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a b s t r a c t

Human-disease interactions involve the transmission of infectious diseases among individuals and the
practice of preventive behavior by individuals. Both infectious diseases and preventive behavior diffuse
simultaneously through human networks and interact with one another, but few existing models have
coupled them together. This article proposes a conceptual framework to fill this knowledge gap and
illustrates the model establishment. The conceptual model consists of two networks and two diffusion
processes. The two networks include: an infection network that transmits diseases and a communication
network that channels inter-personal influence regarding preventive behavior. Both networks are
composed of same individuals but different types of interactions. This article further introduces modeling
approaches to formulize such a framework, including the individual-based modeling approach, network
theory, disease transmission models and behavioral models. An illustrative model was implemented to
simulate a coupled-diffusion process during an influenza epidemic. The simulation outcomes suggest
that the transmission probability of a disease and the structure of infection network have profound
effects on the dynamics of coupled-diffusion. The results imply that current models may underestimate
disease transmissibility parameters, because human preventive behavior has not been considered. This
issue calls for a new interdisciplinary study that incorporates theories from epidemiology, social science,
behavioral science, and health psychology.

� 2011 Elsevier Ltd. All rights reserved.
Introduction

Despite outstanding advance in medical sciences, infectious
diseases remain a major cause of death in the world, claiming
millions of lives every year (WHO, 2002). Particularly in the past
decade, emerging infectious diseases have obtained remarkable
attention due to worldwide pandemics of severe acute respiratory
syndrome (SARS), bird flu and new H1N1 flu. Although vaccination
is a principal strategy to protect individuals from infection, new
vaccines often need a long time to develop, test, and manufacture
(Stohr & Esveld, 2004). Before sufficient vaccines are available, the
best protection for individuals is to adopt preventive behavior, such
as wearing facemasks, washing hands frequently, taking pharma-
ceutical drugs, and avoiding contact with sick people, etc. (Centers
for Disease Control and Prevention, 2008).

It has been widely recognized that both infectious diseases and
human behaviors can diffuse through human networks (Keeling &
Eames, 2005; Valente, 1996). Infectious diseases often spread
All rights reserved.
through direct or indirect human contacts, which form infection
networks. For example, influenza spreads through droplet/physical
contacts among individuals, and malaria transmits via mosquitoes
between human hosts. Human behavior also propagates through
inter-personal influence that fashions communication networks.
This is commonly known as the ‘social learning’ or ‘social conta-
gion’ effect in behavioral science, i.e., people can learn by observing
behaviors of others and the outcomes of those behaviors (Hill,
Rand, Nowak, Christakis, & Bergstrom, 2010; Rosenstock, Strecher,
& Becker, 1988). In the current literature, models of disease trans-
mission and behavioral diffusion have been developed separately
for decades, both based on human networks (Deffuant, Huet, &
Amblard, 2005; Keeling & Eames, 2005; Valente, 1996; Watts &
Strogatz, 1998). Few efforts, however, have been devoted to inte-
grating infectious diseases and human behaviors together. In
reality, when a disease breaks out in a population, it is natural that
individuals may voluntarily adopt some preventive behavior to
respond, which in turn limits the spread of disease. Failing to
consider these two interactive processes, current epidemic models
may under-represent human-disease interactions and bias policy
making in public health.
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This article aims to propose a conceptual framework that inte-
grates infectious diseases, human preventive behavior, and
networks together. The focus of this article is on issues that arise in
establishing a conceptual framework, including basic principles,
assumptions, and approaches for model formulization. The
following section (Section 2) describes the conceptual framework
and basic assumptions, which abstract essential aspects of a disease
epidemic. The third section discusses approaches to formulize the
model framework into a design. The fourth illustrates a computing
model upon various human network structures and compares the
simulation results. The last section concludes the article with
implications.
Conceptual model and basic assumptions

