S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Expert Systems With Applications 97 (2018) 41-50

Expert Systems With Applications

Contents lists available at ScienceDirect T

Systems
with
Applications 4

Ealor-n-Chiet
Binsnon U

journal homepage: www.elsevier.com/locate/eswa

Disease spreading in complex networks: A numerical study with )
Principal Component Analysis e

PH.T. Schimit®*, E.H. Pereira®P

2 Informatics and Knowledge Management Graduate Program, Universidade Nove de Julho, Rua Vergueiro, 235/249, CEP 01504-000 Séo Paulo, SP, Brazil
b Industrial Engineering Graduate Program, Universidade Nove de Julho, Rua Vergueiro, 235/249, CEP 01504-000 Sdo Paulo, SP, Brazil

ARTICLE INFO

ABSTRACT

Article history:

Received 3 January 2017

Revised 21 November 2017
Accepted 9 December 2017
Available online 12 December 2017

Keywords:

Complex networks
Epidemiology

Principal Component Analysis
SIR model

Random graphs

Disease spreading models need a population model to organize how individuals are distributed over space
and how they are connected. Usually, disease agent (bacteria, virus) passes between individuals through
these connections and an epidemic outbreak may occur. Here, complex networks models, like Erdos-
Rényi, Small-World, Scale-Free and Barabasi-Albert will be used for modeling a population, since they
are used for social networks; and the disease will be modeled by a SIR (Susceptible-Infected-Recovered)
model. The objective of this work is, regardless of the network/population model, analyze which topolog-
ical parameters are more relevant for a disease success or failure. Therefore, the SIR model is simulated
in a wide range of each network model and a first analysis is done. By using data from all simulations, an
investigation with Principal Component Analysis (PCA) is done in order to find the most relevant topo-
logical and disease parameters.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Disease spreading has been modeled by using different
mathematical tools, from ordinary differential equations (ODE)
of Kermack and McKendrick SIR model (Susceptible-Infected-
Recovered model) (Anderson & May, 1991; Kermack & McKendrick,
1927) to multi-agent systems with large computational demand
(Balcan et al., 2010). Analyze and understand how an epidemic
outbreak occurs in a region and look for control strategies to
combat are usually the objectives in these studies (Anderson &
May, 1991).

Individuals in different states of disease well mixed and ho-
mogeneously distributed over space used to be limitations of the
ODE models, which is acceptable for a wide range of diseases (Roy
& Pascual, 2006). However, when the spatial factor is important,
other tools need to be used, like the concept of a graph, or net-
work (Albert & Barabasi, 2002). In this case, the network (popu-
lation) is formed by nodes (individuals) connected by edges (so-
cial and/or spatial contact) (Boccaletti, Latora, Moreno, Chavez, &
Hwang, 2006).

In the set of networks, the regular networks (all nodes have the
same number of connections with other nodes, for instance) do

* Corresponding author.
E-mail addresses: schimit@uni9.pro.br (PH.T. Schimit), fabiohp@uni9.pro.br (EH.
Pereira).
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not represent real social networks in its full complexity. Therefore,
complex networks have been used to model populations (May,
2006; Watts & Strogatz, 1998). Formally, a network is a structure
used to model pairwise relations between objects and is defined
by an ordered pair G = (V,E), where V is the nodes (also called
vertices) set and E the edges set. The edges link the nodes and such
connection may have many interpretations:

o electric energy distribution system, where generators and trans-
formers form the nodes set and transmission lines form the
edges set;

« world wide web, where web pages are the nodes and hyperlinks,
the edges;

« citation network, where scientific texts are the nodes and cita-
tions, the edges;

and so on. Here, an individual is one node and a interaction be-
tween two individuals is represented by an undirected edge and the
population model is defined (Albert & Barabasi, 2002; Newman,
2010). Usually, networks have undirected and unweighted edges
(Bansal & Meyers, 2012), though some asymmetrical biological
structures need to be modeled by directed networks (Moslonka-
Lefebvre, Harwood, Jeger, & Pautasso, 2012; Moslonka-Lefebvre,
Pautasso, & Jeger, 2009).

