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Abstract

Background: Metagenomics is revolutionizing the study of microorganisms and their involvement in biological,
biomedical, and geochemical processes, allowing us to investigate by direct sequencing a tremendous diversity of
organisms without the need for prior cultivation. Unicellular eukaryotes play essential roles in most microbial
communities as chief predators, decomposers, phototrophs, bacterial hosts, symbionts, and parasites to plants and
animals. Investigating their roles is therefore of great interest to ecology, biotechnology, human health, and evolution.
However, the generally lower sequencing coverage, their more complex gene and genome architectures, and a lack of
eukaryote-specific experimental and computational procedures have kept them on the sidelines of metagenomics.

Results: MetaEuk is a toolkit for high-throughput, reference-based discovery, and annotation of protein-coding genes
in eukaryotic metagenomic contigs. It performs fast searches with 6-frame-translated fragments covering all possible
exons and optimally combines matches into multi-exon proteins. We used a benchmark of seven diverse, annotated
genomes to show that MetaEuk is highly sensitive even under conditions of low sequence similarity to the reference
database. To demonstrate MetaEuk’s power to discover novel eukaryotic proteins in large-scale metagenomic data, we
assembled contigs from 912 samples of the Tara Oceans project. MetaEuk predicted >12,000,000 protein-coding genes
in 8 days on ten 16-core servers. Most of the discovered proteins are highly diverged from known proteins and
originate from very sparsely sampled eukaryotic supergroups.

Conclusion: The open-source (GPLv3) MetaEuk software (https://github.com/soedinglab/metaeuk) enables large-scale
eukaryotic metagenomics through reference-based, sensitive taxonomic and functional annotation.
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Background
Unicellular eukaryotes are present in almost all environ-
ments, including soil [1], oceans [2], and plant and
animal-associated microbiomes [3, 4]. They exhibit both
autotrophic and heterotrophic lifestyles [5], exist in sym-
biosis with plants and animals [6], and interact with
other microbial organisms [7]. They account for roughly

half of the global primary productivity in the oceans,
mostly by photosynthesis [8], are key contributors to the
carbon and nitrogen cycles through carbon-dioxide fix-
ation, organic matter degradation, and denitrification [9,
10], and have been shown to be a source for chemically
bioactive compounds [11, 12].
Since the advent of metabarcoding using 18S rRNA

genes, the known evolutionary diversity of unicellular eu-
karyotes has increased by orders of magnitude [13], and
novel phyla and supra-kingdoms are still being discovered
[14, 15]. Due to their vast diversity [16, 17], unicellular
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eukaryotes are certain to hold invaluable secrets for bio-
technology and biomedicine.
Protein-coding genes are major keys for understanding

eukaryotic functions and activities [18]. Metatranscriptomic
and metagenomic studies provide unique means to reveal
protein-coding genes. However, despite the great potential of
studying uncultivatable eukaryotes in their natural environ-
ment, they have received little attention in metatranscrip-
tomic and metagenomic studies so far, with a few notable
exceptions e.g., [19, 20]. The unique features of eukaryotic
data, i.e., lower genomic coverage due to lower population
densities in metagenomic samples, fewer reference genomes,
increased genome sizes, and higher complexity of gene struc-
ture negatively impact all stages of metagenomic analyses,
from assembly, through binning, to protein prediction and
annotation [21, 22].
Specifically, identifying protein-coding genes in

eukaryotes is inherently more challenging than in pro-
karyotes due to the exon-intron architecture of
eukaryotic genes. To date, methods for eukaryotic gene
calling e.g., [23–25] consider two types of information
when training models for gene prediction: intrinsic se-
quence signals (e.g., CpG islands) and extrinsic data,
such as transcriptomics or an annotated genome from a
closely related organism. As splicing signatures are not
well conserved throughout evolution, the predictive
power of the trained models declines fast when applied
to organisms that are phylogenetically distant from the
organism on which the model was trained [26].
While these methods are very useful for genomics,

their applicability to metagenomic data is severely lim-
ited. First, the transcriptomic or genomic data of anno-
tated organisms that are sufficiently closely related are
usually not available. Second, since the models need to
be trained on a relatively narrow clade, the application
of such methods to metagenomic data requires to first
bin the assembled contigs by their assumed genome of
origin as performed by [27], which is often quite in-
accurate and slow, especially when the number of con-
tigs is large, the coverage is low, the contigs are short,
and the metagenomic data are species-rich [28–30]. Fi-
nally, model-training in itself is time consuming, taking
hours to days per genomic bin [25, 27], limiting this ap-
proach to the analysis of few genomic bins at a time.
Previously, methods that bypass or reduce the need to

explicitly train models to detect protein-coding genes
have been proposed in the context of genomics e.g., [31,
32]. These methods extract putative protein-coding frag-
ments from the genome and join those that bear se-
quence similarity to available transcriptomic or protein
sequence targets. Since the joined fragments can be sep-
arated by non-coding (intronic) regions, their match to
the target is termed “spliced alignment.” Even at a gen-
omic level, a brute force application of the spliced

alignment approach poses a serious computational bur-
den as it requires aligning each putative fragment to
each target as well as recovering the set of putative frag-
ments that best match a target.
Here, we developed MetaEuk, a novel and sensitive

reference-based approach to identify single- and multi-
exon protein-coding genes in eukaryotic metagenomic
data. MetaEuk takes as input a set of assembled contigs
and a reference database of target protein sequences or
profiles. MetaEuk scans each contig in all six reading
frames and extracts putative protein fragments between
stop codons in each frame. Thus, MetaEuk makes no as-
sumption about the splicing signal and does not rely on
any preceding binning step. MetaEuk uses the MMseqs2
code library [33] for a very fast, yet sensitive identifica-
tion of putative exons within the fragments. This step
also discards the vast majority of fragments, which sig-
nificantly reduces the computation time of all succeed-
ing steps. The combinatorial task of considering all
possible sets of putative exons to best match a given tar-
get is solved by means of dynamic programming. Since
MetaEuk uses a homology-based strategy to identify
protein-coding genes, it can directly confer annotations
to the discovered genes from the matched target
proteins.
We benchmarked MetaEuk by using annotated ge-

