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a b s t r a c t 

Disease spreading models need a population model to organize how individuals are distributed over space 

and how they are connected. Usually, disease agent (bacteria, virus) passes between individuals through 

these connections and an epidemic outbreak may occur. Here, complex networks models, like Erdös–

Rényi, Small-World, Scale-Free and Barábasi–Albert will be used for modeling a population, since they 

are used for social networks; and the disease will be modeled by a SIR (Susceptible–Infected–Recovered) 

model. The objective of this work is, regardless of the network/population model, analyze which topolog- 

ical parameters are more relevant for a disease success or failure. Therefore, the SIR model is simulated 

in a wide range of each network model and a first analysis is done. By using data from all simulations, an 

investigation with Principal Component Analysis (PCA) is done in order to find the most relevant topo- 

logical and disease parameters. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Disease spreading has been modeled by using different

athematical tools, from ordinary differential equations (ODE)

f Kermack and McKendrick SIR model (Susceptible–Infected–

ecovered model) ( Anderson & May, 1991; Kermack & McKendrick,

927 ) to multi-agent systems with large computational demand

 Balcan et al., 2010 ). Analyze and understand how an epidemic

utbreak occurs in a region and look for control strategies to

ombat are usually the objectives in these studies ( Anderson &

ay, 1991 ). 

Individuals in different states of disease well mixed and ho-

ogeneously distributed over space used to be limitations of the

DE models, which is acceptable for a wide range of diseases ( Roy

 Pascual, 2006 ). However, when the spatial factor is important,

ther tools need to be used, like the concept of a graph, or net-

ork ( Albert & Barabasi, 2002 ). In this case, the network (popu-

ation) is formed by nodes (individuals) connected by edges (so-

ial and/or spatial contact) ( Boccaletti, Latora, Moreno, Chavez, &

wang, 2006 ). 

In the set of networks, the regular networks (all nodes have the

ame number of connections with other nodes, for instance) do
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ot represent real social networks in its full complexity. Therefore,

omplex networks have been used to model populations ( May,

006; Watts & Strogatz, 1998 ). Formally, a network is a structure

sed to model pairwise relations between objects and is defined

y an ordered pair G = (V, E) , where V is the nodes (also called

ertices ) set and E the edges set. The edges link the nodes and such

onnection may have many interpretations: 

• electric energy distribution system, where generators and trans-

formers form the nodes set and transmission lines form the

edges set; 
• world wide web , where web pages are the nodes and hyperlinks,

the edges; 
• citation network, where scientific texts are the nodes and cita-

tions, the edges; 

nd so on. Here, an individual is one node and a interaction be-

ween two individuals is represented by an undirected edge and the

opulation model is defined ( Albert & Barabasi, 2002; Newman,

010 ). Usually, networks have undirected and unweighted edges

 Bansal & Meyers, 2012 ), though some asymmetrical biological

tructures need to be modeled by directed networks ( Moslonka-

efebvre, Harwood, Jeger, & Pautasso, 2012; Moslonka-Lefebvre,

autasso, & Jeger, 2009 ). 

Consequently, epidemiological studies started to rely on com-

lex networks as a robust tool for modeling a population ( Albert &

arabasi, 2002; Boccaletti et al., 2006 ) using networks with com-

https://doi.org/10.1016/j.eswa.2017.12.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.12.021&domain=pdf
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plex connections structures ( Franc, 2004; Sander, Warren, Sokolov,

Simon, & Koopman, 2002 ), considering spatial pattern ( Dorjee, Re-

vie, Poljak, McNab, & Sanchez, 2013; Rautureau, Dufour, & Durand,

2010; van Ravensway et al., 2012; Westgarth et al., 2009 ), and

also adopting small-world ( Moore & Newman, 20 0 0 ) and scale-free

( Colizza, Barthélemy, Barrat, & Vespignani, 2007 ) models (which

will be explored in the next section). 

Given the flexible adaptability of this framework, a wide

range of problems started to use some complex network

models, for instance: analysis of zooplankton community

( Raymond & Hosie, 2009 ), Buruli ulcer in Victoria, Australia

( van Ravensway et al., 2012 ) and swine shipments in Ontario,

Canada ( Dorjee et al., 2013 ); exploration of network formed by

dogs in a community ( Westgarth et al., 2009 ) and a study of the

epidemic data of SARS (Severe Acute Respiratory Syndrome) in

Beijing, China ( Zhong, Huang, & Song, 2009 ). By using complex

networks in these circumstances, it is possible to find relations

between the population structure and disease characteristics.