Consequently, epidemiological studies started to rely on com-
plex networks as a robust tool for modeling a population (Albert &
Barabasi, 2002; Boccaletti et al., 2006) using networks with com-
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plex connections structures (Franc, 2004; Sander, Warren, Sokolov,
Simon, & Koopman, 2002), considering spatial pattern (Dorjee, Re-
vie, Poljak, McNab, & Sanchez, 2013; Rautureau, Dufour, & Durand,
2010; van Ravensway et al., 2012; Westgarth et al., 2009), and
also adopting small-world (Moore & Newman, 2000) and scale-free
(Colizza, Barthélemy, Barrat, & Vespignani, 2007) models (which
will be explored in the next section).

Given the flexible adaptability of this framework, a wide
range of problems started to use some complex network
models, for instance: analysis of zooplankton community
(Raymond & Hosie, 2009), Buruli ulcer in Victoria, Australia
(van Ravensway et al, 2012) and swine shipments in Ontario,
Canada (Dorjee et al., 2013); exploration of network formed by
dogs in a community (Westgarth et al.,, 2009) and a study of the
epidemic data of SARS (Severe Acute Respiratory Syndrome) in
Beijing, China (Zhong, Huang, & Song, 2009). By using complex
networks in these circumstances, it is possible to find relations
between the population structure and disease characteristics.
Such structure is measured by the topological parameters of the
network (for instance clustering coefficient and shortest path,
which will be also explored in the next section) (Keeling, 2005).
However, depending on the problem, population may need a
proper mathematical tool to consider space as an important factor,
like cellular automata (Holko, Mdrek, Pastuszak, & Phusavat, 2016).

More especifically, complex network approaches have proven to
be a suitable tool for building expert systems, most notably in so-
cial sciences (Legara, Monterola, & David, 2013; Wachs-Lopes & Ro-
drigues, 2016). In general, complex network architecture is used to
build and evaluate prediction models. The effect of network be-
havior and topology on model performance is also frequently eval-
uated (Oskarsdéttir et al., 2017). In the Linguistic area, for exam-
ple, in which many studies have emerged due to explosive growth
of Internet, complex network model for semantic representation of
human language presents a behavior of scale-free network (Wachs-
Lopes & Rodrigues, 2016). In this context, feature or attribute selec-
tion, which search for the best subset of attributes in a dataset, is a
useful method for leading to a less redundant data, modeling accu-
racy improvement and reduced processing time for training expert
systems (Aladeemy, Tutun, & Khasawneh, 2017; Elangovan, Devase-
napati, Sakthivel, & Ramachandran, 2011).

Control strategies which consider topological properties
emerged as an alternative view for deciding how to com-
bat an epidemic outbreak. In Oles, Gudowska-Nowak, and
Kleczkowski (2012), the size of neighborhood is considered
for an optimal strategy in economic and epidemic terms; Oles,
Gudowska-Nowak, and Kleczkowski (2014) show a study of cost-
benefit control methods related to topological parameters; and
Xiao, Zhou, and Tang (2011) demonstrates the differences in
control strategies for random and small-world networks. Control
methods in random networks suggest that it better to focus
control activities in highly connected individuals (Jeger, Pau-
tasso, Holdenrieder, & Shaw, 2007).

However, in some types of networks, topological parameters
seem not to be an efficient way to understand an epidemic out-
break due to the wide range of networks which can be created
for a determined set of topological parameters values (Moslonka-
Lefebvre et al., 2009; Schimit & Monteiro, 2009). Accordingly, in
this paper we use a fixed SIR model in populations modeled by
random, small-world, scale-free and Bardbasi-Albert networks to ver-
ify relations between disease characteristics and topological pa-
rameters in order to investigate if a determined parameter and/or
a set of parameters can be used to predict disease spreading of all
networks and/or a set of networks.

Finally, the Principal Component Analysis (PCA) is a simple mul-
tivariate analysis based on eigenvalue decomposition of a data
covariance matrix and the objective is to configure a lower-

dimensional picture of the data to reveal the internal structure that
best explains the variance. Consequently, PCA is often used when
the system has many input variables and it is necessary to find the
most influent for the output (Jolliffe, 2002).

