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a b s t r a c t

In this paper, we propose the daily computed weighted averaging basic reproduction
number Rn

0,k,ω for Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in
South Korea, May to July 2015. We use an SIR model with piecewise constant parameters
β (contact rate) and γ (removed rate). We use the explicit Euler’s method for the solution
of the SIR model and a nonlinear least-square fitting procedure for finding the best
parameters. In Rn

0,k,ω , the parameters n, k, and w denote days from a reference date, the
number of days in averaging, and a weighting factor, respectively. We perform a series of
numerical experiments and compare the results with the real-world data. In particular,
using the predicted reproduction number based on the previous two consecutive
reproduction numbers, we can predict the future behavior of the reproduction number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV), first identified in Saudi Arabia in June 2012, is a viral
respiratory disease caused by a novel coronavirus [1]. South Korea experienced the largest outbreak of MERS-CoV infections
outside the Arabian peninsula [2]. There have been 186 confirmed infective cases in South Korea within two months after
the first infective person who returned from a trip to the Arabian peninsula was diagnosed on 11 May, 2015, and 38 people
died and more than 16,000 people were quarantined due to the spread of the disease. Fig. 1 represents the epidemic curve
of MERS-CoV, South Korea, 20 May–17 July 2015 [3,4].

In order to implement appropriate surveillance and control measures, it is very important to predict the future trend of
the epidemic. Therefore, it is the purpose of the present paper to show daily computed reproduction numbers for epidemics,
in particular, MERS-CoV, so that we can predict the future behavior of the reproduction number day-by-day.
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Fig. 1. Epidemic curve of MERS-CoV, South Korea, 20 May–17 July 2015.

In the mathematical modeling of the spread of an epidemic disease, it is crucial to estimate the parameters (e.g., contact
rate and recovery rate in an SIR model), but it is difficult to do so due to the lack of data available for the estimation. In
case of the MERS-CoV spread in South Korea, there are almost complete daily data of the spread of the disease, and we
choose the MERS-CoV spread case in South Korea as an epidemic model to verify the validity and accuracy of the method
proposed in this paper. To the authors’ knowledge, there have been no previous works that present computational methods
for estimation of the values of the epidemic parameters based on actual daily epidemic data.

The rest of the paper is organized as follows. In Section 2, we describe the mathematical model. In Section 3, we provide
a numerical algorithm for the estimation of the parameters. We perform several numerical experiments in Section 4. In
Section 5, we provide a summary and present our conclusions.

2. The mathematical model

In this paper, we consider the SIR model that was introduced in 1927 by A.G. McKendrick and W.O. Kermack [5]. The
model is simple and has been widely used so far, for instance, in multigroup epidemic modeling [6], online social network
dynamics [7], the model adopting the delay term [8], stochastic model [6,9,10], vaccination strategy [11,12]. In this model,
the population is divided into susceptible S(t), infected I(t), and removed R(t) individuals at time t . The governing ordinary
differential equations for the SIR model are as follows:

dS(t)
dt

= −βS(t)I(t), (1)

dI(t)
dt

= βS(t)I(t) − γ I(t), (2)

dR(t)
dt

= γ I(t) (3)

with initial condition S(0) = S0, I(0) = I0, and R(0) = R0. Here, the parametersβ and γ denote the contact (susceptibility to
disease) and removed (either dead or recovered) rates from disease, respectively [13].We assume that a removed individual
can never be infected again. Let N be the constant total population size. Therefore, it is sufficient to solve only two Eqs. (1)
and (2), i.e., R(t) = N − S(t) − I(t). By assuming that β and γ are time-dependent parameters, we generalize Eqs. (1)–(3)
as follows:

dS(t)
dt

= −β(t)S(t)I(t), (4)

dI(t)
dt

= β(t)S(t)I(t) − γ (t)I(t), (5)

dR(t)
dt

= γ (t)I(t). (6)

For example, the transmission of the vector-borne diseases such as Dengue fever and Malaria has strong seasonal patterns
and thus the parameters are estimated as the time-dependent functions [14,15]. Another example is a seasonal SIR model
for the spread of the whooping cough in which the contact rate β is given as a time-dependent periodic function which
accounts seasonal changes [16].
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Fig. 2. Time series of observed MERS-CoV epidemiological data and numerical solutions of (a) S, (b) I , and (c) R, respectively. Here, N = 500,000 is used.