The conceptual model consists of two networks and two diffu-
sion processes (Fig. 1). The two networks include an infection
network that transmits disease agents (dark dash lines), and
a communication network that channels inter-personal influence
regarding preventive behavior (gray dash lines). Both networks are
composed of same individuals but different types of interactions.
These two networks could be non-overlapping, partially or
completely overlapping with one another. The two diffusion
processes refer to the diffusion of infectious diseases (dark arrows)
and that of preventive behavior (gray arrows) through the respec-
tive network. As illustrated in Fig. 1, if individual #1 is initially
infected, the disease can be transmitted to individual #2 and #3,
and then to individual #4, following the routes of infection
network. Meanwhile, individual #2 may perceive the risk of being
infected from individual #1, and then voluntarily adopt preventive
behavior for protection, known as the effects of ‘perceived risks’
(Becker, 1976). Further, the preventive behavior of individual #2
may be perceived as a ‘social standard’ by individual #4 and
motivate him/her toward adoption, i.e., the ‘social contagion’. In
such a manner, the preventive behavior diffuses on the communi-
cation network through inter-personal influence. During an
epidemic, these two diffusion processes take place simultaneously
and interact in opposite directions. The diffusion of diseases
motivates individuals to adopt preventive behavior, which, in turn,
limits the diffusion of diseases. This two-network two diffusion
framework is dubbed as a ‘coupled diffusion’ in the subsequent
discussion.

The conceptual framework entails five assumptions. First, indi-
viduals differ in their characteristics and behaviors, such as their
infection status, adoption status, and individualized interactions.
Second, both infection and communication networks are formed by
interactions among individuals. Third, the development of infec-
tious diseases follows disease natural history, such as the incuba-
tion, latent, and infectious periods. Fourth, individuals voluntarily
adopt preventive behavior, dependent on their own personality,
experiences, and inter-personal influence from family members,
colleagues, as well as friends (Glanz, Rimer, & Lewis, 2002). Fifth
Fig. 1. Conceptual model of the coupled-diffusion processes through two networks.
and lastly, the infection status of surrounding people or their
behavior may motivate individuals to adopt preventive behavior,
which then reduces the likelihood of infection. Of the five
assumptions, the first two provide networks as a basis for
modeling. The third and fourth assumptions are relevant to the two
diffusion processes, respectively. The last assumption represents
the interactions between the two processes.

Model formulization

Corresponding to the five assumptions, this article introduces
a number of approaches to represent individuals, networks, infec-
tious diseases, and preventive behavior, as four model components,
and depicts the relationships between the four.

Individuals

The first model assumption requires a representation of discrete
individuals, their unique characteristics and behaviors. This
requirement can be well addressed by an individual-based
modeling approach. In the last decade, this modeling approach
has gained momentum in the research community of both epide-
miology and behavioral science (Judson, 1994; Koopman & Lynch,
1999). Specifically, the individual-based approach views a pop-
ulation as discrete individuals, i.e., every individual is a basic
modeling unit and has a number of characteristics and behaviors.
The characteristics indicate states of individuals, e.g., the infection
status, adoption status, and the number of contacts, while the
behaviors change these states, e.g., receiving infection and adopting
preventive behavior. By simulating at an individual level, this
approach allows to understand how the population characteristics,
such as the total number of infections and adopters, emerge from
collective behaviors of individuals (Grimm&Railsback, 2005). From
an implementation perspective, the characteristics and behaviors
of individuals can be easily accommodated by object-oriented
languages, a mainstream paradigm of programming technologies.
Various tools are also available to facilitate the design and imple-
mentation of individual-based approach, such as the NetLog and
Repast (Robertson, 2005).

Networks

With regard to the second assumption, both the infection and
communication networks can be abstracted as a finite number of
nodes and links. Nodes represent individuals and links represent
interactions among individuals. The network structure is compat-
ible with the aforementioned individual-based approach, in that
the individual nodes directly correspond to the basic modeling
units, while links can be treated as a characteristic of individuals.
Interactions between individuals (through links) can be repre-
sented as behaviors of individuals. To be realistic in modeling, both
networks can be generated to fit observed characteristics and
structures of real-world networks.

