen et al., 1995; Muller et al., 1998;
Zhangetal., 2008)anddecreased levelsof componentsof thecomplement
system(complement protein C3b, C4alpha, C4b and factor B) (Finehout et
al., 2005; Guo et al., 2009) in PD patients. These decreased levels of
components of the complement system could indicate an overactivation
of the complement system and subsequent depletion. Furthermore, the
growth factors brain-derived neurotrophic factor (BDNF), growth
associated protein (GAP-43), insulin-like growth factor-1 and striatal
derived neurotrophic factor were reported to be differently expressed,
althoughresults are conflicting forBDNF(Carveyet al., 1991; Sjogrenet al.,
2000; Zhang et al., 2008; Salehi andMashayekhi, 2009;Mashayekhi et al.,
2010). CSF studies also linked PD to the generation of auto-antibodies and
increased viral antibody levels (Fazzini et al., 1992; Gao et al., 1994;
Marttila et al., 1982), although intrathecal antibody production could not
be demonstrated (Marttila et al., 1982).

Apoptosis and cell death

The apoptosis-signaling molecules sFas and bcl-2 protein, which
are increased in nigrostriatal tissue of PD patients, were not detectable
in CSF using a two-site sandwich enzyme-linked immunosorbent
assay (Mogi et al., 1996a,b). Bcl-2 may not be detectable because it is
membrane bound (Mogi et al., 1996a). CSF levels of Annexin V, which
adheres to dying cells, were decreased in PD patients possibly due to
increased usage (Vermes et al., 1999).

CSF proteins not related to above described PD pathogenetic
mechanisms (Table 2)

Alzheimer's disease associated proteins

Alzheimer's disease-type neuropathological changes are common in
PD patients (Mattila et al., 1998). The three CSF markers most studied in



Table 2
Studied CSF proteins in PD patients compared to controls that are not related to the reviewed PD pathogenetic mechanisms.

AD associated proteins
Tau = (Arai et al., 1997; Bibl et al., 2007; Blennow et al., 1995; Jansen et al., 1998; Kahle et al., 2000;

Lins et al., 2004; Molina et al., 1997; Mollenhauer et al., 2006; Paraskevas et al., 2005; Sjogren et al.,
2002, 2001, 2000; Zhang et al., 2008; Parnetti et al., 2008; Borroni et al., 2009; Kanemaru et al., 2000;
Borroni et al., 2008; Compta et al., 2009); ↓ (Abdo et al., 2007), ↑ (Compta et al., 2009) (PDD)

Phospho-tau = (Blennow et al., 1995; Lins et al., 2004; Sjogren et al., 2002, 2001; Parnetti et al., 2008; Borroni et al.,
2009, 2008; Compta et al., 2009); ↑ (Compta et al., 2009) (PDD)

Beta amyloid (not further specified) = (van Gool et al., 1995)
Beta amyloid-42 = (Holmberg et al., 2003; Lins et al., 2004; Mollenhauer et al., 2006; Sjogren et al., 2000; Verbeek et al.,

2004; Zhang et al., 2008; Kanemaru et al., 2000; Compta et al., 2009); ↓ (Bibl et al., 2007; Sjogren et al., 2002;
Parnetti et al., 2008; Compta et al., 2009) (PDD(Compta et al., 2009))

Beta amyloid precursor protein ↓ (Henriksson et al., 1991)
Ad7c-neuronal thread protein = (de la Monte et al., 1992; Kahle et al., 2000; Monte et al., 1997; Yamada et al., 1993)
Aspartate-aminotransferase (ASAT) = (Jansen et al., 1998)
ApoAII ↓ (Zhang et al., 2008)
ApoE ↓ (Zhang et al., 2008); ↑ (Guo et al., 2009)
ApoJ (clusterin) = (Lidstrom et al., 2001)
Apolipoprotein C-I = (Abdi et al., 2006)

Neuropeptides
Chromogranin B (secretogranin 1) (precursor for
neuropeptides)

= (Abdi et al., 2006)