Therefore, we use different complex networks models for mod-
eling a population and a simple SIR model to model the disease.
The objective of this work is, regardless of the network/population
model, analyze which topological parameters are more relevant for
a disease success or failure by using PCA. From an epidemiological
point of view, such methodology complement works which deal
with partial information to either extract disease outbreaks char-
acteristics (Colizza & Vespignani, 2008; Moreno, Pastor-Satorras, &
Vespignani, 2002) or decide control actions (Oles et al., 2012; 2014;
Xiao et al., 2011). By using a wider range of population structures,
it is possible to measure disease strength regardless of structure
model. For an expert and intelligent system point of view, the
methodology proposed for dynamical populations may be imple-
mented for other problems (Bajer, Martinovi, & Brest, 2016; Chang,
Chen, & Lin, 2005; Li, Zhang, & Zeng, 2009; Simidjievski, Todor-
ovski, & Deroski, 2015).

Complex networks have been frequently used to model popu-
lations in disease spreading models (Albert & Barabasi, 2002; Boc-
caletti et al., 2006; May, 2006; Zhou, Fu, & Wang, 2006; Trapman,
2007; Zhong et al., 2009). Although the proposed methodology is
an innovative approach to handle with any type of network, it does
not consider some specific attributes and results. For instance:

e it only consider SIR model (not SEIR - SIR with Exposed state,
for instance Keeling, Rand, & Morris, 1997; Verdasca et al.,
2005);

o there is no variation of disease parameters (Moore & Newman,

2000; Verdasca et al., 2005), though here different parameters

lead to dynamical equivalent results;

approximates the calculation of the basic reproduction num-

ber by ordinary differential equations, which is usually used

for homogeneously mixing of population. Although the results
were good even for heterogeneous networks, some works use
other parameters to analyze disease strength (Pellis, Ferguson,

& Fraser, 2009);

e some diseases have a strong influence of space, and it may

be necessary complementary model to handle space (Bigras-

Poulin, Thompson, Chriel, Mortensen, & Greiner, 2006; Riley,

2007; Tildesley et al., 2010; Vazquez-Prokopec, Kitron, Mont-

gomery, Horne, & Ritchie, 2010). Such spatial dependence is not

considered in this paper and;

it cannot be used for global approaches (Balcan et al., 2010;

Wang, Li, Zhang, Zhang, & Zhang, 2011).

This paper is organized as follows: in the next section,
some basic concepts of graphs/networks are presented and in
Section 3 first results of the model are explored. In Section 4, a
more robust analysis is made by using PCA and, in Section 5, we
present a final discussion.

2. Basic concepts
2.1. Topological parameters

Topological parameters help to identify some properties of a
network. Consider a network G with n nodes. The maximum num-
ber of edges happens when the network is fully connected and
is equal to n(n—1)/2. The distance between nodes i and j is the
number of edges l; which make up the shortest path between
the nodes. Here, we use the following topological parameters as
variable analysis: average shortest path, density, diameter, clustering
coefficient, average degree and maximum degree (Albert & Barabasi,
2002; Boccaletti et al., 2006; Newman, 2010).
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The average shortest path of the network (spl) is the average
value of I;; for every pair i and j, that is, | = T PR BT 1)
Consider e the number of edges in the network. Density is the frac-
tion of edges and all possible edges for a network, that is, den =
e/n(n—1). If we consider the maximum value of [;;, we define the
diameter diam = max(l;;), with 1<i, j<n and i#j, which repre-
sents the longest shortest path of the network (Boccaletti et al.,
2006).

Finally, in 1998, Watts and Strogatz (1998) introduced the clus-
tering coefficient, which is the fraction of connections b; which
exist between i neighbors and the maximum value of connec-
tions. Consider k; the degree of a node, that is, the number of
neighbors of the node i. Thus, the clustering coefficient for i is
c; =2b;/ki(ki — 1), and the average clustering coefficient is given
by ¢= (1/n) Y ;c;. Here, we also use the average degree (k=
Yitoki/n) and the maximum degree kmgx = max(k;), 1<i<n to
analyze a network.

2.2. Complex networks

One of the first complex network model was formulated by
Erdos and Rényi (1959). Based on completely random graphs, n
nodes are connected by e edges randomly chosen among the n(n —
1)/2 possible edges, that is, a fraction g =e/(n(n—1)/2) of the
edges form the connections of the network.