nomes and proteins of seven unicellular organisms from
different parts of the eukaryotic tree of life under condi-
tions of increasing evolutionary distance to sequences in
the reference database. Despite its high speed and low
false positive rates, MetaEuk is able to discover a large
fraction of the known proteins in these benchmark ge-
nomes. We next applied MetaEuk to study marine eu-
karyotes. We assembled all Tara Oceans metagenomic
samples [20] and focused on ~1,300,000 contigs of at
least 5 kbp in length. We clustered more than 330,000,
000 proteins to create a comprehensive catalog of over
87,000,000 protein profiles to serve as a reference data-
base. We found the MetaEuk collection of >12,000,000
marine proteins is highly diverged, offering major
eukaryotic lineage expansions.

Results
The MetaEuk algorithm
The main steps of the algorithm are presented schematically
in Fig. 1, and a detailed description is provided in the
Methods section. For each input contig, all possible protein-
coding fragments are translated in six reading frames and
searched against a reference target database of protein se-
quences or profiles. Fragments from the same contig and
strand that hit a reference target T are examined together. In
each fragment, only the part that was aligned to the target
protein T is considered as a putative exon. The putative
exons are ordered according to their start position on the
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contig. Based on their contig locations and the locations of
their aligned region on the target T, any two putative exons
are either compatible or not. A dynamic programming pro-
cedure recovers the highest scoring path of compatible pairs
of putative exons by computing the maximum scores of all
paths ending with each putative exon. Since homologies
among targets in the reference database can lead to multiple
calls of the same protein-coding gene, redundancies are re-
duced by clustering the calls. To that end, all calls are or-
dered by their start position on the contig. The first call
defines a new cluster and all calls that overlap it on the con-
tig are assigned to its cluster if they share an exon with it.
The next cluster is defined by the first unassigned call. After
all calls are clustered, the best scoring call is selected as the
representative of the cluster, termed a “prediction.” Finally, as
overlaps of genes on the same strand are very rare as
reviewed by [34], gene predictions overlapping others on the
same strand with a better E-value are removed.

Performance evaluation on benchmark data
We evaluated MetaEuk using seven annotated unicellu-
lar eukaryotic organisms obtained from the NCBI’s gen-
ome assembly database [35] (Table 1). These organisms
are varied in terms of their phylogenetic group, genome
size, number of annotated proteins, fraction of multi-
exon genes, and assembly quality. MetaEuk was run on
the assembled scaffolds of each of these organisms
against the UniRef90 [36] database with an average run
time of 42 min per genome, or 0.5 Mbp/min, on a server
with two 8-core Intel Xeon E5-2640v3 CPUs and 128
GB RAM (Table 1). The NCBI data included the scaffold
coordinates of the annotated protein-coding genes and
their exons. In the following sections, we used this infor-
mation to assess MetaEuk’s sensitivity and precision by
mapping MetaEuk predictions to annotated proteins in
their scaffold location. This was done based on the scaf-
fold boundaries of the MetaEuk prediction and the

Fig. 1 MetaEuk algorithm. Input to MetaEuk are assembled metagenomic contigs and a reference database of protein sequences. 1 Six-frame
translation of all putative protein-coding fragments from each contig. 2 Fragments on the same contig and strand that hit the same reference
protein T are examined together. 3 Putative exons are identified and ordered according to their start position on the contig. The highest score
and path (denoted with a star) of a set of compatible putative exons is computed by dynamic programming, in which individual scores of the
putative exons are summed and unmatched amino acids are penalized. 4 Redundancies among gene calls due to homologous targets (T, T’, and
“T”) are reduced and a representative prediction (denoted with a star) is retained. 5 Contradicting predictions of overlapping genes on the same
strand are resolved by excluding the prediction with the higher E-value
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Table 1 Species used to benchmark MetaEuk

Species Group Genome size
(Mbp)

#
scaffolds

# annotated
proteins

% multi-exon
proteins

GC% MetaEuk run time
against UniRef90

Schizosaccharomyces pombe Fungi 12.59 4 5132 47 36 35 m

Acanthamoeba castellanii str. Neff Amoebozoa 42.02 384 14,974 91 57.8 59 m

Phytomonas sp. isolate EM1 Excavata 17.78 138 6381 0 48 37 m

Babesia bigemina Alveolates 13.84 483 5079 54 50.6 35 m

Nucleomorph of Lotharella oceanica Rhizaria 0.68 4 668 39 32.8 24 m

Phaeodactylum tricornutum Stramenopiles 27.45 88 10,408 46 48.8 51 m

Aspergillus nidulans Eurotiomycetes 30.28 91 9556 88 50.3 52 m

Fig. 2 MetaEuk evaluation on benchmark. MetaEuk predictions were mapped to annotated proteins. a Conditions of increasing evolutionary
divergence were simulated by excluding gene calls based on their sequence identity to their target. Sensitivity is the fraction of annotated
proteins from the query genome to which a MetaEuk prediction was mapped. b Fraction of exons covered by MetaEuk (color saturation). The
number of MetaEuk predictions is indicated on top of each bar. c In an annotation-dependent precision estimation, MetaEuk predictions that
mapped to an annotated protein were considered as “true” and the rest as “false.” These sets of predictions are well separated by their E-values,
as indicated by the high AUC-PR values. d Fraction of annotated protein-coding genes that were split by MetaEuk into two (dark grey) or three
(black) different predictions. e Comparison of the E-values computed by MetaEuk and by the Smith-Waterman algorithm for A. castellani proteins.
The Spearman rho values indicate high correlation for A. castellani and for the other organisms (Supp. Figure S3A)

Levy Karin et al. Microbiome            (2020) 8:48 Page 4 of 15



annotated protein and by requiring high sequence iden-
tity of their protein alignment. We then computed the
coverage of individual exons of the annotated proteins
to which MetaEuk predictions were mapped. These
mappings are fully described in the Methods section.