Such structure is measured by the topological parameters of the

network (for instance clustering coefficient and shortest path,

which will be also explored in the next section) ( Keeling, 2005 ).

However, depending on the problem, population may need a

proper mathematical tool to consider space as an important factor,

like cellular automata ( Holko, Mdrek, Pastuszak, & Phusavat, 2016 ).

More especifically, complex network approaches have proven to

be a suitable tool for building expert systems, most notably in so-

cial sciences ( Legara, Monterola, & David, 2013; Wachs-Lopes & Ro-

drigues, 2016 ). In general, complex network architecture is used to

build and evaluate prediction models. The effect of network be-

havior and topology on model performance is also frequently eval-

uated ( Óskarsdóttir et al., 2017 ). In the Linguistic area, for exam-

ple, in which many studies have emerged due to explosive growth

of Internet, complex network model for semantic representation of

human language presents a behavior of scale-free network ( Wachs-

Lopes & Rodrigues, 2016 ). In this context, feature or attribute selec-

tion, which search for the best subset of attributes in a dataset, is a

useful method for leading to a less redundant data, modeling accu-

racy improvement and reduced processing time for training expert

systems ( Aladeemy, Tutun, & Khasawneh, 2017; Elangovan, Devase-

napati, Sakthivel, & Ramachandran, 2011 ). 

Control strategies which consider topological properties

emerged as an alternative view for deciding how to com-

bat an epidemic outbreak. In Ole ́s, Gudowska-Nowak, and

Kleczkowski (2012) , the size of neighborhood is considered

for an optimal strategy in economic and epidemic terms; Ole ́s,

Gudowska-Nowak, and Kleczkowski (2014) show a study of cost-

benefit control methods related to topological parameters; and

Xiao, Zhou, and Tang (2011) demonstrates the differences in

control strategies for random and small-world networks. Control

methods in random networks suggest that it better to focus

control activities in highly connected individuals ( Jeger, Pau-

tasso, Holdenrieder, & Shaw, 2007 ). 

However, in some types of networks, topological parameters

seem not to be an efficient way to understand an epidemic out-

break due to the wide range of networks which can be created

for a determined set of topological parameters values ( Moslonka-

Lefebvre et al., 2009; Schimit & Monteiro, 2009 ). Accordingly, in

this paper we use a fixed SIR model in populations modeled by

random, small-world, scale-free and Barábasi–Albert networks to ver-

ify relations between disease characteristics and topological pa-

rameters in order to investigate if a determined parameter and/or

a set of parameters can be used to predict disease spreading of all

networks and/or a set of networks. 

Finally, the Principal Component Analysis (PCA) is a simple mul-

tivariate analysis based on eigenvalue decomposition of a data

covariance matrix and the objective is to configure a lower-
imensional picture of the data to reveal the internal structure that

est explains the variance. Consequently, PCA is often used when

he system has many input variables and it is necessary to find the

ost influent for the output ( Jolliffe, 2002 ). 

Therefore, we use different complex networks models for mod-

ling a population and a simple SIR model to model the disease.

he objective of this work is, regardless of the network/population

odel, analyze which topological parameters are more relevant for

 disease success or failure by using PCA. From an epidemiological

oint of view, such methodology complement works which deal

ith partial information to either extract disease outbreaks char-

cteristics ( Colizza & Vespignani, 2008; Moreno, Pastor-Satorras, &

espignani, 2002 ) or decide control actions ( Ole ́s et al., 2012; 2014;

iao et al., 2011 ). By using a wider range of population structures,

t is possible to measure disease strength regardless of structure

odel. For an expert and intelligent system point of view, the

ethodology proposed for dynamical populations may be imple-

ented for other problems ( Bajer, Martinovi, & Brest, 2016; Chang,

hen, & Lin, 2005; Li, Zhang, & Zeng, 2009; Simidjievski, Todor-

vski, & Deroski, 2015 ). 