Met5-enkephalin-Arg6-Gly7-Leu8 (MERGL) ↓ (Baronti et al., 1991)
Methionine-enkephalin ↓ (Yaksh et al., 1990)
Encrypted met-enkephalin ↓ (Yaksh et al., 1990)
Dynorpin A(1–8) = (Baronti et al., 1991)
Diazepam binding inhibitor (DBI) ↑ (Ferrero et al., 1988a,b)
Beta-endorphin like immunoreactivity = (Jolkkonen et al., 1987; Hartikainen et al., 1992); ↓ (Nappi et al., 1985)
Cholecystokinin = (Verbanck et al., 1984)
Cholecystokinin-8 (CCK) ↓ (Lotstra et al., 1985)
Neuropeptide Y = (Yaksh et al., 1990); ↓ (Martignoni et al., 1992)
Substance P = (Matsuishi et al., 1999; Nutt et al., 1980)
High molecular weight form of somatostatin-like
immunoreactivity (HMV-SST)

= (Strittmatter et al., 1996)

Somatostatin-like immunoreactivity = (Hartikainen et al., 1992; Poewe et al., 1990; Volicer et al., 1986); ↑ (Espino et al., 1995); ↓ (Dupont et al.,
1982; Jolkkonen et al., 1986; Strittmatter et al., 1996; Strittmatter and Cramer, 1992; Unger et al., 1988)

Somatostatin-14 = (Strittmatter et al., 1996)
Somatostatin-25/28 = (Strittmatter et al., 1996)
Des-ala-somatostatin ↑ (Strittmatter et al., 1996)
Corticotropin-releasing hormone (CRH) = (Suemaru et al., 1995)
Arginine vasopressin ↓ (Olsson et al., 1987; Sundquist et al., 1983)
Neurokinin A = (Galard et al., 1992)
Homocarnosine = (Bonnet et al., 1987)
Beta-lipotropin = (Nappi et al., 1985)
Adrenocorticotropic hormone (ACTH) = (Nappi et al., 1985)

Unclassified proteins
Total protein concentration = (Zubenko et al., 1986); ↑ (Hartikainen et al., 1992)
Acetylcholinesterase immunoreactivity = (Konings et al., 1995) (PD, non-demented); ↓ (Konings et al., 1995) (PDD)
Acetylcholinesterase activity = (Hartikainen et al., 1992; Jolkkonen et al., 1986; Konings et al., 1995; Manyam et al., 1990; Ruberg et al.,

1987; Zubenko et al., 1986); ↓ (Konings et al., 1995) (PDD)
Butyrylcholinesterase activity = (Ruberg et al., 1987; Sirvio et al., 1987; Maetzler et al., 2009a)
Dopamine-beta-hydroxylase activity = (Hartikainen et al., 1992)
Angiotensin-converting enzyme (ACE) ↑ (Konings et al., 1994; Zubenko et al., 1986); ↓ (Zubenko et al., 1985)
Angiotensin-converting enzyme (ACE) activity ↑ (Konings et al., 1994) (in treated PD patients); = (Konings et al., 1994) (in untreated PD patients);

↓ (Zubenko et al., 1986, 1985)
Autotaxin (ectonucleotide pyrophosphatase/
phosphodiesterase 2)

↑ (Guo et al., 2009)

Pigment epithelium-derived factor (PEDF) = (Guo et al., 2009)
Nicotinamide-N-methyltransferase (NNMT)
(endogenous toxin)

↑ (Aoyama et al., 2001) (in PD patients b 66 years)

Apolipoprotein H (beta 2-glycoprotein I) ↓ (Abdi et al., 2006)
T-cadherin (H-cadherin) = (Abdi et al., 2006)
Vitamin D binding protein (VDBP) = (Abdi et al., 2006), ↑ (Zhang et al., 2008)
Hemoglobin-beta-fragment ↓ (Sinha et al., 2009)
Alpha-1-microglobulin-like immunoreactive substance
(alpha 1 MIRS)

= (Shikimi et al., 1997)