Sensitivity at evolutionary distance
Sequences from major eukaryotic clades, such as Rhi-
zaria, Stramenopiles, and Dinoflagellata are poorly repre-
sented in public protein databases, despite their high
abundance in the environment [17]. We therefore mea-
sured the ability of MetaEuk to identify homologous
protein-coding genes in organisms, which have distant
evolutionary relatives in the reference database, as would
be the case in a typical metagenomic analysis. To that
end, for each annotated organism, we considered five
sets of MetaEuk predictions. The first is the base set,
which consisted of all predictions. Since we worked with
annotated species, their proteins are well represented in
UniRef90. The base set therefore reflects ideal condi-
tions, in which the queried organisms are close to the
reference database. The other four sets reflect an in-
creasing evolutionary distance and were generated by ex-
cluding MetaEuk gene calls whose Smith-Waterman
alignment (computed using MMseqs2) to their UniRef90
target had more than 90%, 80%, 60%, or 40% sequence
identity. We measured sensitivity as the fraction of an-
notated proteins from the query genome to which a
MetaEuk prediction was mapped (see Methods). For all
organisms, the sensitivity of the base set of predictions
was at least 92%, and sensitivity decreased with the se-
quence identity threshold (Fig. 2a). However, even at
low thresholds (40–60%), a significant fraction of the an-
notated proteins could be discovered.

Annotated exon coverage
We next assessed MetaEuk’s performance at the level of indi-
vidual exons. For each MetaEuk prediction from the base set
and its mapped annotated protein, we computed the propor-
tion of annotated exons that were covered by the prediction
(see Methods). Overall, the majority of predictions covered
the majority of exons and, as expected, the fraction of predic-
tions that cover all annotated exons decreases with the num-
ber of exons in the annotated protein (Fig. 2b). For all
organisms, most (77–91%) annotated exons were covered by
MetaEuk predictions. In addition, we found that the fraction
of multi-exon MetaEuk predictions was similar to that pre-
sented in Table 1 (average difference 10%, Supp. Figure S1A)
and that single-exon predictions tended to have longer exons
than multi-exon predictions (Supp. Figure S1B). An add-
itional measure of completeness of MetaEuk predictions is
the coverage of the target UniRef90 protein based on which
the prediction was made. We therefore aligned each pre-
dicted MetaEuk protein to its target and found that on

average, >83% of predictions covered >90% of their target
(Supp. Figure S2).

Precision
MetaEuk predictions that were mapped to annotated pro-
teins were considered as true predictions. We first mea-
sured the precision of MetaEuk by using the NCBI
annotations as gold standard and regarded all predictions
in the base set that were not mapped to an annotated pro-
tein (8–35%, Supp. Figure S2) as false. We computed
precision-recall curves by treating the predictions’ E-
values as a classifying score. We found good separation
(AUC-PR > 0.7 in all cases) between predictions that
mapped to annotated proteins and the rest (Fig. 2c). How-
ever, a prediction that does not map to a known protein is
not necessarily false as it might reflect an unannotated
protein. We found that about 40% of the unmapped pre-
dictions overlap a protein-coding gene on the opposite
strand or are on scaffolds that had no annotation at all
(Supp. Figure S2), suggestive of post hoc exclusion criteria
in the NCBI annotation procedure. For this reason, we
also measured the precision of MetaEuk independently of
external annotations by using an inverted sequence null
model. For this annotation-free approach, we ran standard
MetaEuk on the inverted sequences of the six frame-
translated putative fragments. Each prediction based on
these inverted sequences can therefore be considered a
false positive. We applied the same E-value cutoff for
reporting predictions based on the original sequence data
and based on the inverted set. For all organisms, the total
number of false positive predictions produced by this ap-
proach was low (0–12), indicating very high precision (>
99.9%).

Redundancy reduction
MetaEuk’s redundancy reduction procedure divides gene
calls into disjoint clusters and retains a representative
call as gene prediction for each cluster (see Methods).
This reduces the number of potential protein-coding
genes that need to be inspected. For example, for S.
pombe, MetaEuk produced over 1,100,000 calls that were
reduced to a total of 5564 predictions in the base set. A
full reduction of redundancy is achieved when no two
predictions correspond to same protein-coding gene.
We thus identified cases in which two or more MetaEuk
predictions were mapped to the same protein-coding
gene. We found that for all benchmark organisms, re-
dundancy is greatly reduced, as more than 99% of the
annotated protein-coding genes in the benchmark scaf-
folds are only predicted once (Fig. 2d).

Statistical scores
For each prediction, MetaEuk computes a bit-score be-
tween the set of translated and joined putative exons
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and the target protein. Based on this bit-score and
the size of the reference database, an E-value is com-
puted (see Methods). We evaluated MetaEuk’s bit-
scores and E-values by comparing them to those
computed for each predicted protein and its target by
the Smith-Waterman algorithm. Since MetaEuk penal-
izes missing and overlapping amino acids when join-
ing putative exons, we expect the MetaEuk bit-score
to be more conservative than the direct Smith-
Waterman alignment bit-score. We found very high
levels of agreement between the MetaEuk statistics
and the Smith-Waterman statistics (Fig. 2e, Supp.
Figure S3). This suggests a straightforward statistical
interpretation of MetaEuk prediction scores.

Effect of contig length
Assembling metagenomic reads often produces contigs
that are much shorter than the scaffolds of the organ-
isms we used for benchmarking MetaEuk (Table 1). We
thus aimed to assess the effect of analyzing shorter gen-
omic stretches by artificially dividing each of the scaf-
folds from Table 1 into shorter contigs following a
typical length distribution with a minimum of 5 kbp in
length and a median of 6.8 kbp (see Methods). Any
protein-coding gene that spans more than one contig is
expected to result in incomplete MetaEuk predictions.
Indeed, while the sensitivity measured by the mapping
to annotated proteins remained similar to that recorded
on the original scaffolds (Supp. Figure S4A), we found
that more predictions were partial and covered fewer an-
notated exons (Supp. Figure S4B) as well as an increase
of up to 15% in annotated genes being split into more
than one MetaEuk prediction (Supp. Figure S4D).