Complex networks have been frequently used to model popu-

ations in disease spreading models ( Albert & Barabasi, 2002; Boc-

aletti et al., 2006; May, 2006; Zhou, Fu, & Wang, 2006; Trapman,

007; Zhong et al., 2009 ). Although the proposed methodology is

n innovative approach to handle with any type of network, it does

ot consider some specific attributes and results. For instance: 

• it only consider SIR model (not SEIR – SIR with Exposed state,

for instance Keeling, Rand, & Morris, 1997; Verdasca et al.,

2005 ); 
• there is no variation of disease parameters ( Moore & Newman,

20 0 0; Verdasca et al., 2005 ), though here different parameters

lead to dynamical equivalent results; 
• approximates the calculation of the basic reproduction num-

ber by ordinary differential equations, which is usually used

for homogeneously mixing of population. Although the results

were good even for heterogeneous networks, some works use

other parameters to analyze disease strength ( Pellis, Ferguson,

& Fraser, 2009 ); 
• some diseases have a strong influence of space, and it may

be necessary complementary model to handle space ( Bigras-

Poulin, Thompson, Chriel, Mortensen, & Greiner, 2006; Riley,

2007; Tildesley et al., 2010; Vazquez-Prokopec, Kitron, Mont-

gomery, Horne, & Ritchie, 2010 ). Such spatial dependence is not

considered in this paper and; 
• it cannot be used for global approaches ( Balcan et al., 2010;

Wang, Li, Zhang, Zhang, & Zhang, 2011 ). 

This paper is organized as follows: in the next section,

ome basic concepts of graphs/networks are presented and in

ection 3 first results of the model are explored. In Section 4 , a

ore robust analysis is made by using PCA and, in Section 5 , we

resent a final discussion. 

. Basic concepts 

.1. Topological parameters 

Topological parameters help to identify some properties of a

etwork. Consider a network G with n nodes. The maximum num-

er of edges happens when the network is fully connected and

s equal to n (n − 1) / 2 . The distance between nodes i and j is the

umber of edges l ij which make up the shortest path between

he nodes. Here, we use the following topological parameters as

ariable analysis: average shortest path, density, diameter, clustering

oefficient, average degree and maximum degree ( Albert & Barabasi,

002; Boccaletti et al., 2006; Newman, 2010 ). 
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The average shortest path of the network ( spl ) is the average

alue of l ij for every pair i and j , that is, l̄ = 

1 
n (n −1) / 2 

∑ n −1 
i =1 

∑ n 
j= i +1 l i j .

onsider e the number of edges in the network. Density is the frac-

ion of edges and all possible edges for a network, that is, den =
/n (n − 1) . If we consider the maximum value of l ij , we define the

iameter diam = max (l i j ) , with 1 ≤ i, j ≤ n and i � = j , which repre-

ents the longest shortest path of the network ( Boccaletti et al.,

006 ). 

Finally, in 1998, Watts and Strogatz (1998) introduced the clus-

ering coefficient, which is the fraction of connections b i which

xist between i neighbors and the maximum value of connec-

ions. Consider k i the degree of a node, that is, the number of

eighbors of the node i . Thus, the clustering coefficient for i is

 i ≡ 2 b i /k i (k i − 1) , and the average clustering coefficient is given

y c̄ = (1 /n ) 
∑ n 

i =1 c i . Here, we also use the average degree ( ̄k =
 n 
i =0 k i /n ) and the maximum degree k max = max (k i ) , 1 ≤ i ≤ n to

nalyze a network. 

.2. Complex networks 

One of the first complex network model was formulated by

rdos and Rényi (1959) . Based on completely random graphs, n

odes are connected by e edges randomly chosen among the n (n −
) / 2 possible edges, that is, a fraction q = e/ (n (n − 1) / 2) of the

dges form the connections of the network. 

Watts and Strogatz (1998) also created an algorithm to gener-

te a network with similar average shortest path of Erdös–Rényi

etwork (which is usually small) but also increasing the average

lustering coefficient closer to social networks. Consider a regular

opology, that is, each node is connected to m closer individuals.

hen rewire a fraction q of the connection, and the network model

s done. Note that such model is mainly locally connected with

ong distance random connections. When p = 1 , the final network

s totally random, as the Erdös–Rényi model. 

Another typical property of real networks is the rule richer get

icher when creating the network, that is, new nodes are more

ikely to connect to nodes with high degree. For these real net-

orks, the degree distribution follows the expression P (k ) ∼ k −γ ,

ith γ � 2.2 ( Albert & Barabasi, 2002; Newman, 2010 ). A distri-

ution of nodes P (k ) = Ak −γ , with A and k constants, is named

cale-free . Here, scale-free networks will be created determining

he fraction p of edges to be added (from all possible) and the

ower law exponent of the degree distribution ( Bollobás, Rior-

an, Spencer, & Tusndy, 2001 ). 