Note that the classification of proteins into groups is simplified; several proteins are involved inmultiple pathways and can be assigned tomultiple groups. ↑ indicates elevated levels
in PD compared to control patients; ↓ indicates decreased levels in PD compared to control patients; = indicates no difference between PD and control patients.
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AD,namely tau, phosphorylated tauandbeta amyloid-42,have repeatedly
been studied in PD. In PD, beta amyloid-42 was incidentally found to be
decreased (Bibl et al., 2007; Compta et al., 2009; Parnetti et al., 2008;
Sjogren et al., 2002) but in general appeared unchanged compared to
controls (Holmberg et al., 2003; Lins et al., 2004;Mollenhauer et al., 2006;
Sjogren et al., 2000; Verbeek et al., 2004; Zhang et al., 2008; Kanemaru
et al., 2000). Differences in CSF tau or phosphorylated tau levels between
PD and controls have only been demonstrated twice (Abdo et al., 2007;
Compta et al., 2009). Most other AD associated proteins were unchanged
in PD (Abdi et al., 2006; de laMonte et al., 1992; Jansen et al., 1998; Kahle
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et al., 2000;Monte et al., 1997; Yamada et al., 1993; Lidstrom et al., 2001),
except for apoE and apoAII protein (Zhang et al., 2008; Guo et al., 2009),
which were different compared to controls. Recently, Compta et al.
reported that dissimilar levels of tau, phosphorylated tau and beta
amyloid-42 could only be demonstrated in a subgroup of PD patients,
namely patients that were diagnosed with Parkinson's disease related
dementia (PDD) (Compta et al., 2009). An explanation for these findings
might be that underlying AD-pathology in PDD is responsible for the
different levels of AD associated proteins.

Neuropeptides

CSF neuropeptides have been studied extensively in the eighties and
nineties of the last century. Neuropeptides are short polymers of amino
acids secreted by neurons for interneuronal communication purposes.
They may modulate receptor sensitivity and interact with other
neurotransmitters (Strittmatter et al., 1996). Several neuropeptides
are decreased inCSFof PDpatients compared to controls, includingMet-
Enkephalin (Fischer, 1974; Yaksh et al., 1990), cholecystokinin-8
(Lotstra et al., 1985) and arginine vasopressin (Olsson et al., 1987;
Sundquist et al., 1983). A potential explanation for this decrease is cell
death of specific neurons or suppression of their secretory activity
(Strittmatter et al., 1996). Cell death may on the other hand result in
increased levels of neuropeptides through the release of peptides from
damaged brain tissue (Espino et al., 1995). Raised CSF peptide levels
have been demonstrated for diazepam binding inhibitor (DBI) (Ferrero
et al., 1988a,b) and des-ala-somatostatin (Strittmatter et al., 1996).
Several neuropeptides have been reported only once and the results of
some neuropeptide studies led to conflicting data (Dupont et al., 1982;
Espino et al., 1995; Jolkkonen et al., 1986; Strittmatter et al., 1996;
Strittmatter and Cramer, 1992; Unger et al., 1988).

Potential PD candidate biomarkers (Table 3)

To identify potential PD candidate biomarkers, we chose to use the
following criteria: 1) proteins should be differently expressed in PD
patients compared to controls in both affected brain tissue and CSF
Table 3
Biomarker candidates: proteins related to the pathogenesis of PD that are differently expre

Brain tissue

Mitochondrial dysfunction and increased oxidative stress
Ceruloplasmin (ferroxidase) ↑ (Loeffler et al., 1996)
DJ-1 ↓ (Kumaran et al., 2009)
Oxidatively modified superoxide dismutase 1 (SOD1) ↑ (Choi et al., 2005)

Impaired protein degradation
Beta-glucocerebrosidase activity alteration in glucocerebrosidase g

(Lwin et al., 2004)

Protein aggregation and Lewy body formation
α-Synuclein present in Lewy bodies, = SDS-s