Eukaryotic protein-coding genes in the ocean
To date, little is known about the biological activities of
eukaryotes in the oceans [2, 37]. We aimed to use
MetaEuk to discover eukaryotic protein-coding genes in
the Tara Oceans metagenomic dataset [20]. We first
used MEGAHIT [38] to assemble all 912 samples of this
project. We retained 1,351,204 contigs of at least 5 kbp
in length that were classified as potentially eukaryotic by
EukRep [27]. We next constructed a comprehensive set
of reference proteins by uniting over 21,000,000 repre-
sentative sequences of the Uniclust50 database [39], the
MERC dataset of over 292,000,000 protein sequence
fragments assembled from eukaryotic Tara Oceans
metatranscriptomic datasets [40], and over 18,500,000
protein sequences of MMETSP, the Marine Microbial
Eukaryotic Transcriptome Sequencing Project [17, 41].
We clustered the joint dataset of 331,913,793 proteins
using the combined Linclust/MMseqs2 four-step cas-
caded clustering workflow [42] with a minimal sequence
identity of 20% and high sensitivity (-s 7). This resulted

in 87,984,812 clusters, most of which (> 97%) contained
proteins from a single reference dataset (Fig. 3). For each
cluster, a multiple sequence alignment was generated,
based on which a sequence profile was computed.
MetaEuk’s run using this reference database took 8

days on ten 2x8-core servers and resulted in 12,111,301
predictions with no same-strand overlaps in 1,287,197 of
the Tara Oceans contigs. Due to sequence similarities
among the assembled contigs, some of these proteins are
identical to each other, leaving a total of 6,158,526
unique proteins. We examined the distribution of pre-
dictions per contig, the number of putative exons in
each prediction and the length of putative exons in
single-exon and multi-exon predictions. We found that
the number of predictions increases as a function of the
contig length (Fig. 4a), about 24% of predictions had
more than one putative exon (Fig. 4b) and multi-exon
predictions tend to have shorter putative exons than
single-exon predictions (Fig. 4c). We analyzed the con-
tribution of each reference dataset to the profiles based
on which the MetaEuk predictions were made. MERC,
MMETSP, and Uniclust50 contributed 77.4%, 5.7%, and
4.3% of the predictions, respectively. The rest of the pre-
dictions were based on mixed-dataset clusters (Supp.

Fig. 3 Reference profiles composition. Proteins from three datasets:
MERC (292 million), MMETSP (18.5 million), and Uniclust50 (21 million)
were clustered into ~ 88 million clusters. Most clusters contained
proteins from a single reference dataset. The profiles computed based
on these clusters served as the reference database for the MetaEuk run
on the Tara Oceans contigs
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Figure S5). We then used MMseqs2 to query the
MetaEuk predicted proteins against their targets. Over
33% of the MetaEuk predictions have less than 60% se-
quence identity to their MERC, MMETSP, or Uniclust50
target (Fig. 5a). Finally, we found that 70% of the
MetaEuk predicted proteins covered at least 80% of their
reference target (Fig. 5b).
We next explored the taxonomic composition of the

MetaEuk proteins. Since the majority (77%) of MetaEuk
predictions were based on homologies to the MERC data-
set, for which no taxonomic annotation is available, we
queried the MetaEuk marine protein collection against the
Uniclust90 dataset [39] and the MMETSP dataset, both
annotated using NCBI taxonomy (see Methods). We
found that 63% of predictions based on homologies to the
MERC dataset did not match any protein in either of the
reference datasets, which means ~49% (63% of 77%) of the
MetaEuk marine protein collection could not be assigned
any taxonomy. This is in agreement with 52% of un-
assigned unigenes assembled from Tara Oceans metatran-
scriptomics [20]. We next assigned taxonomic labels to
each assembled contig by conferring the taxonomic label
with the best E-value of all MetaEuk predictions in the
contig. This allowed us to annotate 92% of the contigs for
which MetaEuk produced predictions (87% of all input
contigs). We found that 82% of the contigs were assigned

to the domain Eukaryota and 9% to non-eukaryotes,
mostly bacteria (Fig. 6a). We then examined the assigned
eukaryotic supergroups below the domain level. About
12% of the eukaryotic contigs could not be assigned a
supergroup. Among the most abundant eukaryotic super-
groups are Metazoa and Chlorophyta (Fig. 6b).
The high fraction of unassignable predictions (49%)

prompted us to seek an additional way to assess the di-
versity of the MetaEuk marine proteins. We thus
collected orthologous sequences of the large subunits of
RNA polymerases, which are universal phylogenetic
markers [43] from 985 organisms for which we had
taxonomic information, as well as 1076 MetaEuk pro-
teins, which consisted of all five Pfam domains of the
large subunit in the right order (see Methods). We
aligned these sequences using MAFFT [44] and con-
structed the maximum-likelihood phylogeny using
RAxML [45]. The aim of this analysis was to delineate
the diversity of eukaryotic taxa of the MetaEuk marine
protein collection and not to resolve the exact phylogen-
etic relationships among them. As can be seen in Fig. 7,
MetaEuk proteins offer major lineage expansions in
under-sampled eukaryotic supergroups. Importantly, the
strict ortholog collection procedure performed for this
analysis results in a conservative estimate of the diversity
level of the MetaEuk marine proteins collection.
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Fig. 4 MetaEuk predictions on Tara Oceans contigs. MetaEuk was run on over 1.3 million contigs assembled from Tara Oceans metagenomic
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Discussion
We presented MetaEuk, an algorithm designed for large-
scale analysis of eukaryotic metagenomic data. We dem-
onstrated its utility for discovering proteins from highly
diverged eukaryotic groups by analyzing assemblies of a
huge set of 912 marine metagenomics samples. MetaEuk
makes no assumption concerning splice site signatures
and does not require a preceding binning procedure,
which renders it suitable for the analysis of contigs from
a mixture of highly diverged organisms. In order to
achieve this, MetaEuk considers all possible putative
protein-coding fragments from each input contig. Apply-
ing the spliced alignment dynamic programming proced-
ure to recover the optimal set of putative exons directly
on these fragments would result in a run time complex-
ity per contig that is quadratic in the number of its frag-
ments times the number of targets in the reference
database. This is not feasible for metagenomics, as the
number of fragments can be very high (e.g., from 1,351,
204 Tara Oceans contigs, 152,519,258 fragments were
extracted) and the reference database should be as com-
prehensive as possible (in this study, we used more than
87,000,000 protein profiles). To circumvent this limita-
tion, MetaEuk takes advantage of the ultra-fast