Barabási and Albert proposed a rule derived from scale-free

odels, the preferential attachment ( Barabási & Albert, 1999 ). In

his rule, the probability q that a new node will connect to a

ode i is a function of i degree k i , that is, q (k i ) = k i / 
∑ n −1 

j=1 k j . Here,

arabási–Albert networks will be created by determining the num-

er of edges that each node will connect and the power of the

referential attachment, that is, the probability that an edge is

ited is proportional to k 
power 
i 

. 

.3. SIR model 

SIR model used in simulations is the same as used in

chimit and Monteiro (2009) . However, here each node represents

n individual which may be in one of the disease states Suscepti-

le, Infected and Recovered. The possible state transitions are listed

elow: 

• Susceptible individual may be infected with probability P (v ) =
1 − e −k v , where v is the number of infected neighbors (that is,

Infected nodes from a distance 1), and k is a parameter related

to disease; 
• Infected individual may be cured with probability P c ; 
• Infected individual may die due to disease consequences with

probability P d ; 
• Recovered individual may die due to natural causes with prob-

ability P n ; 
• Susceptible, Infected and Recovered individuals may continue in

the same state after a time step; 

In Roy and Pascual (2006) , based on previous model from

eeling et al. (1997) , a comparison between ODE approaches pair-

ise formulation, heterogeneous mixing model and mean-field ap-

roximation is presented. Although the first two approaches ex-

ibit important dynamical properties, the system equilibrium can

e analyzed by using the mean-field approximation. Therefore,

ere we consider individuals from different states homogeneously

istributed over the network to represent the population, since the

bjective to use ODE is to calculate the parameter R 0 , the basic re-

roduction number, which will be defined next. 

The state transitions listed above can be interpreted as rates in

he ODE and the equations are: 

dS(t) 

dt 
= −aS(t) I(t) + cI(t) + eR (t) 

dI(t) 

dt 
= aS(t) I(t) − bI(t) − cI(t) 

dR (t) 

dt 
= bI(t) − eR (t) (1) 

here a is the infection rate constant; b is the recovering rate con-

tant; c is the death rate constant related to the disease; e is the

eath rate constant related to natural causes. 

Note that d S(t) /d t + d I(t) /d t + d R (t) /d t = 0 , so the total num-

er of individuals remains constant and S(t) + I(t) + R (t) = N.

he sets of stationary solutions ( S ∗/ N, I ∗/ N, R ∗/ N ) (where S ∗,

 

∗ and R ∗ are constants satisfying d S(t) /d t = 0 , d I(t) /d t = 0 ,

 R (t) /d t = 0 for any instant t ) of Eq. (1) are: (S ∗, I ∗, R ∗) =
(1 , 0 , 0) and (S ∗, I ∗, R ∗) = (1 /R 0 , (e/e + b)(1 − 1 /R 0 ) , (b/e + b)(1 −
 /R 0 )) , where R 0 ≡ aN/ (b + c) is the basic reproduction number

nd a stability analysis ( Monteiro, Sasso, & Berlinck, 2007 ) of

q. (1) reveals that the disease-free stationary state is asymp-

otically stable if R 0 < 1 and unstable if R 0 > 1; and the endemic

tationary state is unstable if R 0 < 1 and asymptotically stable if

 0 > 1. Moreno et al. (2002) studied a similar model and showed

hat for networks with finite average degree and quadratic aver-

ge degree, there is a critical value (function of epidemiological

nd networks parameters) that indicates whether there will be or

ot disease spreading in the population. Furthermore, a, b, c and

 can be estimated from simulations, since the ODE model is a

ean-field approximation. From Schimit and Monteiro (2009) , the

xpressions that link these models are: 

 � 

�I(t) S→ I 

S(t) I(t)�t 

 � 

�R (t) I→ R 

I(t)�t 
� P c 

c � 

(
1 − �R (t) I→ R 

I(t)�t 

)
�S(t) I→ S 

I(t)�t 
� (1 − P c ) P d 

e � 

�S(t) R → S 

R (t)�t 
� P n (2) 

Note that the rates of ODE are related to the probabilities of

ellular automata. 

