
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Chaos, Solitons & Fractals 62-63 (2014) 36–43
Contents lists available at ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos
Effect of vaccination strategies on the dynamic behavior
of epidemic spreading and vaccine coverage
http://dx.doi.org/10.1016/j.chaos.2014.04.005
0960-0779/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: wuzhx@lzu.edu.cn (Z.-X. Wu), guanjy@lzu.edu.cn

(J.-Y. Guan).
Chao-Ran Cai, Zhi-Xi Wu ⇑, Jian-Yue Guan
Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
a r t i c l e i n f o

Article history:
Received 23 December 2013
Accepted 3 April 2014
a b s t r a c t

The transmission of infectious, yet vaccine-preventable, diseases is a typical complex social
phenomenon, where the increasing level of vaccine update in the population helps to inhi-
bit the epidemic spreading, which in turn, however, discourages more people to participate
in vaccination campaigns, due to the ‘‘externality effect’’ raised by vaccination. We herein
study the impact of vaccination strategies, pure, continuous (rather than adopt vaccination
definitely, the individuals choose to taking vaccine with some probabilities), or continuous
with randomly mutation, on the vaccination dynamics with a spatial susceptible-vacci-
nated-infected-recovered (SVIR) epidemiological model. By means of extensive Monte-Car-
lo simulations, we show that there is a crossover behavior of the final vaccine coverage
between the pure-strategy case and the continuous-strategy case, and remarkably, both
the final vaccination level and epidemic size in the continuous-strategy case are less than
them in the pure-strategy case when vaccination is cheap. We explain this phenomenon by
analyzing the organization process of the individuals in the continuous-strategy case in the
equilibrium. Our results are robust to the SVIR dynamics defined on other spatial networks,
like the Erd}os–Rényi and Barabási–Albert networks.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Throughout history, many diseases which had swept
the whole globe, such as Black Death (Plague) and small-
pox, are kept within limits by human. Vaccination plays a
very important role against these terrible epidemic dis-
eases. In 2002, Severe Acute Respiratory Syndromes, a
newly and seriously disease, broke out and spread to all
over the world very quickly [1,2]. The pathogenesis was
studied and the corresponding vaccine was developed by
scientists and experts in a very short time [3,4]. Recently,
some scientists believe that the hope of universal influenza
vaccines has become more tangible than ever before [5–8].
It is commonly believed that the compulsory
vaccination is difficult to be performed for some social fac-
tors, such as religious belief and human rights, etc. Some
researches turn to study the dynamical behavior of volun-
tary vaccination program and present a series of significant
results over the past few years [9–24]. For example, Bauch
et al. used game theory to explain the relationship between
group interest and self-interest in smallpox vaccination
policy [9–11] and found that voluntary vaccination was
unlikely to reach the group-optimal level. Blower et al.
found that universal long-term flu vaccine may not prevent
severe epidemic [12], and then investigated the effect of
voluntary vaccination on the prevalence of influenza based
on minority game theory and showed that severe epidem-
ics could not be prevented unless vaccination programs
offer incentives [13,14]. Chen et al. studied a SEIRS
epidemic disease model with two profitless delays and
vertical transmission, and analyzed the dynamics
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behaviors of the model under pulse vaccination [15,16].
Zhang and Fu et al. proposed a game-theoretic model to
study vaccination dynamics on classical networks, includ-
ing well-mixed population, square lattice, Erd}os–Rényi
(ER) network and Barabási–Albert (BA) network [17–19].
They found that the population structure behaves as a
‘double-edged sword’ for public health. Zhang investigated
the impact of the other-regarding behavior in individuals’
decision making about vaccination dynamics [21].
Recently, Wu and Zhang incorporated the impact of peer
pressure into vaccination dynamics, and they found that
the peer pressure is also a double-edged sword, which
can strongly promote vaccination when its cost is below
a critical value, but can strongly impede it if the critical
value is exceeded [22].