Important characteristics of networks include: the number of
links attached to a node (the node degree), the minimum number
of links between any pair of nodes (the path length), the ratio
between the existing number of links and the maximum possible
number of links among certain nodes (the level of clustering), and
so on (Scott, 2000). Particularly for human networks of social
contacts, empirical studies showed that the average node degree
often varies from 10 to 20, dependent on occupation, race, geog-
raphy, etc (Edmunds, Kafatos, Wallinga, & Mossong, 2006; Fu,
2005). The average path length was estimated to be around 6,
popularly known as the ‘six degrees of separation’ (Milgram, 1967).
The level of clustering has typical values in the range of 0.1e0.5
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(Girvan & Newman, 2002). Besides these characteristics, studies on
human networks have also disclosed two generic structures:
“small-world” and “scale-free” structures. The “small-world”
structure is named after the ‘small-world’ phenomena, arguing that
people are all connected by short chains of acquaintances (Travers
& Milgram, 1969). Theoretically, the small-world structure is
a transition state between regular networks and random networks
(Watts & Strogatz, 1998). The regular networks represent one
extreme that all nodes are linked to their nearest neighbors,
resulting in highly clustered networks. The random networks are
the other extreme that all nodes are randomly linked with each
other regardless of their closeness, resulting in short path lengths. A
typical small-world structure has characteristics from both
extremes, i.e., most nodes are directly linked to others nearby
(highly clustered), but can be indirectly connected to any distant
node through a few links (short path lengths). The “scale-free”
structure has also been commonly observed in social, biological,
disease, and computer networks, etc. (Cohen, Erez, Ben-Avraham, &
Havlin, 2001; Jeong, Tombor, Albert, Oltvai, & Barabási, 2000; Lil-
jeros, Edling, Amaral, Stanley, & Aaberg, 2001). It depicts a network
with highly heterogeneous degrees of nodes, whose distribution
follows a power-law decay function, p < k > wk�g (k denotes the
node degree and empirically 2 < g < 3). In other words, a few
individuals have a significantly large number of links, while the rest
of individuals only have a few (Albert, Jeong, & Barabasi, 2000). All
of these observed characteristics and structures can be used to
calibrate the modeled networks, which then serve as a reliable
basis to simulate the coupled-diffusion process.

Infectious diseases

In epidemiology, the development of infectious diseases has
been characterized by a series of infection statuses, events, and
periods, often referred to as the natural history of diseases (Gordis,
2000). The progress of an infectious disease often starts with
a susceptible individual. After having contact with an infectious
individual, this susceptible individual may receive disease agents
and develop infection based on a transmission probability. The
receipt of infection triggers a latent period, during which the
disease agents develop internally in the body and are not emitted.
The end of the latent period initiates an infectious period, in which
this individual is able to infect other susceptible contacts and may
manifest disease symptoms. After the infectious period, this indi-
vidual either recovers or dies from the disease. Among these
disease characteristics, the transmission probability is critical for
bridging infectious diseases to the other model components:
individuals, networks, and preventive behavior. This probability
controls the chance that the disease agents can be transmitted
between individuals through network links. Meanwhile, the
reduction of transmission probability reflects the efficacy of
preventive behavior.

The individual-based modeling approach enables the repre-
sentation of disease progress for each individual. The infection
statuses, periods, and transmission probability per contact can be
associated with individuals as their characteristics, while infection
events (e.g., receipt of infection and emission of agents) can be
modeled as behaviors of individuals. Each individual has one of four
infection statuses at a time point, either susceptible, latent, infec-
tious, or recovered (Kermack & McKendrick, 1927). The infection
status changes when infection events are triggered by behaviors of
this individual or surrounding individuals. The simulation of
disease transmission often starts with an introduction of a few
infectious individuals (infectious seeds) into a susceptible pop-
ulation. Then, the first generation of infections can be identified by
searching susceptible contacts of these seeds. Stochastic methods,
such as the Monte Carlo method, could be used to determine who
will be infected or not. Subsequently, the first generation of infec-
tions may further infect their contacts, and over time leads to
a cascade diffusion of disease over the network. To parameterize
the simulation, the transmission probability of a disease, the
lengths of latent period and infectious period can be derived from
the established literature or from observational disease records.