3. The numerical method

Let us assume that we have daily statistics about S, I , and R. Let tn = tref+n be time, where tref is a reference time. LetDSn,
DIn, and DRn be observed susceptible, infected, and removed data at time t = tn, respectively. Let Sn, In, and Rn be numerical
approximations of S(tn), I(tn), and R(tn), respectively. In this paper, we propose a computation of β(t) and γ (t) on a daily
basis, which fit best to the real data. To be more specific, for given data (DSn,DIn,DRn) and (DSn+1,DIn+1,DRn+1), we want
to find piecewise constant parameters βn+1 and γ n+1 which minimize the following

min
βn+1,γ n+1


(Sn+1

− DSn+1)2 + (In+1
− DIn+1)2 + (Rn+1

− DRn+1)2

, (7)

where Sn+1, In+1, and Rn+1 are the numerical solutions of Eqs. (4)–(6) with initial condition (Sn, In, Rn) = (DSn,DIn,DRn).
We divide one day between tn and tn+1 into m subintervals, then 1t = 1/m is the time step size. Let Sn+1,1

= Sn and
In+1,1

= In, then by applying the explicit Euler’s method to Eqs. (4) and (5), we have

Sn+1,k+1
= Sn+1,k

− βn+1Sn+1,kIn+1,k1t, (8)

In+1,k+1
= In+1,k

+

βn+1Sn+1,kIn+1,k

− γ n+1In+1,k 1t, (9)

Rn+1,k+1
= N − Sn+1,k+1

− In+1,k+1, for k = 1, . . . ,m, (10)

wherewe have used the condition R(t) = N−S(t)−I(t). Unless otherwise stated, we use1t = 1/100 in all numerical tests.
If the solutions of Eqs. (8)–(10) are obtained for all k, thenwe define Sn+1

= Sn+1,m+1, In+1
= In+1,m+1, and Rn+1

= Rn+1,m+1.
Note that while we can use higher-order numerical methods such as Runge–Kutta schemes to solve Eqs. (4) and (5), we use
the explicit Euler’s method for the sake of simplicity. Next, to find the best βn+1 and γ n+1, we use a MATLAB routine called
lsqcurvefit, based on the least-squares sense, which finds coefficients βn+1 and γ n+1 that solve the problem (7). We use
βn+1

= 1.0e−6 and γ n+1
= 1.0e−1 as an initial guess in all numerical simulations. The MATLAB code is given in Appendix

for the interested readers.

4. Numerical simulations

In all computations, the initial conditions are taken to be N = 500,000, S0 = N − 1, I0 = 1, and R0
= 0 with tref = 20

May 2015. Fig. 2 shows the time series of observed MERS-CoV epidemiological data and numerical solutions S, I , and R,
respectively.
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Table 1
Error which is expressed by En

= Rn
linear − Rn

0,1,0 from 18 June, 2015 to 17 July, 2015, i.e., n = 30, . . . , 59.

n En n En n En

30 −2.4532 40 −0.1110 50 −0.0002
31 +0.3215 41 +0.0000 51 +0.0001
32 −0.6608 42 −0.0001 52 −0.0001
33 +0.3751 43 −0.1999 53 −0.0002
34 −0.2251 44 +0.2571 54 −1.6766
35 +0.5175 45 −0.4144 55 +3.3534
36 −0.0958 46 +0.6574 56 −1.6766
37 −0.1967 47 −0.1004 57 −0.0000
38 −0.0000 48 −0.1997 58 +0.0009
39 +0.1110 49 +0.0002 59 −0.0000