(Tong et al., 2010)
Tissue transglutaminase ↑ (Andringa et al., 2004)
Osteopontin ↓ (Iczkiewicz et al., 2006); presen

(Maetzler et al., 2007)

Inflammation and glial activation
Interleukin 1-beta ↑ (Mogi et al., 1994a)

Interleukin-6 ↑ (Mogi et al., 1994a)

Brain-derived neurotrophic factor (BDNF) ↓ (Mogi et al., 1999; Murer et al.,
Parain et al., 1999)

Tissue inhibitor of MMP 1 (TIMP-1) ↑ (Lorenzl et al., 2002)
Tumor necrosis factor-alpha (TNF-α) ↑ (Mogi et al., 1994b; Nagatsu et
Beta-2-microglobulin ↑ (Mogi et al., 1995)

SDS = sodium dodecyl sulfate; ↑ indicates elevated levels in PD compared to control pati
difference between PD and control patients.
and (2) proteins should bear a relationship to a pathogenetic
mechanism involved in PD. We state that the most sensitive and
specific biomarkers for PD are within this group of pathogenesis
related proteins. Table 3 lists the proteins that fulfil these criteria and
provides the direction of change of protein levels in CSF and affected
brain tissue. The list includes the oxidative stress related proteins
ceruloplasmin, DJ-1 and oxidatively modified SOD1, the lysosomal
enzyme beta-glucocerebrosidase and proteins related to protein
aggregation and Lewy body formation: α-synuclein, tissue transglu-
taminase and osteopontin. Furthermore, a number of proteins
involved in inflammation and glial activation are candidate PD
biomarkers: interleukin-1-beta, interleukin-6, BDNF, tissue inhibitor
of matrix metalloproteinase-1 (TIMP-1), tumor necrosis factor-alpha
(TNF-α) and beta-2-microglobulin. While the direction of change for
several studied proteins is the same in CSF and brain tissue, changes in
opposite directions have been observed for a number of proteins,
including ceruloplasmin, DJ-1 and osteopontin. This may be the result
of active transport (i.e. secretion or extraction) between tissue and
CSF. Conflicting results among studied CSF proteins might result from
differences in the applied assays and/or the significant effect of blood
contamination that was reported for CSF levels of both DJ-1 and
α-synuclein (Hong et al., 2010). The list is still limited and will
undoubtedly grow in the near future by the application of proteomics
and the subsequent validation of identified proteins. Furthermore,
additional proteins might result from the identification of new
pathogenetic processes involved in PD. It is important to stress that
the candidacy of a couple of the selected potential biomarkers is based
on single findings. There is a strong need for validation of the potential
CSF biomarkers in preferentially pathologically confirmed cohorts
and, to account for inter-laboratory variability, in multiple centers.

How to reach high sensitivity and specificity

The relative contribution of each of the various mechanisms
(mitochondrial dysfunction, oxidative stress, impaired protein deg-
radation, etcetera) to the pathogenesis may vary between PD patients.
This heterogeneity in the pathogenesis of PD makes it likely that a
ssed in PD patients compared to controls in both CSF and brain tissue.

CSF

↓ (Abdi et al., 2006); = (Loeffler et al., 1994)
↑ (Waragai et al., 2006); ↓ (Hong et al., 2010)
↑ (Guo et al., 2009)

ene sequence ↓ (Balducci et al., 2007)

oluble α-synuclein = (Borghi et al., 2000; Ohrfelt et al., 2009);
↓ (Tokuda et al., 2006; Hong et al., 2010)
↑ (Vermes et al., 2004)

t in Lewy bodies ↑ (Maetzler et al., 2007)

= (Pirttila et al., 1994); ↑ (Blum-Degen et al., 1995);
not detectable (Mogi and Nagatsu, 1999)
↑ (Blum-Degen et al., 1995; Muller et al., 1998); not detectable
(Mogi and Nagatsu, 1999)

2001; ↓ (Zhang et al., 2008); ↑ (Salehi, Mashayekhi, 2009)

↑ (Lorenzl et al., 2003)
al., 2000) ↑ (Le et al., 1999; Mogi and Nagatsu, 1999)

