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Carmen Jiménez-Castells,a Beatriz G. de la Torre,a

Ricardo Gutiérrez Gallegoa,b and David Andreua,*

aDepartment of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park,

Dr. Aiguader 88, 08003 Barcelona, Spain
bPharmacology Research Unit, Municipal Institute of Medical Research, Barcelona Biomedical Research Park,

Dr. Aiguader 88, 08003 Barcelona, Spain

Received 12 June 2007; revised 27 June 2007; accepted 28 June 2007

Available online 5 July 2007
Abstract—An improved procedure for solid phase coupling of Boc-aminooxyacetic acid to peptides is described. By avoiding base-
containing activation mixtures which cause over-acylation, it practically suppresses this unwanted side reaction and leads to near
quantitative yields of Aoa-peptides, useful as glycoprobe precursors in glycomic studies.
� 2007 Elsevier Ltd. All rights reserved.
With the ever-increasing awareness of the importance of
protein glycosylation as a key player in inter- and intra-
cellular communication,1–4 the need for powerful chem-
ical tools to document sugar–protein cross-talk is rising.
One reason for such interest in carbohydrate–protein
interactions is their implication in the targeting of envel-
oped viruses such as HIV, influenza-, and coronavi-
rus,5,6 an understanding of which will facilitate the
design of carbohydrate-binding agents capable of
neutralizing viral fusion and transmission. Different
biophysical techniques have been used to monitor
sugar–protein interactions,7,8 including NMR, X-ray
crystallography, and more recently, surface plasmon
resonance (SPR). The latter is fast gaining recognition
because of its sensitivity, low sample consumption, and
capability for real-time monitoring. In this technique,
one of the two interacting entities (protein or sugar) is
immobilized onto the surface of a sensor chip, the other
one is flown across and the resulting read-out enables
both quantitation and kinetic analysis of the interaction
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Among the two immobilization approaches possible, the
sugar-on-chip option has demonstrable advantages9,10

but requires a sugar in highly purified form and attached
to the chip surface in a chemically well-defined manner.
While the synthesis of complex carbohydrate structures
is a fast expanding field,11–15 the structural diversity
encountered in nature cannot yet be fully met in the lab-
oratory. Thus, some glycans (e.g., bacterial polysaccha-
ride repeating units, elongated mucin-type glycans or
complex N-glycans) cannot be efficiently produced for
lack of suitable synthetic chemistries or glycosyltransfe-
rases/glycosidases,16 and must be purified from natural
sources. As the amount of material available is scarce,
the immobilization chemistry to the sensor chip surface
must be optimal to avoid losses of precious material.
Although a direct aldehyde coupling has been
described,17 its efficiency is questionable.

Recently, we reported a practically universal approach to
carbohydrate immobilization on carboxymethyl dextran
chips via standard peptide-bond chemistry, subsequent
to chemical ligation of the sugar to a tailor-made peptide
module.18 A chemospecific oxime linkage between the
reducing end of the first monosaccharide and the peptide
is achieved (Scheme 1) through the introduction of an N-
terminal aminooxyacetic acid (Aoa) residue in the latter.

Over the last decade, oxime chemistry has been proven
as one of the most successful approaches to peptide
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Scheme 1. Illustration of oxime ligation between an N-terminal Aoa-containing peptide and a carbohydrate ligand. See Ref. 18 for further details.
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chemical ligation.19,20 Moreover, applications to sugar–
peptide conjugation have also been described.21,22 De-
spite the obvious advantages of this chemistry,23 it has
as a main drawback that over-acylation of the NH–O
nitrogen leads to undesired heterogeneity.24 To resolve
this problem, deprotection of Aoa25 or use of N-trityl
protection26 has been advocated; however, neither of
these two approaches utilizes commercially available
reagents.

In this work, we have explored the feasibility of mini-
mizing Aoa over-acylation using Boc-protected Aoa
Figure 1. HPLC analysis of different conditions for Aoa-GFAKKG-ami

synthesis. (i) Boc-Aoa-OH/HBTU/DIEA (3:3:6 equiv), 40 min; (ii) Boc-Ao

10 min. Peak assignations: a: target Aoa-peptides; b: starting peptide; c: diacy

(uronium capping); f: oligomeric impurities. HPLC conditions: Phenomenex L

[panels B(1–iii)] gradient of acetonitrile (+0.036% TFA) into water (+0.045%
and conventional coupling chemistry. Our study is
based on two starting peptide substrates, the hexapep-
tide GFAKKG-amide18 (A) and a version N-terminally
elongated with an e-amino hexanoic acid (Ahx) spacer,
Ahx-GFAKKG-amide27 (B), both acylated with
Boc-Aoa-OH28 under different conditions (Fig. 1,
Table 1).