Preventive behavior

Like other human behaviors, the adoption of preventive behavior
depends on the individual’s own characteristics (e.g., knowledge,
experience, and personal traits) and inter-personal influence from
surrounding individuals (e.g., family supports and role model
effects) (Glanz et al., 2002). Because individuals vary in their will-
ingness to adopt, human behaviors often diffuse from a few early
adopters to the early majority, and then over time throughout the
social networks (Rogers, 1995). A number of individual-based
models have been developed by sociologists and geographers to
represent such behavioral diffusion processes, e.g., the Mean-
Information-Field (MIF) model (Hägerstrand, 1967), the threshold
model (Granovetter, 1978), the relative agreement model (Deffuant
et al., 2005), etc. The MIF model populates individuals on a regular
network (or a grid), and assumes that a behavior diffuses through
the ‘word-of-mouth’ communication between an adopter and his/
her neighbors. The MIF is a moving window that defines the size of
neighborhood and the likelihood of human communications to
every adopter. The simulation centers the MIF on every adopter and
uses the Monte Carlo method to identify a new generation of
adopters (Hägerstrand, 1967). The threshold model assumes that
individuals observe their surroundings and adopt a behavior based
on a threshold effect (Granovetter, 1978; Valente, 1996). The
threshold is the proportion of adopters in an individual’s social
contacts necessary to convince this individual to adopt. The
behavioral diffusion begins with a small number of adopters, and
spreads from the low-threshold population to the high-threshold
population. The recently proposed relative agreement model
assumes that every individual holds an initial attitude, which is
a value range specified by a mean value, maximum and minimum.
Based on the value ranges, individuals’ attitudes are categorized as
positive, neutral, and negative. Individuals communicate through
a social network, and influence their attitudes (value ranges)
reciprocally according to mathematical rules of relative agreement.
If individuals can hold positive attitudes for a certain time period,
they will decide to adopt a behavior (Deffuant et al., 2005). Due to
the individual-based nature of all these models, they can be easily
incorporated under the proposed conceptual framework. To further
discuss the individual-based design of behavioral models, this
research chose the threshold model for illustrations. In terms of
complexity, the threshold model lies midway between the MIF
model and the relative agreement model, and its parameters can be
feasibly estimated through social surveys. The MIF model has been
criticized for its simplicity in that it assumes an immediate adoption
after a communication and oversimplifies the decision process of
individuals (Shannon, Bashshur, & Metzner, 1971). By contrast, the
relative agreement model is too sophisticated:many parameters are
difficult to estimate, for example, the ranges of individual attitudes.

The threshold model can be formulized as follows so as to
become an integral part of the coupled-diffusion framework. First,
individuals are assumed to spontaneously evaluate the proportion
of adopters among their contacts, and perceive the pressure of
adoption. Once the perceived pressure reaches a threshold (here-
inafter called the threshold of adoption pressure), an individual will
decide to adopt preventive behavior. Second, in order to relate the
preventive behavior to infectious diseases, individuals also evaluate



Fig. 2. Four model components (boxes), associated characteristics and behaviors
(inside boxes), and relationships between components (arrows).
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the proportion of infected individuals (with disease symptoms)
among their contacts, and perceive the risks of infection. Once the
perceived risk reaches another threshold (hereinafter called the
threshold of infection risk), an individual will also adopt preventive
behavior. These two threshold effects can be further formulized as
three characteristics and two behaviors of individuals. The three
characteristics include an adoption status (adopter or non-adopter)
and two individualized thresholds toward adoption. The two
behaviors represent the individual’s evaluation of adoption pres-
sure and infection risk from surrounding contacts, which in turn
determines their adoption status. The individualized thresholds
toward adoption reflect personal characteristics of individuals,
while the behaviors of evaluation represent the inter-personal
influence between individuals. To build a working model, the
individualized thresholds toward adoption can be best estimated
by health behavior surveys as illustrated below.