↓ (Mogi et al., 1989); ↑ (Zhang et al., 2008); not detectable
(Mogi and Nagatsu, 1999)

ents; ↓ indicates decreased levels in PD compared to control patients; = indicates no



237K.D. van Dijk et al. / Neurobiology of Disease 39 (2010) 229–241
combination of proteins which represent different pathogenetic
processes will be needed to accomplish a sufficiently high degree of
sensitivity. A combination of candidate biomarkers listed in Table 3
may be capable to reach the required sensitivity andmay differentiate
PD patients in an early stage of the disease from healthy individuals.

In the clinical setting, it is also essential to differentiate PD from
other neurodegenerative disorders, in particular MSA and PSP in their
early stages. Several of the proteins listed in Table 3 have been studied
in other neurodegenerative disorders. Although the majority of these
proteins have not been studied in the atypical parkinsonian
syndromes PSP and MSA, it is clear that several of these proteins are
not specific for PD. The lack of specificity applies to proteins associated
with different pathogenetic processes, varying from increased
oxidative stress to inflammation. For example, CSF levels of
glucocerebrosidase activity, decreased in PD, were also decreased in
dementia with Lewy bodies (DLB) patients (Parnetti et al., 2009). CSF
levels of DJ-1 have not yet been evaluated in other neurodegenerative
diseases. In multiple sclerosis patients, however, DJ-1 CSF levels were
significantly higher in comparison to controls (Hirotani et al., 2008).
Inflammatory proteins seem to be the least specific pathogenetic
group. Inflammatory cytokine interleukin-1-beta levels were in-
creased in CSF of patients with small infarcts (Sun et al., 2009) and
AD (Blum-Degen et al., 1995), whereas TIMP-1was increased in CSF of
patients diagnosed with PSP, AD, Huntington's disease and amyo-
trophic lateral sclerosis (Lorenzl et al., 2003). In addition, IL-6, BDNF
and TNF-α were increased in CSF of AD patients (Blum-Degen et al.,
1995; Tarkowski et al., 1999; Zhang et al., 2008), like in PD patients.

The lack of specificity of several candidate biomarkers can be ex-
plainedby the fact that neurodegenerative disorders suchas PD,MSAand
PSP not only overlap clinically, but also share neuropathological
characteristics and hypothesized pathogenetic mechanisms. Much like
PD, both MSA and PSP are neuropathologically characterized by the
presence of protein aggregates. In MSA, the aggregates are principally
composed of α-synuclein and are located in oligodendroglial cells
(Wakabayashi et al., 1998). In PSP, hyperphosphorylated tau accumu-
lates in neurons (Hauw et al., 1994). Proteins involved in apoptosis and
antioxidant proteins such as bcl-2 and DJ-1 can also be detected post-
mortem in aggregates in MSA (reviewed in Wenning et al. (2008)). In
PSP, as in PD, kinases, mitochondrial dysfunction and chronic inflamma-
tion may play an important role in pathogenesis (Ludolph et al., 2009).

Neuropathologically, α-synuclein immunohistochemistry is at
present the gold standard to detect PD pathology. This protein could
be a highly effective PD biomarker, which in theory could differentiate
the synucleinopathies (PD, MSA and DLB) from tauopathies like PSP.
The disappointing results with total α-synuclein until now could be
related to the studied form of this protein. Quite possibly, the toxic
intermediates of α-synuclein, already found to be increased in plasma
of PD patients compared to controls (El-Agnaf et al., 2006), and in CSF
of a combined PD/DLB group compared to non-Lewy body disease
subjects (Maetzler et al., 2009c), are the most promising target.

The rate of progression of the different neurodegenerative
disorders forms a second clue to the selection of specific PD
biomarkers. MSA and PSP tend to progress more rapidly than PD,
with higher rates of cell death and consequently increased release of
cellular proteins in the CSF. For example neurofilament protein, a
cytoskeletal protein that is also present in Lewy bodies (Hill et al.,
1991), is increased in the CSF of MSA, PSP and corticobasal
degeneration (CBD) patients compared to PD patients (Abdo et al.,
2007; Brettschneider et al., 2006; Holmberg et al., 1998) and may be
useful to differentiate these atypical parkinsonian disorders from PD
in its early stages.