Watts and Strogatz (1998) also created an algorithm to gener-
ate a network with similar average shortest path of Erdds-Rényi
network (which is usually small) but also increasing the average
clustering coefficient closer to social networks. Consider a regular
topology, that is, each node is connected to m closer individuals.
Then rewire a fraction g of the connection, and the network model
is done. Note that such model is mainly locally connected with
long distance random connections. When p = 1, the final network
is totally random, as the Erdés-Rényi model.

Another typical property of real networks is the rule richer get
richer when creating the network, that is, new nodes are more
likely to connect to nodes with high degree. For these real net-
works, the degree distribution follows the expression P(k) ~ k=7,
with y =2.2 (Albert & Barabasi, 2002; Newman, 2010). A distri-
bution of nodes P(k) = Ak=”, with A and k constants, is named
scale-free. Here, scale-free networks will be created determining
the fraction p of edges to be added (from all possible) and the
power law exponent of the degree distribution (Bollobas, Rior-
dan, Spencer, & Tusndy, 2001).

Barabasi and Albert proposed a rule derived from scale-free
models, the preferential attachment (Barabasi & Albert, 1999). In
this rule, the probability g that a new node will connect to a
node i is a function of i degree k;, that is, q(k;) = k;/ Z;?;]l k;. Here,
Barabasi-Albert networks will be created by determining the num-
ber of edges that each node will connect and the power of the
preferential attachment, that is, the probability that an edge is
cited is proportional to kP,

2.3. SIR model

SIR model used in simulations is the same as used in
Schimit and Monteiro (2009). However, here each node represents
an individual which may be in one of the disease states Suscepti-
ble, Infected and Recovered. The possible state transitions are listed
below:

« Susceptible individual may be infected with probability P(v) =
1—e k' where v is the number of infected neighbors (that is,
Infected nodes from a distance 1), and k is a parameter related
to disease;

o Infected individual may be cured with probability P;

e Infected individual may die due to disease consequences with
probability Pg;

e Recovered individual may die due to natural causes with prob-
ability Pp;

o Susceptible, Infected and Recovered individuals may continue in
the same state after a time step;

In Roy and Pascual (2006), based on previous model from
Keeling et al. (1997), a comparison between ODE approaches pair-
wise formulation, heterogeneous mixing model and mean-field ap-
proximation is presented. Although the first two approaches ex-
hibit important dynamical properties, the system equilibrium can
be analyzed by using the mean-field approximation. Therefore,
here we consider individuals from different states homogeneously
distributed over the network to represent the population, since the
objective to use ODE is to calculate the parameter Ry, the basic re-
production number, which will be defined next.

The state transitions listed above can be interpreted as rates in
the ODE and the equations are:

% = —aS(t)I(t) +cl(t) + eR(t)
% = aS(t)I(t) — bI(t) — cI(t)
dR(t)

where a is the infection rate constant; b is the recovering rate con-
stant; c is the death rate constant related to the disease; e is the
death rate constant related to natural causes.

Note that dS(t)/dt + dI(t)/dt + dR(t)/dt = 0, so the total num-
ber of individuals remains constant and S(t) +I(t) +R(t) = N.
The sets of stationary solutions (S*/N, I*/N, R*/N) (where S*,
I* and R* are constants satisfying dS(t)/dt =0, dI(t)/dt =0,
dR(t)/dt =0 for any instant t) of Eq. (1) are: (S*I*R*)=
(1,0,0) and (S*,I*,R*) = (1/Rg, (e/e+b)(1 —1/Ry), (b/e +b)(1 —
1/Ry)), where Ry =aN/(b+c) is the basic reproduction number
and a stability analysis (Monteiro, Sasso, & Berlinck, 2007) of
Eq. (1) reveals that the disease-free stationary state is asymp-
totically stable if Ry <1 and unstable if Ry>1; and the endemic
stationary state is unstable if Ry <1 and asymptotically stable if
Rog > 1. Moreno et al. (2002) studied a similar model and showed
that for networks with finite average degree and quadratic aver-
age degree, there is a critical value (function of epidemiological
and networks parameters) that indicates whether there will be or
not disease spreading in the population. Furthermore, a, b, ¢ and
e can be estimated from simulations, since the ODE model is a
mean-field approximation. From Schimit and Monteiro (2009), the
expressions that link these models are:

Al(t)5—>1
SOI)At
AR()1r

b= I(t)At =k
- AR()1r \ AS(D)is
€= (l “TIoar ) Toar S0Pk
_ AS()ros
T R(tAt
Note that the rates of ODE are related to the probabilities of
cellular automata.

ax~

~ P, (2)

2.4. Principal Components Analysis

Principal Component Analysis (PCA) is one of the most popular
methods for dimensionality reduction of a feature set. Therefore,
PCA projects a dataset X into an orthonormal base in RN, which
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is defined as a set of p eigenvectors e; e RN, i=1,...,p, of the
covariance matrix of X. This orthonormal base is oriented in the
directions that provide the maximum variance of X € RN, in order
to carry the most relevant information. Dimensionality reduction
principle is the representation of the dataset X in terms of covari-
ance matrix eigenvectors, which are called principal components
(Jolliffe, 2002).

In order to accomplish the dimensionality reduction, the
dataset is represented as a real matrix U,,y, where n and N
are, the number of rows and columns, respectively. Each row of
U corresponds to an N-dimensional point and the columns rep-
resent values of N original variables. The covariance matrix of U
is calculated, as well its eigenvalues and corresponding eigenvec-
tors. These eigenvectors form a set of linearly independent vec-
tors, i.e., a base {¢;},i=1,...,n, which consist of a new axis sys-
tem (Guo, Wu, Massart, Boucon, & Jong, 2002). Finally, to perform
the dimensionality reduction, the rows of U are projected onto the
base formed by the p eigenvectors related to the largest eigen-
values (p’n). The coordinates of U projected in this reduced p-
dimension subspace are denoted as U¢,U¢,, ..., U¢n.

2.5. Feature selection by PCA

As a result of the process presented before, the PCA returns
a projection in the new space that is different from the original
data. Usually, it is necessary to select the most relevant attributes
without changing their values, that is, accomplish dimensional-
ity reduction of a feature set by choosing a subset of the origi-
nal features that contains most of the essential information (Guo
et al,, 2002; Guyon, 2003). The proposed approach for this prob-
lem, called principal feature analysis (PFA), is based on a method
presented by Lu, Cohen, Zhou, and Tian (2007). The algorithm can
be summarized in the following steps:

1. Compute the covariance matrix of a zero mean n dimensional
feature vector X and its eigenvalues and eigenvectors ¢;

2. Choose the subspace dimension p and construct the matrix Ap
with the first p principal eigenvectors;

3. Calculate the projections of each point on the PCA subspace.
As a result, we have a new set of p projected variables
Up1, Uy, ..., Ugp;

4. Define a contribution index of each original variable (columns
of U) on the projection as a weighted sum of the inner product
between the variable and each principal component. This con-
tribution index is directly related to the angle cosine between
the original variable and each principal component in Euclidean
space. The weights are taken as the amount of data variation
explained by each principal component.

Thus, the principal feature is chosen according to largest contri-
bution index variable. Opposed to the original PCA method which
projects the original data onto a subspace of eigenvectors, the PFA
approach selects the most relevant attributes without change their
values. Such selection considers a subset of the original features
based on the distance between these features and the principal
components that contains most part of the essential information,
as defined in the step 4.

3. Epidemiological model on networks

In order to compare disease spreading on networks, epidemio-
logical parameters of the model presented previously are fixed: k =
0.1, P. =60%, P; =30% and P, = 10% (Schimit & Monteiro, 2009).
Networks with n = 1000 nodes have initial conditions S(0) =
99.5%, 1(0) = 0.5% and R(0) = 0%. Simulations run for t = 100 time
steps and a, b, c and e are calculated with average values of states
and states transitions using Eq. (2) for the last 20 time steps, when
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Fig. 1. Network and ODE simulations with k = 0.1, P. = 60%, P; = 30% and P, = 10%.
For network simulations, susceptible state is represented by black solid line, in-
fected is the black dotted line and recovered is the black dashed line. States of ODE
simulations are in respective gray lines.

the system already reached the permanent regime. In the begin-
ning, the population network is created and remains fixed through-
out simulation, that is, individuals have always the same neighbor-
hood.