In most previous studies, the vaccination strategy of
every individual is assumed to be pure, i.e. either vaccinate
or not vaccinate during the vaccination campaign [17–
22,25]. As we know, there exists a critical vaccination level
in the population such that: if the vaccine coverage is
below the vaccination level, an epidemic will occur, other-
wise epidemics will be prevented. Based on self-interest, a
few studies consider that the action of vaccination is
expressed in probability [12–14]. We call the two cases
as pure-strategy case and continuous-strategy case. In
the present work, we intend to study how the vaccination
dynamics is affected by the two types of vaccination strat-
egy. Our results presented below show that both the final
vaccine coverage and the final epidemic size in the contin-
uous-strategy case are less than that in the pure-strategy
case in spatial network when the cost for vaccination is
low. Furthermore, the impact of the strategy-mutation
mechanism on dynamic behavior of epidemic spreading
and vaccine coverage is also briefly investigated in the con-
tinuous-strategy case.

2. Model

Following previous studies [19,20], we model the vacci-
nation dynamics as a two-stage, vaccination-stage and epi-
demic spreading-stage, with a mutual feedback form (see
Fig. 1). In the vaccination-stage, there is a vaccination cam-
Fig. 1. Schematic illustration of the simulation process of vaccination dynami
continuous-strategy without mutation case, and the simulation process (b) ap
probability. More detailed description about vaccination-stage, epidemic spread
paign, each individual decides whether or not to get vacci-
nated. To get vaccinated will incur a cost CV and the
vaccine gives perfect immunity to the infectious disease.
The cost CV includes the immediate monetary cost for vac-
cine and the potential risk of vaccine side-effects. For the
pure-strategy case, there are two strategies, to vaccinate
or not to vaccinate. For simplicity and efficiency but with-
out loss of generality, we focus on the discretization of con-
tinuous strategies in the continuous-strategy case, that is,
the individual i can choose a strategy xi from a strategy
set 0

100 ;
1

100 ; � � � ; 100
100

� �
, where the value of xi denotes the vac-

cination probability of individual i [26] (we have checked
that our results presented below remain the same when
the vaccination probabilities of the individuals take contin-
uous real values in the range ½0;1�). In the epidemic spread-
ing-stage, the epidemic strain infects an initial number of
individuals I0 (1‰ of the population size) and then spreads
in the population according to the classical susceptible-
infected-recovered (SIR) epidemiological model [27,28],
with per-day transmission rate r for each pair of suscepti-
ble-infected (SI) contact and recovery rate g for each
infected (I) individual getting immune to the disease. The
epidemic continues until there are no more newly infected
individuals. At this moment, those unvaccinated and unin-
fected individuals are called free-riders, owning to the fact
that they are successfully escaped from the spreading sea-
son and pay for nothing. Meanwhile, those unvaccinated
and infected individuals incur a cost CI , which may account
for disease complications, expenses for treatment, etc. The
final epidemic size and the final vaccination level are
decided by the rescaled parameter c ¼ CV=CI , whose value
is restricted in the region of ½0;1� (otherwise, doing nothing
would be better than getting vaccinated).

At the end of each epidemic spreading season (i.e.,
before the next two-stages for vaccination and disease
spreading), all individuals will update their vaccination
strategy by a Fermi function-like rule before the new epi-
demic season starts. The individual i chooses an individual
j randomly from one’s immediate neighborhood to com-
pare their cost (or payoff) and then adopts the vaccination
strategy of j with a probability dependent on the payoff
difference [29–32]. Generally speaking, it would be more
cs. The simulation process (a) applies to the pure-strategy case and the
plies to the continuous-strategy with mutation case. l is the mutation
ing-stage, update, and mutation see article.
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Fig. 2. Vaccination dynamics in both the pure-strategy case and the continuous-strategy case. The top (bottom) panels show the final vaccination level fV

(the final epidemic size fR) as a function of the cost for vaccination c. (a) and (b) square lattice network; (c) and (d) well-mixed population; (e) and (f) ER
network; (g) and (h) BA network. Simulation results are averaged over 100 independent runs.
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realistically that each individual adopts an averaged opin-
ion on taking vaccination from his the nearest neighbors.
For the sake of simplicity, in the current work we only con-
sider the simplest case where each individual just updates
his vaccination strategy by referring to a randomly chosen
neighbor.

qij ¼
1

1þ exp½�bðPj � PiÞ�
; ð1Þ

Pi ¼
�c; vaccination;
�1; infected;
0; free riders:

8><
>:

ð2Þ

where Pi and Pj correspond to the payoffs of the two
involved individuals, and b denotes the strength of selec-
tion. Unless otherwise specified, we select b ¼ 1:0, imply-
ing that better-performing individuals are readily
imitated, but it is not impossible to adopt the behavior of
an individual performing worse. What we are interested
in this case is how many individuals are infected and the
vaccination level in the final stable state.