MMseqs2 search algorithm, which allows it to find puta-
tive exons matching a reference protein sequence with
sufficient significance (in this study, a lenient E-value of
100). MetaEuk does not require significance at the exon
level as it can combine sub-significant single exon
matches to highly significant multi-exon matches. For
example, two putative exons each with an E-value of 10
(corresponding to a bit-score of 25–40 in this study), are
not individually significant but the sum of their bit-
scores of at least 50 corresponds to a significant E-value
of 10-5.
MetaEuk is not designed to recover accurate splice

sites, but rather to identify the protein-coding parts
within exons. Indeed, we showed that MetaEuk predic-
tions on the benchmark covered the majority (77–91%)
of exons in annotated proteins. Since MetaEuk relies on
local alignment at the amino acid level, it could poten-
tially report pseudogenes, which still bear sequence simi-
larity to reference proteins. However, we found that the
majority of benchmark predictions (65–92%) mapped to
NCBI annotated protein-coding genes, while the rest
could be well separated from those that mapped by their
E-values (AUC-PR > 0.7). Furthermore, unmapped pre-
dictions can reflect a missing annotation or post hoc

Fig. 5 MetaEuk predictions compared to the reference datasets. MetaEuk predicted proteins were queried against the representative
sequence of their target reference cluster. a About one third of the predicted MetaEuk proteins had less than 60% sequence identity to their
target. b Targets are well covered by MetaEuk predicted proteins
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exclusion criteria (e.g., removal of annotations that over-
lap a better scoring one on the opposite strand). We
therefore measured precision independently of annota-
tions by running standard MetaEuk on the inverted se-
quences of the putative protein fragments extracted
from the contigs. By using this annotation-free approach,
we showed that MetaEuk’s precision was greater than
99.9% for all benchmark organisms. Put together,
MetaEuk’s strength is in describing the protein-coding
repertoire of versatile environments rather than in con-
structing statistical models of exon-intron transitions.
The Tara Oceans contigs analyzed in this study were

assembled from Illumina HiSeq 2000 short reads. High
population diversity, repeat regions, and sequencing er-
rors are among the major factors contributing to the
computational challenge associated with metagenomic
assembly (reviewed by [46]). These factors reduce the
quality of the assembly as reflected, for example, in
shorter contig lengths, chimeric contigs and contigs con-
taining strand inversions. These in turn, directly and

negatively impact MetaEuk. Shorter contigs limit its abil-
ity to discover multi-exon protein-coding genes as it
searches for them within a contig. In addition, predic-
tions on contig edges can be partial, which is more likely
to happen in a highly fragmented assembly. By dividing
each of the benchmark scaffolds to contigs whose
lengths were drawn at random based on the length dis-
tribution of the Tara Ocean contigs, we showed that
while MetaEuk retains its overall sensitivity to detect
protein-coding genes even under conditions of increas-
ing evolutionary distance between the query organism
and the target reference database, the completeness of
its predictions is reduced. We thus expect MetaEuk to
benefit from future improvements in assembly algo-
rithms, higher sequencing coverage, and long-read se-
quencing technology [47–50].
In addition to developing MetaEuk, we generated two

useful resources for the analysis of eukaryotes as part of
this study. The first is the comprehensive protein profile
database, which was computed using protein sequences

Fig. 6 Taxonomy of Tara Oceans contigs with MetaEuk predictions. The best-scoring taxonomic label of all predictions on each contig was
conferred to the contig. Contigs were divided into four categories according to their number of MetaEuk predictions. Over 82% of the contigs were
assigned to the domain Eukaryota. a The proportion of unassigned contigs decreases with the number of MetaEuk predictions on the contig. The
fraction of eukaryotic contigs out of all assigned contigs is about 90% in all four categories. b Eukaryotic taxonomic labels below the domain level
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from three sources: MERC, MMETSP, and Uniclust50.
With ~88 million records, it is the largest profile data-
base focused on eukaryotes to date. Since MERC was as-
sembled from the Tara Oceans metatranscriptomic data,
we expected it to be a valuable resource for discovering
protein-coding genes in the same environment. Indeed,
we found that the majority of MetaEuk predictions
(77%) were based on MERC protein profiles. Further-
more, the high fraction of MERC-based predictions that
could not be assigned a taxonomic label (63%) demon-
strates the uniqueness of this resource.
The second resource is the MetaEuk marine protein col-

lection, which is available on our search web server
(https://search.mmseqs.com) for easy investigation [51].
Using a phylogenetic marker protein, we showed that this
collection contains proteins spanning major eukaryotic
lineages, including supergroups with very few available

genomes. Over 33% of these proteins have less than 60%
sequence identity to the representative reference proteins
that were used to predict them, indicating their diversity
with respect to the reference database. Unlike the MERC
and MMETSP proteins, MetaEuk proteins are predicted
in the context of genomic contigs. This allows us to learn
of the number of putative exons that code for them as well
as to examine them together with other proteins on the
same contig. The latter is useful for conferring taxonomic
annotations to unlabeled predictions on the same contig
as well as for detecting complex functional modules, by
searching for co-occurrences of the module’s proteins on
the same contig.
As was demonstrated by the challenge of assigning

taxonomy to highly diverged eukaryotic proteins, the
paucity of eukaryotic sequences in reference databases is
currently a major limitation in the study of eukaryotes.