Relationships between components

Based on the discussion above, the conceptual framework
(Fig. 1) can be transformed into a formative designwith four model
components and their relationships (Fig. 2). Individuals are
building blocks of the proposed model, and their interactions
compose networks as a core of the model. Through the infection
network, individuals may receive infection from others and have
their infection status changed, propelling the diffusion of diseases.
Meanwhile, individuals may perceive risks and pressure from the
communication network, and gradually adopt preventive behavior,
resulting in the behavioral diffusion. The adoption of preventive
behavior reduces the disease transmission probability, thus
controlling and preventing the disease transmission. In this
manner, the diffusion of diseases and preventive behavior in
a population are coupled together.

Model illustrations

Model implementation

To illustrate the proposed coupled-diffusionmodel, an influenza
epidemic was simulated in a hypothetic population of 5000
individuals (N ¼ 5000), each with characteristics and behaviors as
described in Fig. 2. Influenza was chosen because it is common and
readily transmissible between individuals. The simulation simply
assumes that the population is closed, i.e., no births, deaths, or
migrations. With regard to the network component, the average
number of links per individuals was set to 12, reasonably assuming
that an individual on average has contact with 2 family members
and 10 colleagues. For the purpose of sensitivity analysis, the
illustrative model allowed the disease and communication
networks to take either a small-world (SW) structure or a scale-free
(SF) structure. The generation of SW structures started with
a regular networkwhere all individuals were linked to their nearest
neighbors. Then, each individual’s existing links were rewired with
a probability to randomly selected individuals (Watts & Strogatz,
1998). The rewiring probability p ranged from 0 to 1, and gov-
erned the clustering level and average path lengths of resultant
networks (Fig. 3a). The SF structures were created by a preferential
attachment algorithm, which linked each new individual prefer-
entially to those who already have a large number of contacts
(Pastor-Satorras & Vespignani, 2001). This algorithm produces
a power-law degree distribution, p < k > wk�g (k is the node
degree), with various exponents g (Fig. 3b). Based on Fig. 3a and b,
the rewiring probabilities p were set to 0.005, 0.05, and 0.5 to
typically represent the regular, small-world, and random networks,
respectively (Fig. 3cee). The exponent g were set to 3, 5, and 7 to
represent three scale-free networks with high, medium, and low
levels of node heterogeneity (Fig. 3feh). A sensitivity analysis was
performed to examine every possible pair of<p, p>,<g, g>,<p, g>
and <g, p> as a network combination (3 p-values � 3 g-val-
ues � 4 ¼ 36 combinations in total), where the first parameter
indicates the structure of infection network and the second spec-
ifies the structure of communication network.

To simulate the diffusion of influenza, the latent period and
infectious period were specified as 1 day and 4 days, respectively,
based on published estimates (Heymann, 2004). The transmission
probability per contact was varied from 0.01 to 0.1 (with a 0.01
increment) to test its effects on the coupled-diffusion processes.
50% of infected individuals was assumed to manifest symptoms,
following the assumption made by Ferguson et al. (2006). Only
these symptomatic individuals could be perceived by their
surrounding individuals as infection risks. Recovered individuals
were deemed to be immune to further infection during the rest of
the epidemic.

With respect to the diffusion of preventive behavior, the use of
flu antiviral drugs (e.g., Tami flu and Relenza) was taken as a typical
example because its efficacy is more conclusive than other
preventive behavior, such as hand washing and facemask wearing.
For symptomatic individuals, the probability of taking antiviral
drugs was set to 75% (McIsaac, Levine, & Goel, 1998; Stoller, Forster,
& Portugal, 1993), and the consequent probability of infecting
others was set to be reduced by 40% (Longini, Halloran, Nizam, &
Yang, 2004). Susceptible individuals may also take antiviral drugs
due to the perceived infection risk or adoption pressure. If they use
antiviral drugs, the probability of being infected was set to be
reduced by 70% (Hayden, 2001).