The basic reproduction number R0 is the average number of secondary infections caused by one infectious individual in
a completely susceptible population. It is an important measurement in that one can determine the stability of the disease-
free equilibrium by computing the value of R0; R0 < 1 implies that the disease-free equilibrium is locally asymptotically
stable [17], and if R0 > 1, it is unstable [18,19]. Finding basic reduction number R0 can be done through the next generation
matrix [20,21] whose spectral radius is defined as R0. In the SIR model, the basic reproduction number is computed as
R0 = βN/γ [22,23], which will be used for our method in the next section.

4.1. Weighted averaging basic reproduction number Rn
0,k,ω

In this section, we propose the weighted average values for infected and removed rates, and then define weighted
averaging basic reproduction number. Let βn

1,1 = βn for n = 1, . . . ,m. We define k-days (k ≥ 2) weighted average βn
k,ω as

βn
k,ω =


k

i=1

(ωi−1βn−i+1)

 k
i=1

ωi−1 if n ≥ k,

n
i=1

(ωi−1βn−i+1)

 n
i=1

ωi−1 if n < k,

(11)

where 0 < ω ≤ 1 and the superscript i − 1 for ωi−1 represents an exponent. Also, γ n
k,ω is defined similarly as Eq. (11).

Finally, we define the daily computed weighted averaging basic reproduction number as Rn
0,k,ω = βn

k,ωN/γ n
k,ω . Fig. 3(a)–(c)

represent βn
k,ω , γ

n
k,ω , and Rn

0,k,ω for k = 5, respectively, with w = 0, 0.3, and 1. Fig. 4 shows the results of the parameters
for k = 10. Note that when ω = 0, we have Rn

0,k,0 = Rn
0,1,0 for all k. If k is large, then we have more smooth profile and the

transition point (Rn
0,k,ω = 1) moves to the right. If ω is close to zero, then we have a similar profile to Rn

0,1,0. Note that we
have extraordinarily large values of Rn

0,k,ω from n = 1 to approximately n = 20 since the recovered individuals were almost
zero (γ n

k,ω ≈ 0) in early times and the infected ones increased rapidly.

4.2. Predictability of a linear extrapolation, Rn
linear

In this section, we investigate the predictability of a linear extrapolation of Rn
0,1,0. Let us define the linear extrapolation

Rn
linear = 2Rn−1

0,1,0 − Rn−2
0,1,0, for 3 ≤ n ≤ m, (12)

where Rn
linear means the predicted reproduction number based on the previous two consecutive reproduction numbers and

the error is defined as

En
= Rn

linear − Rn
0,1,0, for 3 ≤ n ≤ m. (13)

Fig. 5(a) shows Rn
linear and Rn

0,1,0. Up to about three weeks, there are large differences between two reproduction numbers.
However, we can observe a good agreement interval from n = 30 to n = 59, see Fig. 5(b). Fig. 5(c) and (d) are corresponding
errors En of (a) and (b). The errors En from n = 30 to n = 59 are listed in Table 1. Except some days, the absolute errors |En

|

are less than one. We note that we have a spike in Fig. 5(b) and (d). That is due to no population data changes for two days,
i.e., 11 July and 12 July as shown in Fig. 1.

4.3. The SIR model with disease-related death

In this section, we consider themodified SIRmodel with disease-related death. Let the total population N be divided into
susceptible S(t), infected I(t), recovered R(t), and dead D(t) individuals at time t , then the SIR model with fatality rate is
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Fig. 3. Weighted averaging βn
k,ω , γ

n
k,ω , and Rn

0,k,ω for k = 5. In each case, we compare the values with ω = 0, 0.3, and 1.