We simulate the SIR processes on networks with Gilles-
pie algorithm [33,34]. The total Monte Carlo (MC) steps are
varied from 5� 103 to 2� 105 to ensure an equilibrium
state has been reached. In each MC step, all individuals
update their strategies in a synchronous way. In the initial
vaccination-stage of each independent run, all possible
strategies, either in the pure-strategy case or in the contin-
uous-strategy case, are randomly distributed throughout
the population. After each epidemic spreading stage, indi-
viduals update their vaccination strategies according to
Eq. (1). Unless explicitly stated, we fix from now on the
total population size N ¼ 10000 (100� 100 in square lat-
tice), recovery rate g ¼ 1

3, transmission rate1 r ¼ 2:5
3N in

well-mixed population, 0:46 in square lattice, 0:51 in ER net-
1 For the sake of comparison, the value of r is calibrated to guarantee the
same final epidemic size in different networks in the absence of
vaccination.
work, and 0:55 in BA network (we checked that our main
findings do not depend on the specific choice of N; g and
r). The average degree of ER and BA networks are fixed as
4. Our key quantities are the final epidemic size and the final
vaccination level which denoted by fR ¼ NR=N and fV ¼ NV=N
respectively, where NR and NV are the average number of
recovered and vaccinated individuals in the equilibrium
state. In this study, we calibrate parameters so that the final
epidemic size in different (either well-mixed or structured)
populations will be the same when the vaccination compart-
ment is absent in the population. The purpose is to compare
the effect of different vaccination strategies on the preva-
lence of epidemics and the vaccine coverage when the vac-
cination compartment is introduced into the population.
So, in our current work, the basic reproduction number R0

is not our main concern.
3. Analysis and results

We first investigate how the vaccination dynamics
changes with the cost for vaccination in both the pure-
strategy case and the continuous-strategy case in lattice
population. The results are summarized in Fig. 2 where
several obvious differences in the final epidemic size and
the final vaccination level in square lattice are observed.
Firstly, in Fig. 2(a), there exists a value of c at which the
final vaccination level fV in the pure-strategy case is equal
to that in the continuous-strategy case, below which the
vaccination level is smaller in the continuous-strategy
case, while above it the opposite effect takes place. Sec-
ondly, in Fig. 2(b), the final epidemic size fR in the contin-
uous-strategy case is less than that in the pure-strategy
case for all c below the high cost threshold.2 Combining
these two aspects, we found an unexpected phenomenon
that a lower level of vaccination in the population leads to
a lower level of spreading of disease in the continuous-strat-
2 No one chooses vaccination and the epidemic size reaches its
maximum size when c is above the high cost threshold [18].



C.-R. Cai et al. / Chaos, Solitons & Fractals 62-63 (2014) 36–43 39
egy case at low c. The qualitative properties of the results
obtained for the vaccination dynamics in both the
pure-strategy case and the continuous-strategy case on ER
network and BA network are the same as the results on
square lattice [Fig. 2(e)–(h)]. Noticeably, in well-mixed
population, there is no difference between the pure-
strategy case and the continuous-strategy case Figs. 2(c)
and (d).