The key to simulate the diffusion of preventive behavior was to
estimate thresholds of infection risk and that of adoption pressure
for individuals. A health behavior survey was conducted online for
one month (March 12eApril 12, 2010) to recruit participants.
Voluntary participants were invited to answer two questions: 1)
“Suppose you have 10 close contacts, including household members,
colleagues, and close friends, after how many of them GET INFLUENZA
would you consider using flu drugs?”, and 2) “Suppose you have 10
close contacts, including household members, colleagues, and close
friends, after how many of them start to USE FLU DRUGS would you



Fig. 3. (a) Standardized network properties (average path length and clustering coefficient) as a function of rewiring probability p from 0 to 1, given N ¼ 5000; (b) The power-law
degree distributions given g ¼ 3, 5 and 7, given N ¼ 5000; (cee) an illustration of generated SW networks for three p values, given N ¼ 100 for figure clarity; (feh) an illustration of
SF networks for three g values, given N ¼ 100.
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consider using flu drugs, too?”. The first question was designed to
estimate the threshold of infection risks, while the second was for
the threshold of adoption pressure. The survey ended up with 262
respondents out of 273 participants (a 96% response rate), and their
answers were summarized into two threshold-frequency distri-
butions (Fig. 4). The Monte Carlo method was then performed to
assign threshold values to the 5000 modeled individuals based on
the two distributions. This survey was approved by the IRB in
University at Buffalo.

To initialize the simulation, all 5000 individuals were set to be
non-adopters and susceptible to influenza. One individual was
randomly chosen to be infectious on the first day. The model took
a daily time step and simulated the two diffusion processes
simultaneously over 200 days. The simulation results were pre-
sented as disease attack rates (total percent of symptomatic indi-
viduals in the population), and adoption rates (total percent of
adopters in the population). Another two characteristics were
derived to indicate the speed of coupled-diffusion: the epidemic
slope and the adoption slope. The former is defined as the total
number of symptomatic individuals divided by the duration of an
epidemic (in day). Similarly, the latter is defined as the total
number of adopters divided by the duration of behavioral diffusion
(in day). They are called slopes because graphically they approxi-
mate the slopes of cumulative diffusion curves. A higher slope
implies a faster diffusion because of more infections/adoptions (the
numerator) in a shorter time period (the denominator). All simu-
lation results were averaged by 50 model realizations to average
out the randomness.

Simulation results and discussion

Simulation results were presented in two parts. First, the
coupled-diffusion process under various transmission probabilities
was analyzed, and compared to an influenza-only process that is



Fig. 4. Cumulative frequency distributions of the two adoption thresholds estimated from the online health behavior survey. The category ‘Only-if-sick’ means that surveyed
individuals will use flu drugs only if they were sick (symptomatic).
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widely seen in the literature. The influenza-only process was
simulated with the same parameters in the coupled-diffusion
process except that individual preventive behavior was not
considered. For the ease of comparison, a typical “small-world”
network (p ¼ 0.05), was chosen for both infection and communi-
cation networks, assuming the two are overlapping. The second
part examined the dynamics of coupled-diffusion under various
structures of infection and communication networks, i.e., the 36
pairs of network parameters <p, p>, <g, g>, <p, g> and <g, p>
while fixing the influenza transmission probability to 0.05 (resul-
tant basic reproductive number R0 ¼ 1e1.3).