Fig. 1 exhibits the temporal evolutions for networks (a) Erdés—
Rényi, (b) small-world, (c) Barbasi-Albert and (d) scale-free. Ev-
ery Ro are indicated in the figure, as well the average cluster-
ing coefficient and average shortest path of each network. Light
gray lines exhibit corresponding disease states for ODE simula-
tions whose parameters where calculated from network simula-
tions using Eq. (2). Note that the networks have similar topological
parameters, however, Ry and the disease dynamic is different of
each other. Furthermore, the temporal evolution of ODE and net-
work models are different, though percentage of individuals in the
steady state are similar. A good overview about the visual differ-
ences of how each network is created can be found at Shirley and
Rushton (2005).

Therefore, here we simulate the disease spreading in a wide
range of topological parameters for each complex network model.
The tool for generating these networks is the C/C++ library iGraph
(Csardi & Nepusz, 2006). The next sections formalize how the net-
works are stressed.

3.1. Erdés-Rényi

Considering a Erd6s-Rényi network, a fraction p of all the possi-
ble edges is added to the network, that is, each possible edge has
a probability of being added equal to p. The iGraph environment
requires the value of p, thus, epidemiological model is simulated
for each network with p in the range .0001:.0001:.5. In these sim-
ulations, average clustering coefficient results in values 0 < cc 0.5,
average shortest path, 1.5 < spl < 13, diameter, 2 < diam < 8, density,
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Fig. 2. Erdos-Rényi simulations with Ry in function of topological parameters clus-
tering coefficient, shortest path, density, diameter, average degree and maximum
degree.

0sdens0.5. Fig. 2 exhibits how these properties influences the
value of Ry. On Erd6s-Rényi networks, ccxp. See that in general,
more connections mean higher values of Ry. Distances measures
indicate that with closer individuals (low shortest path and diam-
eter), higher Ry.

3.2. Small-world

On small-world networks, each node starts with m connec-
tions with closer individuals. Then each connection is rewired
with probability p, that is, any of the possible edges in the graph
may be added by removing such connections. The iGraph environ-
ment requires the value of m and p, thus, epidemiological model
is simulated for each network with p in the range .01:.01:1, and
m in the range 1: 1: 150. In these simulations, average cluster-
ing coefficient results in values 0 < cc 0.75, average shortest path,
1.78 s spl £ 125, diameter, 2 < diam < 6, density, 0 < den < 0.2. Fig. 3
exhibits how these properties influences the value of Ry.

Note that small-world networks are less dense than Erdds-
Rényi networks with the same potential for a disease spreading
depending on other topological features. Also, here, clustering co-
efficient is not enough to determine the value of Ry, needing an-
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Fig. 3. Small-world simulations with Ry in function of topological parameters clus-
tering coefficient, shortest path, density, diameter, average degree and maximum
degree.

other parameter to verify disease spreading properties. The sep-
arated dots in shortest path and diameter figures are related to
p =0, when the network is regular with each node having the
same number of connections m.

3.3. Scale-free

For scale-free networks, the number of edges e in the graph
and the power law exponent y determines the generation. That
is, e edges are added to the network, and the probability that a
node is chosen to get an edge is given by P(k) = k¥, where k is
the node degree. The iGraph environment requires the value of
e and y, thus, epidemiological model is simulated for each net-
work with a fraction of possible edges g in the range 0.05:0.05:0.6,
and y in the range 2:0.1:6. In these simulations, average cluster-
ing coefficient results in values 0 < cc < 0.6, average shortest path,
1.4 s spl 5 4.48, diameter, 2 < diam < 6, density, 0 < den <0.6. Fig. 4
exhibits how these properties influences the value of Ry.

Scale-free network model allows a good range of topological pa-
rameters for the epidemiological model. Note that the model needs
more edges in order to exhibit similar values of Ry than a small-
world network, which is not so dense.



46

PH.T. Schimit, EH. Pereira/Expert Systems With Applications 97 (2018) 41-50

15 15
10 10
o
(14
5 5
2,
2,
0.........._. " —t e —t—ton- 0 PSTv—
10" 10 10° 10’
clustering coefficient shortest path
15 15
10 10
o
o
:
5 5 !
ot ! HI
10" 100 % 510 20
density diameter
15 15
10 10
o o
5 5
e
s
. ..'
0
’ 0 - o
o 50 700  10° 10° 10°

average degree maximum degree

Fig. 4. Scale-free simulations with Ry in function of topological parameters clus-
tering coefficient, shortest path, density, diameter, average degree and maximum
degree.