Fig. 7 Diversity of MetaEuk marine eukaryotic proteins. Homologous sequences of the large subunits of RNA polymerases of 985 species as
well as 1076 MetaEuk marine proteins were collected and a maximum-likelihood tree was computed based on their alignment. MetaEuk
sequences (black) expand major eukaryotic lineages, including deeply rooted supergroups (denoted with star)
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Thus, we expect the resources produced in this study
and further analyses of eukaryotic metagenomic data
using MetaEuk to produce a more comprehensive de-
scription of the tree of life [16, 52–54].

Conclusions
MetaEuk is a sensitive reference-based algorithm for large-
scale discovery of protein-coding genes in eukaryotic metage-
nomic data. Applying MetaEuk to large metagenomic data-
sets is expected to significantly enrich our databases with
highly diverged eukaryotic protein-coding genes. By adding
sequences from under-sampled eukaryotic lineages, we can
improve sequence homology searches, protein profile com-
putation and thereby homology-based function annotation,
template-based, and even de novo protein structure predic-
tion [55, 56]. These, in turn will allow for further exploration
of eukaryotic activity in various environments [57].

Methods
MetaEuk algorithm
Code and resources availability
The MetaEuk source code, compilation instructions, and a
brief user guide are available from https://github.com/soedin-
glab/metaeuk under the GNU General Public License v3.0.
The resources produced during this study are available from
http://wwwuser.gwdg.de/~compbiol/metaeuk/.

Putative exons compatibility
In the first two stages of the MetaEuk algorithm, all possibly
coding protein fragments are translated from the input con-
tigs. We scan each contig in six frames and extract the frag-
ments between stop codons. These fragments are queried
against the reference target database using MMseqs2. A set
of fragments from the same contig and strand that have local
matches to the same specific target T define a set of putative
exons. We say two putative exons Pi and Pj from the same
set are compatible with each other if they can be joined to-
gether to a multi-exon protein.
Each Pi is associated with four coordinates: the amino-

acid position on T from which the match to Pi starts (PST
i )

and ends (PET
i ); the nucleotide position on the contig from

which the translation of Pi starts (PSC
i ) and ends (PEC

i ). We
require a match of at least 10 amino acids (a minimal exon
length). We consider putative exons Pi and Pj with PST

i

< PST
j as compatible on the plus strand if:

(1) their order on the contig is the same as on the
target: PSC

i < PSC
j ;

(2) the distance between them on the contig is at least
the length of a minimal intron but not more than
the length of a maximal intron: 15≤ðPSC

j −PEC
i Þ≤10;

000;

(3) their matches to T should not overlap. In practice,
we allow for a short overlap to account for
alignment errors: ðPST

j −PET
i Þ≥−10.

In case Pi and Pj are on the negative strand, we modify
conditions (1) and (2) accordingly:

(1)P
SC
i > PSC

j ;

(2)15≤ PEC
i −PSCj

� �
≤10; 000:

Since the adjustment of conditions to the minus strand
is straightforward, in the interest of brevity, we focus
solely on the plus strand in the following text.
We say a set of k > 1 putative exons is compatible if,

when ordered by their PST
i values, each pair of consecu-

tive putative exons is compatible. (A set of a single exon
is always compatible.)

Bit-score and E-value computation
A set of k compatible putative exons defines a pairwise
protein alignment to the target T. This alignment is the
concatenation of the ordered local alignments of all puta-
tive exons to T. Between each consecutive putative pair of
exons Pi and Pi+1 there might be unmatched amino acids
in T or there might be a short overlap of their matches to
T. We denote the number of unmatched amino acids be-
tween Pi and Pi+1 as li, which can take a negative value in
case of an overlap. MetaEuk computes the bit-score of the
concatenated pairwise alignment S(Pset, T) by summing
the individual Karlin-Altschul [58] bit-scores S(Pi, T) of
the putative exons to T and penalizing for unmatched or
overlapping amino acids in T as follows:

(3)
S Pset;Tð Þ ¼

Xk
i¼1

S Pi;Tð Þ þ
Xk−1
i¼1

C lið Þ þ log2 k!ð Þ

where the penalty function is C(li) = − |li| for li ≠ 1 and
0 if li = 1. The last term rewards the correct ordering of
the k exons.
An E-value is the expected number of matches above

a given bit-score threshold. Since for each contig, at
most one gene call is reported per strand and target in
the reference database, the E-value takes into account
the number of amino acids in the reference database D
and the search on two strands:

(4)E−Value Pset;Tð Þ ¼ 2� D� 2−S Pset;Tð Þ

Dynamic programming
Given a set of n putative exons and their target,
MetaEuk finds the set of compatible exons with the
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highest combined bit-score. First, all putative exons are
sorted by their start on the contig, such that PSC

1 ≤…≤
PSC
n . The dynamic programming computation iteratively

computes vectors S, k, and b from their first entry 1 to
their nth. The entry Si holds the score of the best exon
alignment ending in exon i and ki holds the number of
exons in that set. Once the maximum score is found, the
exon alignment is back traced using b, in which entry bi
holds the index of the aligned exon preceding exon i (0
if i is the first aligned exon). Using the following values:

(5)S0 ¼ 0; k0 ¼ 0; b0 ¼ 0

all putative exons Pj are examined according to their
order and the score vector is updated:

(6)S j ¼ max
i

�
Si þ S P j;T

� �þ C lij
� �

þ log2 ki þ 1ð Þj0≤ i < j; i compatible with jÞ

kj and bj are updated accordingly. The terms log2(ki+ 1)

add up to the score contribution
Pk
i¼1

log2ðiÞ ¼ log2ðk!Þ and
the transition 0 to j is defined as compatible with Cðl0j Þ ¼ 0

for all j. The optimal exon set is then recovered by tracing
back from the exon with the maximal score. This dynamic
programming procedure has time complexity of O(n2).