Thirdly, it is quite possible that the most specific CSF biomarkers
for PD have not yet been identified. The majority of the reviewed
studies are based on hypothesis driven research. We anticipate that in
the coming years, proteomic analysis of the CSF, a technique that
enables large-scale unbiased identification of proteins (Shi et al.,
2009), will offer great opportunities for the identification of novel and
specific biomarker candidates, in particular when these proteomic
studies would include additional diagnostic groups such as MSA and
PSP.

Multiple markers

Altogether, a combination of biomarkers will probably be required
to reach sufficiently high sensitivity and specificity. We propose to
select biomarkers from different pathogenetic processes to account
for the pathogenetic heterogeneity of the disease (for example DJ-1,
α-synuclein and TNF-α) and additional biomarkers to differentiate PD
from atypical parkinsonian disorders (for example neurofilaments).

From the perspective of combining markers, a promising bio-
marker study with multiple markers was performed by Zhang et al.
(2008). A combination of eight proteins was derived using a
proteomic CSF analysis. Subsequent antibody based validation of the
combination of proteins agreed with expert diagnoses in 95% of PD
patients, 95% of control subjects and 75% of AD patients. In addition to
CSF proteins, other biochemical markers like oxidative stress marker
8-hydroxy-2 deoxyguanosine (8-ohdg) (Gmitterova et al., 2009; Isobe
et al., 2010) and non-biochemical markers like dopamine transporter
single photon emission computed tomography (DaT-SPECT), MRI,
olfactory testing and neuropsychological evaluation (Graeber, 2009)
can be helpful to increase sensitivity and specificity.

Finally, biomarkers that may improve the accuracy of an early PD
diagnosis may also be suitable to effectively monitor disease pro-
gression. These markers of disease progression can be crucial for the
evaluation of neuromodulatory or neuroprotective therapies (Maet-
zler et al., 2009b). Studies with follow-up measurements, such as the
recently published study by Constantinescu et al. (2010), will be
required for this purpose.

Conclusions and future directions

Changes in the levels of several of the studied CSF proteins in PD
patients are in support of the hypothesized pathogenetic mechanisms,
including mitochondrial dysfunction, oxidative stress, protein degra-
dation involving the lysosomal pathway, inflammatory processes,
glial cell activation and cell death. However, sensitive, specific and
thoroughly validated diagnostic CSF markers for PD have not yet been
identified. Proteins that are related to the pathogenesis and in
addition are differently expressed in PD patients compared to con-
trols in affected brain tissue and CSF, such as the antioxidant DJ-1,
α-synuclein or the α-synuclein crosslinking protein tissue transgluta-
minase, may be potential candidate biomarkers. However, the specific-
ity of these candidate biomarkers may be low, due to heterogeneity in
disease pathology and pathological overlap with other neurodegener-
ative disorders. Specificity and sensitivitymay be increased by selecting
a set of CSF biomarkers and combine them with non-biochemical
markers, for example brain imaging or olfactory testing. Unbiased
discovery using mass spectrometry based CSF proteomics that includes
both PD patients and several other diagnostic groups might yield
additional PD-specific biomarkers. Such proteomics findings need to be
translated into the development of more convenient multiparameter
tests for large-scale analysis and broad application among laboratories.
Another important element that is still lacking is the reproduction of
findings and large-scale validation of candidate biomarkers, preferen-
tially in neuropathologically confirmed PD patients and in more
accessible body fluids such as blood and urine, fluids in which brain
tissue proteins may be present in low concentrations. Validation in
patient groups of different disease stages as well as longitudinal studies
may reveal markers that reflect or predict disease progression. These
additional validation steps are essential to enable clinical applicability of
CSF biomarkers in PD.
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