.4. Principal Components Analysis 

Principal Component Analysis (PCA) is one of the most popular

ethods for dimensionality reduction of a feature set. Therefore,

CA projects a dataset X into an orthonormal base in R 

N , which
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Fig. 1. Network and ODE simulations with k = 0 . 1 , P c = 60% , P d = 30% and P n = 10% . 

For network simulations, susceptible state is represented by black solid line, in- 

fected is the black dotted line and recovered is the black dashed line. States of ODE 

simulations are in respective gray lines. 
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is defined as a set of p eigenvectors e i ∈ R 

N , i = 1 , . . . , p, of the

covariance matrix of X . This orthonormal base is oriented in the

directions that provide the maximum variance of X ∈ R 

N , in order

to carry the most relevant information. Dimensionality reduction

principle is the representation of the dataset X in terms of covari-

ance matrix eigenvectors, which are called principal components

( Jolliffe, 2002 ). 

In order to accomplish the dimensionality reduction, the

dataset is represented as a real matrix U n × N , where n and N

are, the number of rows and columns, respectively. Each row of

U corresponds to an N -dimensional point and the columns rep-

resent values of N original variables. The covariance matrix of U

is calculated, as well its eigenvalues and corresponding eigenvec-

tors. These eigenvectors form a set of linearly independent vec-

tors, i.e., a base { φi } , i = 1 , . . . , n, which consist of a new axis sys-

tem ( Guo, Wu, Massart, Boucon, & Jong, 2002 ). Finally, to perform

the dimensionality reduction, the rows of U are projected onto the

base formed by the p eigenvectors related to the largest eigen-

values ( p ′ n ). The coordinates of U projected in this reduced p -

dimension subspace are denoted as U φ1 , U φ2 , . . . , U φn . 

2.5. Feature selection by PCA 

As a result of the process presented before, the PCA returns

a projection in the new space that is different from the original

data. Usually, it is necessary to select the most relevant attributes

without changing their values, that is, accomplish dimensional-

ity reduction of a feature set by choosing a subset of the origi-

nal features that contains most of the essential information ( Guo

et al., 2002; Guyon, 2003 ). The proposed approach for this prob-

lem, called principal feature analysis (PFA), is based on a method

presented by Lu, Cohen, Zhou, and Tian (2007) . The algorithm can

be summarized in the following steps: 

1. Compute the covariance matrix of a zero mean n dimensional

feature vector X and its eigenvalues and eigenvectors φ; 

2. Choose the subspace dimension p and construct the matrix A p 

with the first p principal eigenvectors; 

3. Calculate the projections of each point on the PCA subspace.

As a result, we have a new set of p projected variables

U φ1 , U φ2 , . . . , U φp ; 

4. Define a contribution index of each original variable (columns

of U ) on the projection as a weighted sum of the inner product

between the variable and each principal component. This con-

tribution index is directly related to the angle cosine between

the original variable and each principal component in Euclidean

space. The weights are taken as the amount of data variation

explained by each principal component. 

Thus, the principal feature is chosen according to largest contri-

bution index variable. Opposed to the original PCA method which

projects the original data onto a subspace of eigenvectors, the PFA

approach selects the most relevant attributes without change their

values. Such selection considers a subset of the original features

based on the distance between these features and the principal

components that contains most part of the essential information,

as defined in the step 4. 

3. Epidemiological model on networks 

In order to compare disease spreading on networks, epidemio-

logical parameters of the model presented previously are fixed: k =
0 . 1 , P c = 60% , P d = 30% and P n = 10% ( Schimit & Monteiro, 2009 ).

Networks with n = 10 0 0 nodes have initial conditions S(0) =
99 . 5% , I(0) = 0 . 5% and R (0) = 0% . Simulations run for t = 100 time

steps and a, b, c and e are calculated with average values of states

and states transitions using Eq. (2) for the last 20 time steps, when
he system already reached the permanent regime. In the begin-

ing, the population network is created and remains fixed through-

ut simulation, that is, individuals have always the same neighbor-

ood. 