Fig. 5a indicates that the diffusion of influenzawith and without
the preventive behavior differs significantly, particularly for
medium transmission probabilities (0.04e0.06). For the influenza-
only process (the black curvewith triangles), the disease attack rate
rises dramatically as the transmission probability exceeds 0.03, and
reaches a plateau of 50% when the probability increases to 0.07. The
coupled-diffusion process (the black curve with squares) produces
lower attack rates, which slowly incline to the maximum of 45%.
This is because individuals gradually adopt preventive behavior,
thereby inhibiting disease transmission from infectious individuals
to the susceptible. Meanwhile, the adoption rate (the gray curve
with squares) also increases with the transmission probability, and
can achieve a 65% of the population as the maximum. This is not
surprising because the more individuals get infected, the greater
risks and pressure other individuals may perceive, motivating them
Fig. 5. (a) Effects of transmission probability (0.01e0.1) on the influenza-only diffusion pro
processes, given the transmission probability ¼ 0.05 (R0 ¼ 1e1.3). The epidemic curve depict
course of the epidemic, while the adoption curve indicates the cumulative number of adop
to adopt preventive behavior. Individuals who have not adopted
eventually may have extremely high-threshold of adoption (see
Fig. 4), and thus resist adopting preventive behavior. Fig. 5b
displays an example of the coupled-diffusion process (transmission
probability¼ 0.05), ending up with nearly 2000 symptomatic cases
and approximately 3000 adopters of flu antiviral drugs. Despite
differences in magnitude, the two diffusion curves exhibit a similar
trend that follows the 5-phase S-shaped curve of innovation
diffusion (Rogers, 1995). The ‘innovation’ phase occurs from the
beginning to Day 30, followed by the ‘early acceptance’ phase
(Day31e50), ‘early majority’ (Day 51e70), ‘late majority’ (Day
71e90) and ‘laggards’ (after Day 90). This simulated similarity in
temporal trend is consistent with many empirical studies regarding
flu infection and flu drug usage. For example, Das et al. (2005) and
Magruder (2003) had compared the temporal variation of both
influenza incidence and over-the-counter flu drug sales in the New
York City and the Washington DC metropolitan area, respectively.
Both studies reported a high correlation between over-the-counter
drug sales and cases of diagnosed influenza, and thus suggested
that over-the-counter drug sales could be a possible early detector
of disease outbreaks. The consistency with the observed facts, to
some extent, reflects the validity of the proposed model.

In addition to the transmission probability, the coupled-diffu-
sion process is also sensitive to various combinations of network
structures, i.e., 36 pairs of network parameters <p, p>, <g, g>, <p,
g> and <g, p> (Fig. 6). The Z axis represents either the epidemic or
cess and the coupled-diffusion process; (b) A simulated dynamics of coupled-diffusion
s the cumulative number of symptomatic individuals in the population throughout the
ter in the population during the behavioral diffusion.



Fig. 6. The sensitivity of coupled-diffusion processes to various network structures, including SWInfection�SWCommunication as <pInfection, pCommunication >, SFinfection�SFCommunication as
<gInfection,gCommunication > SWInfection�SFCommunication as <pInfection, gCommunication > and SFInfection�SWCommunication as <gInfection, pCommunication >. Each combination is displayed in one
row from top to bottom. The SW and SF denote the network structure, while the subscripts indicate the network function. Parameter p is the rewiring probability of a SW network,
taking values (0.005, 0.05, 0.5), while parameter g is the exponent of a SF network, taking values (3, 5, 7). The Z axis denotes epidemic slopes (the left column) and adoption slopes
(the right column) as a result of a network structure. A greater Z value indicates a faster diffusion process.
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adoption slope, and a greater value indicates a faster diffusion
process. In general, both epidemic and adoption slopes change
dramatically with the structure of infection network, while they are
less sensitive to the variation of communication networks. Given
the small-world infection network (Fig. 6aeb and e-f), the epidemic
and adoption slopes increase quickly as the rewiring probability p
rises from 0.005 to 0.5. When p¼ 0.005 (a regular network), almost
all individuals are linked to their nearest neighbors, and influenza
transmission between two distant individuals needs to go through
a large number of intermediate individuals. The slow spread of
influenza induces a low perception of infection risks among indi-
viduals, thereby decelerating the dissemination of preventive
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behavior. As p increases to 0.5 (a random network), a large number
of shortcuts exist in the network, and the transmission of influenza
is greatly speeded by shortcuts. As a result, the diffusion of
preventive behavior is also accelerated, because individuals may
perceive more risks of infection and take actions quickly. Likewise,
given a scale-free infection network (Fig. 6ced and g-h), both
influenza and preventive behavior diffuse much faster in a highly
heterogeneous network (g ¼ 3) than in a relatively homogeneous
network (g ¼ 7). This is because a highly heterogeneous network
has a few super-spreaders who have numerous direct contacts.
Super-spreaders act as hubs directly distributing the influenza virus
to a large number of susceptible individuals, thus speeding the
disease diffusion. As individuals perceivedmore risks of infection in
their surroundings, they will adopt preventive behavior faster.