3.4. Bardbasi-Albert

Bardbasi-Albert network is a subset of scale-free networks. The
difference is how the network is created, because Barabasi-Albert
requires the exponent y for the probability of a node being chosen
to get an edge P(k) = k¥, and the number of outgoing edges gen-
erated for each node m. The iGraph environment requires the value
of m and y, thus, epidemiological model is simulated for each net-
work with m in the range 5: 5: 200, and y in the range 2: 0.1: 5.
In these simulations, average clustering coefficient results in val-
ues 0.01 < cc <0.48, average shortest path, 1.67 < spl < 2.42, diame-
ter, 2 s diam <4, density, 0 s den <0.36. Fig. 5 exhibits how these
properties influences the value of Ry.

Such construction model generates networks with nodes with
high degrees, and the consequence is the small range of the aver-
age shortest path. However, even for such small range, see that Ry
abruptly fall from Ry~ 12 when average shortest path is spl~ 1.6,
to Rg ~2 when average shortest path is spl~2.4.

4. More results

In order to show the need of a more robust statistical analy-
sis for all network data, all simulation results are show in Fig. 6.
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Fig. 5. Barabasi-Albert simulations with Ry in function of topological parameters
clustering coefficient, shortest path, density, diameter, average degree and maxi-
mum degree.

Note that the average clustering coefficient, average shortest path,
diameter and maximum degree is not enough to clearly identify
a Ry prediction. Although there is a variance in data, density and
average degree have trends which allow a Ry prediction. More-
over, Ry > 1, i.e., disease persists in population when den 2 0.01, and
when average degree avdeg 2 10.

Therefore, PCA has been used to get other relationships be-
tween disease and network parameters. The variables used were:
average clustering coefficient (cc); average shortest path (spl); den-
sity (den); diameter (diam); average degree (avdeg), maximum
degree (maxdeg); amount of individuals Susceptible (S) Infected
(I) and Recovered (R) when the system reached the permanent
regime; Infected peak (Ip), (i.e., the amount of Infected individu-
als in the initial outbreak of disease) and; instant of Infected peak
(ilp), which is the time step when the peak occurred. All these 12
variables have been considered for all 41,270 experiments of all
networks and the Fig. 7 contains the normalized projection of each
variable.

Note that according to PCA, the internal structure of the data
that best explains the variance in the data have maxdeg, Ip, R and
avdeg as most informative variables. Fig 6 already exhibited Rq in
function of maxdeg, and such variable certainly does not explain
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Fig. 6. Data for all networks put together for Ry in function of topological parame-
ters clustering coefficient, shortest path, density, diameter, average degree and max-
imum degree.

the disease variables. Actually, the maximum degree of the net-
work is very sensitive to the other topological parameters for all
networks.

Thereby, relationships on Figs. 8-11 are based on PCA results.
The Fig. 8 shows that small values of average degree is enough
for a high peak of infected individuals and the trend of increasing
the I(t) peak changes at around 300, when it starts to decrease.
Fig. 9 indicates that the sooner the I(t) occurs, the high the value
of the peak is. Fig. 10 contains the same data of Fig. 6 for average
degree, but in a different scale. Somehow, PCA confirms the impor-
tance of the average degree for analyzing a disease spreading.

Note that for all figures, the value of R saturates. In such condi-
tion, the term aS(¢t)I(t) of Eq. (1) can be written as aS(t)I(t) = S(t),
since all Susceptible individuals become infected. Accordingly, the
new equations are:

de) —S(t) +cI(t) + eR(t)
#glzsa)—ma)—da)
% — bI(t) — eR(t) )

1

maxdeg

0.75/ o b

0.25

avde
ogS

o |
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normalized variable weight
o
i
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cc spl den diam

0O o 0 0 o ®

1 - 12
variable index

Fig. 7. PCA results infographic.
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Fig. 8. Peak instant of I(t) in function of average degree of the network.

with the set of stationary solutions (as done for Eq. (1)):

(Siat Bar Rygr) = (1,0,0) and (Sg, I, Rige) = (e(b+¢)/(b+e(b+
c+1)),e/(b+e(b+c+1)),b/(b+e(b+c+1))). Therefore, we
have asqe = 1/I%,, thus:

R Gsae _ Vly b+ebb+ct+1) )
0sat = e T brc e(b+c)

Using Eq. (2) for determining values for b, ¢ and e, we have
Rosqt = 11. Thus, the white thick dashed line in Fig. 10 is a fitted
curve for the experimental points in the form:

Ro(avdeg) = Rosar * (1 —€
where o = 0.0099.