Fig. 1 exhibits the temporal evolutions for networks (a) Erdös–

ényi, (b) small-world, (c) Barbasi–Albert and (d) scale-free. Ev-

ry R 0 are indicated in the figure, as well the average cluster-

ng coefficient and average shortest path of each network. Light

ray lines exhibit corresponding disease states for ODE simula-

ions whose parameters where calculated from network simula-

ions using Eq. (2) . Note that the networks have similar topological

arameters, however, R 0 and the disease dynamic is different of

ach other. Furthermore, the temporal evolution of ODE and net-

ork models are different, though percentage of individuals in the

teady state are similar. A good overview about the visual differ-

nces of how each network is created can be found at Shirley and

ushton (2005) . 

Therefore, here we simulate the disease spreading in a wide

ange of topological parameters for each complex network model.

he tool for generating these networks is the C/C ++ library iGraph

 Csardi & Nepusz, 2006 ). The next sections formalize how the net-

orks are stressed. 

.1. Erdös–Rényi 

Considering a Erdös–Rényi network, a fraction p of all the possi-

le edges is added to the network, that is, each possible edge has

 probability of being added equal to p . The iGraph environment

equires the value of p , thus, epidemiological model is simulated

or each network with p in the range .0 0 01:.0 0 01:.5. In these sim-

lations, average clustering coefficient results in values 0 � cc � 0.5,

verage shortest path, 1.5 � spl � 13, diameter, 2 � diam � 8, density,
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Fig. 2. Erdös–Rényi simulations with R 0 in function of topological parameters clus- 

tering coefficient, shortest path, density, diameter, average degree and maximum 

degree. 
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Fig. 3. Small-world simulations with R 0 in function of topological parameters clus- 

tering coefficient, shortest path, density, diameter, average degree and maximum 

degree. 
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 � den � 0.5. Fig. 2 exhibits how these properties influences the

alue of R 0 . On Erdös–Rényi networks, cc ≈ p . See that in general,

ore connections mean higher values of R 0 . Distances measures

ndicate that with closer individuals (low shortest path and diam-

ter), higher R 0 . 

.2. Small-world 

On small-world networks, each node starts with m connec-

ions with closer individuals. Then each connection is rewired

ith probability p , that is, any of the possible edges in the graph

ay be added by removing such connections. The iGraph environ-

ent requires the value of m and p , thus, epidemiological model

s simulated for each network with p in the range .01:.01:1, and

 in the range 1: 1: 150. In these simulations, average cluster-

ng coefficient results in values 0 � cc � 0.75, average shortest path,

.78 � spl � 125, diameter, 2 � diam � 6, density, 0 � den � 0.2. Fig. 3

xhibits how these properties influences the value of R 0 . 

Note that small-world networks are less dense than Erdös–

ényi networks with the same potential for a disease spreading

epending on other topological features. Also, here, clustering co-

fficient is not enough to determine the value of R , needing an-
0 
ther parameter to verify disease spreading properties. The sep-

rated dots in shortest path and diameter figures are related to

p = 0 , when the network is regular with each node having the

ame number of connections m . 

.3. Scale-free 

For scale-free networks, the number of edges e in the graph

nd the power law exponent γ determines the generation. That

s, e edges are added to the network, and the probability that a

ode is chosen to get an edge is given by P (k ) = k γ , where k is

he node degree. The iGraph environment requires the value of

 and γ , thus, epidemiological model is simulated for each net-

ork with a fraction of possible edges q in the range 0.05:0.05:0.6,

nd γ in the range 2:0.1:6. In these simulations, average cluster-

ng coefficient results in values 0 � cc � 0.6, average shortest path,

.4 � spl � 4.48, diameter, 2 � diam � 6, density, 0 � den � 0.6. Fig. 4

xhibits how these properties influences the value of R 0 . 

Scale-free network model allows a good range of topological pa-

ameters for the epidemiological model. Note that the model needs

ore edges in order to exhibit similar values of R 0 than a small-

orld network, which is not so dense. 
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Fig. 4. Scale-free simulations with R 0 in function of topological parameters clus- 

tering coefficient, shortest path, density, diameter, average degree and maximum 

degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Barábasi–Albert simulations with R 0 in function of topological parameters 

clustering coefficient, shortest path, density, diameter, average degree and maxi- 

mum degree. 
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3.4. Barábasi–Albert 

Barábasi–Albert network is a subset of scale-free networks. The

difference is how the network is created, because Barábasi–Albert

requires the exponent γ for the probability of a node being chosen

to get an edge P (k ) = k γ , and the number of outgoing edges gen-

erated for each node m . The iGraph environment requires the value

of m and γ , thus, epidemiological model is simulated for each net-

work with m in the range 5: 5: 200, and γ in the range 2: 0.1: 5.