Clustering gene calls to reduce redundancy
MetaEuk assigns a unique identifier to each extracted
putative protein fragment (stage 1 in Fig. 1). A MetaEuk
exon refers to the part of a fragment that matched some
target T (stage 2 in Fig. 1, tinted background) and has
the same identifier as the fragment. Two calls that have
the same exon identifier in their exon set are said to
share an exon. MetaEuk reduces redundancy by cluster-
ing calls that share an exon (stage 4 in Fig. 1) and select-
ing a representative call as the gene prediction of each
cluster. To that end, all N MetaEuk calls from the same
contig and strand combination are ordered according to
the contig start position of their first exon. Since this
order can include equalities, they are sub-ordered by de-
creasing number of exons. The first cluster is defined by
the first call, which serves as its tentative representative.
Let m be the last contig position of the last exon of this
representative. Each of the following calls is examined so
long as its start position is smaller than m (i.e., it over-
laps the representative on the contig). If that call shares
an exon with the representative, it is assigned to its clus-
ter. In the next iteration, the first unassigned call serves
as representative for a new cluster and the following
calls are examined in a similar manner, adding

unassigned calls to the cluster in case they share an exon
with the representative. The clustering ends with the as-
signment of all calls. At this stage, the final prediction is
the call with the highest score in each cluster. This
greedy approach has time complexity of O(N × log(N) +
N ×A), where A is the average number of calls that over-
lap each representative on the contig. Since in practice,
A≪N, the expected time complexity is O(N × log(N)).

Resolving same-strand overlapping predictions
After the redundancy reduction step, MetaEuk sorts all
predictions on the same contig and strand according to
their E-value . It examines the sorted list and retains
predictions only if they do not overlap any preceding
predictions on the list.

Benchmark datasets
The UniRef90 database was obtained on March 2018. The
annotated information of Schizosaccharomyces pombe
(GCA_000002945.2), Acanthamoeba castellanii str. Neff
(GCA_000313135.1), Babesia bigemina (GCA_000981445.1),
Phytomonas sp. isolate EM1 (GCA_000582765.1), Nocleo-
morph of Lotharella oceanica (GCA_000698435.2), Phaeo-
dactylum tricornutum (GCA_000150955.2), and Aspergillus
nidulans (GCA_000149205.2) were downloaded from the
NCBI genome assembly database (March–September 2018).
This information included the genomic scaffolds, annotated
protein sequences, and GFF3 files containing information
about the locations of annotated proteins and other genomic
elements. MetaEuk (Github commit 4714106, MMseqs2
submodule version ebb16f3) was run with the following pa-
rameters: -e 100 (a lenient maximal E-value of a putative
exon against a target protein), --metaeuk-eval 0.0001
(a stricter maximal cutoff for the MetaEuk E-value
after joining exons into a gene call), --metaeuk-tcov
0.6 (a minimal cutoff for the ratio between the
MetaEuk protein and the target), and --min-length
20, requiring putative exon fragments of at least 20
codons and default MMseqs2 search parameters.

Mapping benchmark predictions to annotated proteins
For each annotated protein, we listed the contig start
and end coordinates of the coding part (CDS) of each of
its exons. The lowest and highest of these coordinates
were considered as the boundaries of the annotated pro-
tein, and the stretch between them as its “global” contig
length. Similarly, we listed these coordinates and com-
puted the boundaries and global contig length for each
MetaEuk prediction. A MetaEuk prediction was globally
mapped to an annotated protein if the overlap computed
based on their boundaries was at least 80% of the global
contig length of either of them and if, in addition, the
alignment of their protein sequences mainly consisted of
identical amino acids or gaps (i.e., less than 10%
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mismatches). These criteria allow mapping MetaEuk
predictions to an annotated protein, even if they miss
some of its exons. Next, we computed the exon level
mapping for all globally mapped pairs of MetaEuk pre-
dictions and annotated proteins. To that end, we com-
pared their lists of exon contig coordinates. If an exon
predicted by MetaEuk covered at least 80% of the contig
length of an annotated protein’s exon, we considered the
annotated exon as “covered” by the MetaEuk prediction.

Generating typical metagenomic contig lengths
In order to evaluate MetaEuk’s performance on contigs
with a length distribution typical for assemblies from
metagenomic samples, we recorded the lengths of the
assembled contigs used for the analysis described in the
“Tara Oceans dataset” section. The 1,351,204 contigs
had a minimal length of 5002 bps, 1st quartile of 5661
bps, median of 6763 bps, 3rd quartile of 9020 bps, and a
maximal length of 1,524,677 bps. We divided each anno-
tated scaffold into contigs of lengths that were randomly
sampled from these recorded lengths. This resulted in
1392, 5061, 1816, 2095, 80, 3153, and 3273 contigs for S.
pombe, A. castellanii, Phytomonas sp. isolate EM1,
nucleomorph of L. oceanica, P. tricornutum, and A.
nidulans, respectively. MetaEuk was run on these con-
tigs in the same way as on the original scaffolds. Since
each of the new contigs corresponded to specific loca-
tions on the original scaffolds, we could carry out all
benchmark assessments, which relied on mapping be-
tween MetaEuk predictions and annotated proteins.

Tara Oceans dataset
The 912 metagenomic SRA experiments associated with
accession number PRJEB4352 were downloaded from
the SRA (August–September 2018). The reads of each
experiment were trimmed to remove adapters and low
quality sequences using trimmomatic-0.38 [59] with pa-
rameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEAD-
ING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:
36 (SE for single-end samples). The resulting reads were
then assembled with MEGAHIT [38] with default pa-
rameters. Contigs of at least 5 kbp in length were classi-
fied as eukaryotic/non-eukaryotic using EukRep [27],
which is trained to be highly sensitive to detecting
eukaryotic contigs. MetaEuk was run on the contigs
classified as eukaryotic with parameters: -e 100,
--metaeuk-eval 0.0001, --min-ungapped-score 35, --min-
exon-aa 20, --metaeuk-tcov 0.6, --min-length 40, --slice-
search (profile mode), and default MMseqs2 search
parameters.