In order to explain the above results, we show several
typical snapshots for the pure-strategy case and the con-
tinuous-strategy case in the equilibrium state in Fig. 3. It
is remarkable that the vaccinated population is scattered
in the continuous-strategy case and clustered in the
pure-strategy case. It is clear that the vaccinated individu-
als in the inner part of the cluster of vaccinated individuals
Fig. 3. Typical snapshots of the state configuration in the square lattice populatio
and taken at 2� 105 MC step, while the right ones are in the pure-strategy
individuals, red (gray) for successful free-riders, and yellow (white) for infected
panels to down panels. (For interpretation of the references to colour in this fig
have no effect on the spread of infectious diseases (during
the epidemic spreading-stage). For convenience, we called
those individuals, whom are not vaccinated and have at
least one vaccinated neighbor, as indirect beneficiaries
whom pay for nothing but have decreased infected risk
due to their vaccinated neighbors. By doing extensive sta-
tistics on the number of indirect beneficiaries for any c, we
found that there are more indirect beneficiaries in the con-
tinuous-strategy case than those in the pure-strategy case.
For example, at c ¼ 0:3, indirect beneficiaries take up
39:14% of the population in the continuous-strategy case
in Fig. 3(b), vs. only 30:87% in the pure-strategy case in
Fig. 3(e). That is to say, although the vaccinated individuals
are low, the area of influence (the number of indirect ben-
eficiaries) is high in the continuous-strategy case. As a
n in the equilibrium state. Left panels are in the continuous-strategy case
case and taken at 5� 103 MC step. Blue (black) denotes for vaccinated
individuals, respectively. The cost for vaccination c ¼ 0:1, 0.3, 0.6 from up
ure legend, the reader is referred to the web version of this article.)
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result, the final epidemic size in the continuous-strategy
case is lower than that in the pure-strategy case. That is
the reason for the unexpected phenomenon shown in Figs.
2(a) and (c). In the vaccination-stage, the indirect benefi-
ciaries also play an important role, owing to the fact that
only the indirect beneficiaries can transform into new vac-
cinated individuals in the next season. At the end of each
spreading season, the indirect beneficiary will be two pos-
sible states (free-rider and infected). For small c, the free-
riders are the majority of the population [see Figs. 3(a)
and (d)]. From the Eq. (1), we know the vaccinated individ-
uals are more likely to imitate the free-riders, and then
transform into unvaccinated individuals in the next
spreading season. Since the area of influence of vaccination
is high in the continuous-strategy case, the vaccinated
individuals change their strategy more likely than the vac-
cinated individuals in the pure-strategy case. Conse-
quently, the vaccination level in the continuous-strategy
case is lower than that in the pure-strategy case. For high
c, the majority of the population are infected individuals
[see Figs. 3(c) and (f)]. The infected individuals are more
likely to imitate the vaccinated individuals, and then trans-
form into vaccinated individuals.

In the well-mixed population, it is almost impossible
that an individual is surrounded by all vaccinated neigh-
bors. In other words, every vaccinated individual will affect
the spread of infectious diseases. Secondly, the area of
influence is the same for both the continuous-strategy case
and the pure-strategy case. So, there is no difference for the
final epidemic size and the final vaccination level in the
pure-strategy case and the continuous-strategy case in
Figs. 2(c) and (d).

Most of the strategies from the strategy set will disap-
pear when the system reach equilibrium state in a single
imitation mechanism [Fig. 5(a) and (d)]. Considering the
diversity of choice in people, we incorporate strategy-
mutation mechanism into the continuous-strategy case.
We assume that the individuals may randomly choose a
vaccination strategy again from the strategy set with prob-
ability l, which is the mutation probability of the vaccina-
tion strategy, after using the Eq. (1) updating their
vaccination strategy in every season [Fig. 1(b)]. Because
the individuals with strategy mutation randomly choose
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Fig. 4. Vaccination dynamics in the continuous-strategy case with mutation in la
for vaccination c for several different mutation probabilities l. The inset in pa
between the final vaccination level fV and the final epidemic size fR in the regio
a vaccination strategy from the strategy set, the possible
vaccination strategies for the individuals are conservative.
As shown in Fig. 4(a), there is a value of c, where the final
vaccination level for different values of l cross at fV ’ 0:5,
below which, the lower the mutation probability, the
higher vaccination level, while above it the opposite effect
takes place. How can we find the special value c? There are
two kinds of people, those who experienced strategy muta-
tion and those who don’t, in the whole population. The
total vaccine coverage affected by the mutation probability
l is determined by the change of the number of the two
kinds of people. If the proportion of vaccinated is the same
among the individuals experienced strategy mutation and
those did not, the total vaccine coverage will be indepen-
dent on l. As mentioned before, the individual needs to
choose a vaccination strategy from the strategy set in the
presence of strategy mutation, such that the average pro-
portion of vaccinated among the individuals with strategy
mutation is 50%. If the average proportion of vaccinated
individuals in the total population is 50%, there is no dif-
ference for any value of mutation probability l. So, we
can find the value c under which the vaccination level is
equal to 50% in l ¼ 0. Below the special value c, the vacci-
nation level will be diminished by the individuals with
strategy mutation for the vaccination level is greater than
50% in l ¼ 0. So, the lower the mutation probability, the
higher vaccination level. In Fig. 4(b), we want to focus on
the relationship between (fV ; fR) in the stationary state for
arbitrary c in [0,1]. We show the relationship between
the final vaccination level fV and the final epidemic size
fR for the pure-strategy case, the continuous-strategy case
without mutation and the continuous-strategy case with
mutation when the value of c varies from 0 to 1. We can
clearly see that the final epidemic size fR in the pure-strat-
egy case is greater than that in the continuous-strategy
case without mutation and the continuous-strategy case
with mutation for all values of fV . The qualitative proper-
ties of the results obtained from the continuous-strategy
case with mutation on ER network and BA network are
the same as the results on square lattice (not shown here).