In these simulations, average clustering coefficient results in val-

ues 0.01 � cc � 0.48, average shortest path, 1.67 � spl � 2.42, diame-

ter, 2 � diam � 4, density, 0 � den � 0.36. Fig. 5 exhibits how these

properties influences the value of R 0 . 

Such construction model generates networks with nodes with

high degrees, and the consequence is the small range of the aver-

age shortest path. However, even for such small range, see that R 0 
abruptly fall from R 0 ∼ 12 when average shortest path is spl ∼ 1.6,

to R 0 ∼ 2 when average shortest path is spl ∼ 2.4. 

4. More results 

In order to show the need of a more robust statistical analy-

sis for all network data, all simulation results are show in Fig. 6 .
ote that the average clustering coefficient, average shortest path,

iameter and maximum degree is not enough to clearly identify

 R 0 prediction. Although there is a variance in data, density and

verage degree have trends which allow a R 0 prediction. More-

ver, R 0 > 1, i.e., disease persists in population when den � 0.01, and

hen average degree avdeg � 10. 

Therefore, PCA has been used to get other relationships be-

ween disease and network parameters. The variables used were:

verage clustering coefficient ( cc ); average shortest path ( spl ); den-

ity ( den ); diameter ( diam ); average degree ( avdeg ); maximum

egree ( maxdeg ); amount of individuals Susceptible ( S ) Infected

 I ) and Recovered ( R ) when the system reached the permanent

egime; Infected peak ( Ip ), (i.e., the amount of Infected individu-

ls in the initial outbreak of disease) and; instant of Infected peak

 iIp ), which is the time step when the peak occurred. All these 12

ariables have been considered for all 41,270 experiments of all

etworks and the Fig. 7 contains the normalized projection of each

ariable. 

Note that according to PCA, the internal structure of the data

hat best explains the variance in the data have maxdeg, Ip, R and

vdeg as most informative variables. Fig 6 already exhibited R 0 in

unction of maxdeg , and such variable certainly does not explain
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Fig. 6. Data for all networks put together for R 0 in function of topological parame- 

ters clustering coefficient, shortest path, density, diameter, average degree and max- 

imum degree. 
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Fig. 7. PCA results infographic. 

Fig. 8. Peak instant of I ( t ) in function of average degree of the network. 
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he disease variables. Actually, the maximum degree of the net-

ork is very sensitive to the other topological parameters for all

etworks. 

Thereby, relationships on Figs. 8 –11 are based on PCA results.

he Fig. 8 shows that small values of average degree is enough

or a high peak of infected individuals and the trend of increasing

he I ( t ) peak changes at around 300, when it starts to decrease.

ig. 9 indicates that the sooner the I ( t ) occurs, the high the value

f the peak is. Fig. 10 contains the same data of Fig. 6 for average

egree, but in a different scale. Somehow, PCA confirms the impor-

ance of the average degree for analyzing a disease spreading. 

Note that for all figures, the value of R 0 saturates. In such condi-

ion, the term aS ( t ) I ( t ) of Eq. (1) can be written as aS(t) I(t) = S(t) ,

ince all Susceptible individuals become infected. Accordingly, the

ew equations are: 

dS(t) 

dt 
= −S(t) + cI(t) + eR (t) 

dI(t) 

dt 
= S(t) − bI(t) − cI(t) 

dR (t) 

dt 
= bI(t) − eR (t) (3) 
ith the set of stationary solutions (as done for Eq. (1) ):

(S ∗sat , I 
∗
sat , R 

∗
sat ) = (1 , 0 , 0) and (S ∗sat , I 

∗
sat , R 

∗
sat ) = (e (b + c) / (b + e (b +

 + 1)) , e/ (b + e (b + c + 1)) , b/ (b + e (b + c + 1))) . Therefore, we

ave a sat = 1 /I ∗sat , thus: 

 0 sat = 

a sat 

b + c 
= 

1 /I ∗sat 

b + c 
= 

b + e (b + c + 1) 

e (b + c) 
(4) 

Using Eq. (2) for determining values for b, c and e , we have

 0 sat = 11 . Thus, the white thick dashed line in Fig. 10 is a fitted

urve for the experimental points in the form: 

 0 (a v deg) = R 0 sat ∗ (1 − e −α∗a v deg ) 

here α = 0 . 0099 . 
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Fig. 9. Peak instant of I ( t ) in function of I ( t ) peak. 