—a*avdeg)
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Finally, a distinct result is presented on Fig. 11, where the Ry
is plotted in function of the amount of Recovered individuals (R)
when the system reached the permanent regime. Here, the dis-
ease Ry increases when R increases and this result is corroborated
by other related papers, since the disease qualitatively parame-
ters used are usually from diseases like mumps, chickenpox and
measles (Monteiro, Chimara, & Berlinck, 2006) which also have
high Ry and high amount of Recovered individuals in population
(Anderson & May, 1991). If we consider that the permanent regime
of the system has Ry > 1, i.e., disease is active, Ry can be approxi-
mated by Ry = b/(b—R*(e +b)).

15 ‘ . ,

600

800

Fig. 11. Ry in function of the average recovered individuals R when system reached
its permanent regime.

5. Discussion

In this paper, we presented a method to understand a disease
propagation according to the most important topological param-
eters of four types of complex networks. Disease were modeled
by SIR-model, population by networks Erdés-Rényi, Small-World,
Scale-Free and Barabasi-Albert and the statistical process to an-
alyze the data were Principal Component Analysis. Based on the
results, following characteristics of epidemic outbreaks in popula-
tions emerged as most important factors: average degree, infected
individuals peak, instant that such peak occurs, amount of recov-
ered individuals in system steady-state and, of course, the basic
reproduction number, Rj.

Topological parameters like clustering coefficient and shortest
path length, which are often used to analyze disease spreading on
networks (Dorjee et al., 2013; Keeling, 2005; Lennartsson, Hakans-
son, Wennergren, & Jonsson, 2012; Moslonka-Lefebvre et al., 2009;
Ole$ et al.,, 2014; Raymond & Hosie, 2009; Schimit & Monteiro,
2009), should not be used when many network models are con-
sidered or the model is unknown, though they are robust when
the model is well defined. Therefore, considering that social net-
works may not be properly represented by a determined model,
as well as assumptions for modeling may not be correct, a careful
parameter choice for analyzing disease propagation must be done,
as concluded in Shirley and Rushton (2005). Here, we presented
some parameter to consider, like the average degree, density and
the amount of Recovered individuals. Moreover, results came from
a wide range of networks: from highly concentrated connections,
like Barabasi-Albert networks, to Erdos-Rényi model, where con-
nections are equally distributed over the population. Neverthe-
less, average degree were an important topological parameter, also
noted in Colizza et al. (2007).

Lastly, the simulation diversity made it possible to verify a sat-
uration in Ry value, that is, a maximum value for Ry given the
epidemiological parameters, like the probability of recovering from
disease, probability of dying due to disease and probability for dy-
ing from natural causes. Such saturation occurs when all Suscep-
tible individuals get infected at each time-step. High value of R,
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most part of population in Recovered state, almost all Susceptible
individuals getting infected are characteristics of a well known sce-
nario for child diseases like mumps, chickenpox and measles if a
age stratified population is considered (Wallinga, Teunis, & Kret-
zschmar, 2006).

Considering the possibilities of future work directions, they
should handle with following questions:

o [s the PCA approach used here suitable to other diseases mod-
els as well as populations modeled by another multi-agent en-
vironment, like cellular automata (Holko et al., 2016)?

o [s the PCA approach suitable to other uses of populations,
like evolutionary algorithms (Bajer et al, 2016; Chang et al,,
2005; Li et al, 2009) and general population dynamics
(Simidjievski et al., 2015)?

o Considering mathematical epidemiology, the inclusion of meth-
ods to control the spread of the disease to the model could re-
turn the most effective to combat the disease. Vaccination and
limiting contacts between individuals should be tested;

e The calculation of Ry is usually difficult in the first cases of
a disease outbreak (Mossong & Muller, 2000). The PCA model
could be used in the initial transient of disease with partial in-
formation to return the most important variables to consider to
approximate the Ry value.
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