given by

dS(t)
dt

= −β(t)S(t)I(t), (14)

dI(t)
dt

= β(t)S(t)I(t) − γ (t)I(t) − d(t)I(t), (15)

dR(t)
dt

= γ (t)I(t), (16)

dD(t)
dt

= d(t)I(t) (17)

with initial condition S(0) = S0, I(0) = I0, R(0) = R0, and D(0) = D0. Here, the time-dependent parameters β(t), γ (t),
and d(t) denote the contact, recovered, and dead rates from disease, respectively [22]. Now, by using the proposed method,
we evaluate the numerical solution of the modified SIR model (14)–(17). We take the same initial conditions: N = 500,000,
S0 = N − 1, I0 = 1, R0

= 0, and D0
= 0. The initial guesses for finding coefficients β , γ , and d are 1.0e−6, 1.0e−1, and

1.0e−1, respectively. Using thismodel, we can predict the ratio of individualswho died by disease to the infected population
at a given time. To investigate the ratio, we introduce the fatality percentage rate µn which is defined as

µn
=

Dn

In + Rn + Dn
× 100 (%).
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Fig. 4. Weighted averaging βn
k,ω , γ

n
k,ω , and Rn

0,k,ω for k = 10. In each case, we compare the values with ω = 0, 0.3, and 1.

In Fig. 6, we show the fatality percentage rateµn from the real observation data and the numerical approximations. Here,
the fatality percentage rate µn from the numerical approximation is obtained by the numerical solutions Sn, In, Rn, and Dn.
The numerical solutions Sn, In, Rn, and Dn are evaluated by using the best-fitting parameters βn−1, γ n−1, and dn−1 at time
tn−1. As shown in Fig. 6, the both results are in good agreement in later times.

5. Conclusion

We have proposed the daily computed weighted averaging basic reproduction number Rn
0,k,ω for MERS-CoV outbreak in

South Korea, May to July 2015. The linearly extrapolated reproduction number, Rn
linear , has important implications for the

future prediction of the trend of the reproduction numbers. We showed that the results computed by our method match
very well with the actual data of the MERS-CoV spread in South Korea. Using the method proposed in this paper, one can
predict the progress of the spread of infections on the use of real-time epidemic data, so that proper control policies can be
performed in an appropriate time for reducing the spread of the infections. As future research, the methodology introduced
in this paper can be applied to various diseases with other epidemic spreading models.
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Fig. 5. (a) Comparison of the Rn
0,1,0 with Rn

linear which are denoted by the symbols (·) and (◦), respectively. (b) A magnified view of a rectangular box in (a).
(c) Error for Rn

0,1,0 from 20 May 2015 to 17 July 2015. (d) A magnified view of a rectangular box in (c) from 18 June 2015 to 17 July 2015.

Fig. 6. Fatality percentage rate µn by the observation data (circle marker) and the numerical approximations (solid line).
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Appendix

In this section, we present the parameter fitting algorithm using the MATLAB function lsqcurvefit, which finds the
optimal parameters in the least-squares sense. The following command returns the optimal parameters.

β0
= 1.0e-6; γ 0

= 1.0e-1;
[β γ ] = lsqcurvefit(@SIRmodel, [β0 γ 0

], [n n + 1], SIRdata, [0 0], [1 1]);

In this routine, β0 and γ 0 are an initial guess, [n n+ 1] is a time interval, and SIRdata = [DSn+1 DIn+1 DRn+1
]. Also, [0 0]

and [1 1] represent the lower and upper bounds for the fitting parameters βn+1 and γ n+1. Here, the function SIRmodel is
given as follows.

function f = SIRmodel(Parameter, [n n + 1])
S(1) = DSn; I(1) = DIn; R(1) = DRn

;

b = Parameter(1); g = Parameter(2);
m = 100; ∆t = 1/m;

for i = 1 : m
S(i + 1) = S(i) − b · S(i) · I(i) · ∆t;
I(i + 1) = I(i) + (b · S(i) · I(i) − g · I(i)) · ∆t;
R(i + 1) = a − S(i + 1) − I(i + 1);

end
f = [S(m + 1) I(m + 1) R(m + 1)];
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