Finally, we study the distribution of vaccination strat-
egy for several different c in both the continuous-strategy
case without mutation and the continuous-strategy case
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Fig. 5. The distribution of vaccination strategy in the continuous-strategy case without mutation and the continuous-strategy case with mutation in square
lattice (left panels) and ER network (right panels). The cross symbols are the average percentage of vaccination for the corresponding cost for vaccination c
and mutation probability l. Simulation results are averaged over 2000 independent runs.
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with mutation. The results are presented in Fig. 5, from
which we can see that the peak value is almost identical
to the average percentage of vaccination Fig. 5(a), (c) and
(d). However, if the distribution of the strategies is trun-
cated by the lower boundary, say x ¼ 0% , as reflected in
Fig. 5(b), the peak value will deviate somewhat from the
average percentage of vaccination. It is clearly that the dis-
tribution of the strategies in the continuous-strategy case
with mutation is more widely than that in the continu-
ous-strategy case without mutation. The strategy-muta-
tion mechanism can effectively guarantee the
reappearance of the strategies of vaccination. If the value
of the peak is less than 50% (c = 0.1, 0.3, 0.5 in the lattice
population and c = 0.1 in the ER network), the peak will
move to the left when the mutation probability l
increases. First, we assume that the population is in an
equilibrium state of non-mutation mechanism. In this
moment, we incorporate strategy-mutation mechanism
to the population. As mentioned before, the average pro-
portion of vaccinated among the individuals with strategy
mutation is 50%. That is to say, the equilibrium state will
be broken. Due to the self-interest, the rest of people will
decrease the vaccination probability to reach a new equi-
librium state. So, we obtain that the total vaccine coverage
is increasing [Fig. 4(a)] and the peak will move to the left
[Fig. 5(a)–(c)] if the value of the peak is less than 50%

(the total vaccine coverage is less than 50%). If the value
of the peak is greater than 50% (c = 0.7 in the ER network),
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the peak will move to the right when the mutation proba-
bility l increases. If the value of the peak is approximately
equal to 50% (c = 0.3 in the ER network), the peak will
nearly the same when the mutation probability l
increases.

4. Conclusion

In summary, considering the self-interest and the criti-
cal vaccination level, we have studied how the vaccination
dynamics are affected by the continuous-strategy case. We
have shown that, in spatial network, there is a crossover
behavior of the final vaccination level fV between the
pure-strategy case and the continuous-strategy case, and
very interesting, both the final vaccination level fV and
the final epidemic size fR in the continuous-strategy case
are less than that in the pure-strategy case in low cost
for vaccination c. We explain these results by analyzing
the characteristic spatial distribution of states of the indi-
viduals in the equilibrium state. The size of the cluster of
vaccinated individuals is smaller in the continuous-strat-
egy case than that in the pure-strategy case for each given
value of c, so the area of influence of vaccination or the
number of indirect beneficiaries (not vaccinated and have
at least one vaccinated neighbor) in the continuous-strat-
egy case is more effective than that in the pure-strategy
case. In addition, we have incorporated strategy-mutation
mechanism into the continuous-strategy case. We have
shown that the final vaccination level will cross at
fV ’ 0:5 with different mutation probability l. We explain
the reason that the crossing point is determined by the
average vaccination level of the individuals with strategy
mutation. By analyzing the macroscopic features of the
vaccination dynamics as well as strategy-mutation mecha-
nism in the continuous-strategy case, we have provided
further insights as to how the consideration of different
vaccination strategies changes the final epidemic size and
the final vaccine coverage.
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