Conclusions and implications

Human networks, infectious diseases, and human preventive
behavior are intrinsically inter-related, but little attention has been
paid to simulating the three together. This article proposes
a conceptual framework to fill this knowledge gap and offer a more
comprehensive representation of the disease system. This two-
network two diffusion framework is composed of four compo-
nents, including individuals, networks, infectious diseases, and
preventive behavior of individuals. The individual-based modeling
approach can be employed to represent discrete individuals, while
network structures support the formulization of individual inter-
actions, including infection and communication. Disease trans-
mission models and behavioral models can be embedded into the
network structures, and simulate disease infection and adoptive
behavior, respectively. The collective changes in individuals’
infection and adoption status represent the coupled-diffusion
process at the population level. Compared to the widely used
influenza-only models, the proposed model produces a lower
percent of infection, because preventive behavior protects certain
individuals from being infected. Sensitivity analysis identifies that
the structure of infection network is a dominant factor in the
coupled-diffusion, while the variation of communication network
produces fewer effects.

This research implies that current predictions about disease
impacts might be under-estimating the transmissibility of the
disease, e.g., the transmission probability per contact. Modelers fit
to observed data in which populations are presumably performing
preventive behavior, while the models they create do not account
for the preventive behavior. When they match their modeled
infection levels to those in these populations, the disease trans-
missibility needs to be lower than its true value so as to compensate
for the effects of preventive behavior. This issue has been
mentioned in a number of recent research, such as Ferguson et al.
(2006), but the literature contains few in-depth studies. This
article moves the issue towards its solution, and stresses the
importance of understanding human preventive behavior before
policy making. The study raises an additional research question
concerning social-distancing interventions for disease control, such
as the household quarantine and workplace/school closure.
Admittedly, these interventions decompose the infection network
for disease transmission, but they may also break down the
communication network and limit the propagation of preventive
behavior. The costs and benefits of these interventions remain
unclear and a comprehensive evaluation is needed.

The proposed framework also suggests several directions for
future research. First, although the illustrative model is based on
a hypothetical population, the representation principles outlined in
this article can be applied to a real population. More realistic
models can be established based on the census data, workplace
data, and health survey data. Second, the proposed framework
focuses on inter-personal influence on human behavior, but has not
included the effects of mass media, another channel of behavioral
diffusion. The reason is that the effects of mass media remain
inconclusive and difficult to quantify, while the effects of inter-
personal influence have been extensively studied before. Third, the
proposed framework has not considered the ‘risk compensation’
effect, i.e., individuals will behave less cautiously in situations
where they feel safer or more protected (Cassell, Halperin, Shelton,
& Stanton, 2006). In the context of infectious diseases, the risk
compensation can be interpreted as individuals being less cautious
of the disease if they have taken antiviral drugs, which may facili-
tate the disease transmission. This health psychological effect could
also be incorporated to refine the framework.

To summarize, this article proposes a synergy between epide-
miology, social sciences, and human behavioral sciences. For
a broader view, the conceptual framework could be easily
expanded to include more theories, for instance, from communi-
cations, psychology, and public health, thus forming a new inter-
disciplinary area. Further exploration in this area would offer
a better understanding of complex human-disease systems. The
knowledge acquired would be of a great significance given that
vaccines and manpower may be insufficient to combat emerging
infectious diseases.
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