In line with previous work,24 we reasoned that the pres-
ence of base at the coupling step would favor over-acyl-
ation. Indeed, as shown on panels A(i) and B(i),
otherwise efficient HBTU-mediated coupling conditions
de [entries A(i–iii)] and Aoa-Ahx-GFAKKG-amide [entries B(i–iii)]

a-OH/DIC (10:10 equiv), 60 min; (iii) Boc-Aoa-OH/DIC (8:8 equiv),

lated peptide; d: triacylated peptide; e: N-terminal guanidine byproduct

una C8 column; elution with linear 0–30% [panels A(1–iii)] and 0–40%

TFA) over 15 min; flow rate: 1 mL/min.



Table 1. Acylation of substrates A and B with Boc-Aoa-OH using different coupling conditions

Substrate Entry Boc-Aoa-OH (equiv) Coupling agent (equiv) DIEA (equiv) Time (min) Product distribution

a b c d e f

A i 3 + 1.5 HBTU (3 + 1.5) 6 40 45 4 22 13 9 7

A ii 10 DIC (10) — 60 93 2 5 — — —

A iii 8 DIC (8) — 10 97 0 3 — — —

B i 3 + 1.5 HBTU (3 + 1.5) 6 40 63 17 7 — 8 5

B ii 10 DIC (10) — 60 80 16 4 — — —

B iii 8 DIC (8) — 10 94 5 1 — — —

% Estimated by integration of HPLC peaks at 220 nm.
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in this particular case generated a rather complex prod-
uct mixture which, after TFA cleavage/deprotection,29

was shown by MALDI-TOF mass spectrometric analysis
to contain the target Aoa-peptide (peak a, Fig. 1)
accompanied by the di- and tri-acylated byproducts
(peaks c and d, Fig. 1), plus the product of N-terminal
guanidine capping,30 plus other peaks assumed to be
higher-order oligomers.

In contrast, couplings relying on carbodiimide (DIC)
activation were considerably cleaner (Fig. 1, panels
A(ii, iii) and B(ii, iii)). Thus, substantial improve-
ments in the yield of target Aoa-peptides (45% to
93% and 63% to 80%) for A and B, respectively, pan-
els A(ii) and B(ii)) were observed when 10 equivalent
of both Boc-Aoa-OH and DIC was used for 60 min.
Interestingly, a shorter reaction time and a slight
reduction in the excess of acylating agent led to even
better results, amounting to practically quantitative
conversion of both substances into the Aoa-deriva-
tives (Table 1).

In conclusion, carbodiimide-based Boc-Aoa coupling, in
conjunction with short reaction times, appears to pro-
vide a straightforward, efficient way to the Aoa-func-
tionalized peptides required to prepare well-defined,
lectin-capturing glycoprobes, by subsequent chemoselec-
tive oxime ligation. Using the optimized procedure de-
scribed above, the Aoa-peptide (in any of its A or B
versions) does not require any HPLC purification (see
Supplementary Information pages) before the oxime
ligation reaction, thus considerably contributing to an
efficient preparation of sugar-functionalized sensor
surfaces.
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18. Vila-Perelló, M.; Gutiérrez Gallego, R.; Andreu, D.
ChemBioChem 2005, 6, 1831.

19. Canne, L. E.; Ferré-D’Amaré, A. R.; Burley, S. K.; Kent,
S. B. H. J. Am. Chem. Soc. 1995, 117, 2998.

20. Rose, K. J. Am. Chem. Soc. 1994, 116, 30.
21. Zhao, Y.; Kent, S. B. H.; Chait, B. T. Proc. Natl. Acad.

Sci. U.S.A. 1997, 94, 1629.
22. Peri, F.; Dumy, P.; Mutter, M. Tetrahedron 1998, 54,

12269.
23. Peri, F.; Nicotra, F. Chem. Commun. 2004, 6, 623.
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