Fig. 10. R 0 in function of the network average degree. 

 

 

 

 

 

 

 

 

 

Fig. 11. R 0 in function of the average recovered individuals R when system reached 

its permanent regime. 
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Finally, a distinct result is presented on Fig. 11 , where the R 0 
is plotted in function of the amount of Recovered individuals ( R )

when the system reached the permanent regime. Here, the dis-

ease R 0 increases when R increases and this result is corroborated

by other related papers, since the disease qualitatively parame-

ters used are usually from diseases like mumps, chickenpox and

measles ( Monteiro, Chimara, & Berlinck, 2006 ) which also have

high R 0 and high amount of Recovered individuals in population

( Anderson & May, 1991 ). If we consider that the permanent regime

of the system has R 0 > 1, i.e., disease is active, R 0 can be approxi-

mated by R = b/ (b − R ∗(e + b)) . 
0 
. Discussion 

In this paper, we presented a method to understand a disease

ropagation according to the most important topological param-

ters of four types of complex networks. Disease were modeled

y SIR-model, population by networks Erdös–Rényi, Small-World,

cale-Free and Barábasi–Albert and the statistical process to an-

lyze the data were Principal Component Analysis. Based on the

esults, following characteristics of epidemic outbreaks in popula-

ions emerged as most important factors: average degree, infected

ndividuals peak, instant that such peak occurs, amount of recov-

red individuals in system steady-state and, of course, the basic

eproduction number, R 0 . 

Topological parameters like clustering coefficient and shortest

ath length, which are often used to analyze disease spreading on

etworks ( Dorjee et al., 2013; Keeling, 2005; Lennartsson, Håkans-

on, Wennergren, & Jonsson, 2012; Moslonka-Lefebvre et al., 2009;

le ́s et al., 2014; Raymond & Hosie, 2009; Schimit & Monteiro,

009 ), should not be used when many network models are con-

idered or the model is unknown, though they are robust when

he model is well defined. Therefore, considering that social net-

orks may not be properly represented by a determined model,

s well as assumptions for modeling may not be correct, a careful

arameter choice for analyzing disease propagation must be done,

s concluded in Shirley and Rushton (2005) . Here, we presented

ome parameter to consider, like the average degree, density and

he amount of Recovered individuals. Moreover, results came from

 wide range of networks: from highly concentrated connections,

ike Barábasi–Albert networks, to Erdös–Rényi model, where con-

ections are equally distributed over the population. Neverthe-

ess, average degree were an important topological parameter, also

oted in Colizza et al. (2007) . 

Lastly, the simulation diversity made it possible to verify a sat-

ration in R 0 value, that is, a maximum value for R 0 given the

pidemiological parameters, like the probability of recovering from

isease, probability of dying due to disease and probability for dy-

ng from natural causes. Such saturation occurs when all Suscep-

ible individuals get infected at each time-step. High value of R ,
0 
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ost part of population in Recovered state, almost all Susceptible

ndividuals getting infected are characteristics of a well known sce-

ario for child diseases like mumps, chickenpox and measles if a

ge stratified population is considered ( Wallinga, Teunis, & Kret-

schmar, 2006 ). 

Considering the possibilities of future work directions, they

hould handle with following questions: 

• Is the PCA approach used here suitable to other diseases mod-

els as well as populations modeled by another multi-agent en-

vironment, like cellular automata ( Holko et al., 2016 )? 
• Is the PCA approach suitable to other uses of populations,

like evolutionary algorithms ( Bajer et al., 2016; Chang et al.,

20 05; Li et al., 20 09 ) and general population dynamics

( Simidjievski et al., 2015 )? 
• Considering mathematical epidemiology, the inclusion of meth-

ods to control the spread of the disease to the model could re-

turn the most effective to combat the disease. Vaccination and

limiting contacts between individuals should be tested; 
• The calculation of R 0 is usually difficult in the first cases of

a disease outbreak ( Mossong & Muller, 20 0 0 ). The PCA model

could be used in the initial transient of disease with partial in-

formation to return the most important variables to consider to

approximate the R 0 value. 
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