Taxonomic assignment to predictions and contigs
We used MMseqs2 to query the MetaEuk marine pro-
tein collection against two taxonomically annotated

datasets: Uniclust90 and the MMETSP protein dataset.
Taxonomic labels associated with each of the MMETSP
identifiers were downloaded from the NCBI website
(BioProject PRJNA231566). We retained the hit with the
highest bit-score value for each prediction if it had an E-
value smaller than 10-5. In addition, we examined the se-
quence identity between the MetaEuk prediction and the
target in order to determine the rank of the taxonomic
assignment. Similarly to [20], we used the following se-
quence identity cutoffs: > 95% (species), > 80% (genus),
> 65% (family), > 50% (order), > 40% (class), > 30%
(phylum), > 20% (kingdom). Lower values were assigned
at the domain level. The predictions on each contig were
examined and the best-scoring one was used to confer
taxonomic annotation to that contig. The assignment
was visualized using Krona [60].

Phylogenetic tree reconstruction
We constructed the tree using the large subunit of
RNA polymerases as a universal marker. This subunit
contains five RNA_pol_Rpb domains (Pfam IDs:
pf04997, pf00623, pf04983, pf05000, pf04998). As de-
tailed below, protein sequences that contained all five
domains in the right order were obtained in January–
November 2019 from six sources to construct the
multiple sequence alignment and tree. The sources
were as follows: (1) 75 sequences of the OrthoMCL
[61] group OG5_127924. The four-letter taxonomic
codes of these sequences were converted to NCBI sci-
entific names, based on information from the
OrthoMCL website (http://orthomcl.org/orthomcl/get-
DataSummary.do). (2) 36 reviewed eukaryotic se-
quences were downloaded from UniProt [36]. These
were used to distinguish between eukaryotic RNA
polymerase I (8 sequences), eukaryotic RNA polymer-
ase II (16 sequences), and eukaryotic RNA polymerase
III (12 sequences). We then ran an MMseqs2 profile
search against the Pfam database (with parameters: -k
5, -s 7) with several query sets and retained results in
which all five domains were matched in the right
order with a maximal E-value of 0.0001. This allowed
us to add the following sources: (3) 674 MMETSP
proteins, (4) 100 archaeal proteins, and (5) 100 bac-
terial proteins. For datasets (4, 5), we first down-
loaded candidate proteins from the UniProt database
by searching for the five domains and restricting tax-
onomy: archaea (bacteria). We then ran the previously
described search procedure and randomly sampled
exactly 100 proteins from each group that matched
the criterion. (6) 1076 MetaEuk predictions. The joint
set of 2061 sequences was aligned using MAFFT
v7.407 [44] and a phylogenetic tree was reconstructed
by running RAxML v8 [45]. Tree visualization was
performed in iTOL [62].
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Additional file 1: Supplementary Figure S1. MetaEuk predictions
by number of exons and exons length. MetaEuk was run on a
benchmark of seven eukaryotic unicellular organisms. (A) The fraction of
multi-exon MetaEuk predictions is similar to the fraction of annotated
multi-exon proteins (Table 1). (B) Single-exon predictions tend to have
longer putative exons than multi-exon predictions. Supplementary Fig-
ure S2. MetaEuk target coverage. The protein sequence of each
MetaEuk prediction was aligned to the UniRef90 target, which was used
to produce the prediction. The level of target coverage was measured
while recording the mapping status of the MetaEuk prediction with re-
spect to the annotations of the benchmark organism: mapped to an an-
notated protein (“prot”), overlap of at least ten nucleotides with an
annotated protein on the opposite strand (“prot. on opp. strand”), predic-
tion on a scaffold for which no NCBI annotations were given (“unannot.
scaff.”) and all other predictions (“NA”). In all cases, most targets were
highly covered by their MetaEuk prediction. Supplementary Figure S3.
MetaEuk E-values and bit-scores. MetaEuk was run on a benchmark
of seven eukaryotic unicellular organisms. The (A) E-values and (B) bit-
scores computed between each predicted protein and its target by
MetaEuk were compared to those computed by the Smith-Waterman al-
gorithm. The Spearman rho values indicate high correlation for all bench-
mark organisms. Supplementary Figure S4. MetaEuk evaluation on
typical metagenomic contig lengths. The annotated scaffolds of each
of the organism in Table 1 were randomly divided into shorter contigs,
following typical lengths of a metagenomics analysis (see Methods). Since
each of the new contigs corresponds to locations on the original scaf-
folds, MetaEuk predictions on these contigs could be mapped to anno-
tated proteins. (A) Conditions of increasing evolutionary divergence were
simulated by excluding gene calls based on their sequence identity to
their target. Sensitivity is the fraction of annotated proteins from the
query genome to which a MetaEuk prediction was mapped. (B) Fraction
of exons covered by MetaEuk (color saturation). The number of MetaEuk
predictions is indicated on top of each bar. (C) In an annotation-
dependent precision estimation MetaEuk predictions that mapped to an
annotated protein were considered as “true” and the rest as “false”. (D)
Fraction of annotated protein-coding genes that were split by MetaEuk
into two (dark grey) or three (black) different predictions. (E) Comparison
of the E-values computed by MetaEuk and by the Smith-Waterman algo-
rithm for A. castellani proteins. Supplementary Figure S5. Contribu-
tion of reference datasets to MetaEuk predictions. Profiles
computed based on clusters of MERC, MMETSP and Uniclust50 proteins
served as the reference database for the MetaEuk run on the Tara Oceans
contigs. MERC, MMETSP and Uniclust50 contributed 77.4%, 5.7% and 4.3%
of the predictions, respectively. The rest of the predictions were based on
mixed-dataset clusters.
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