

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Expert Systems With Applications 143 (2020) 113046

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An efficient pattern growth approach for mining fault tolerant

frequent itemsets

Shariq Bashir

Department of Software Engineering, Foundation University, Islamabad, Pakistan

a r t i c l e i n f o

Article history:

Received 13 March 2019

Revised 27 September 2019

Accepted 20 October 2019

Available online 21 October 2019

Keywords:

Fault tolerant frequent itemset mining

Frequent itemset mining

Pattern growth

Association rules mining

a b s t r a c t

Mining fault tolerant (FT) frequent itemsets from transactional databases are computationally more ex-

pensive than mining exact matching frequent itemsets. Previous algorithms mine FT frequent item-

sets using Apriori heuristic. Apriori-like algorithms generate exponential number of candidate itemsets

including the itemsets that do not exist in the database. These algorithms require multiple scans of

database for counting the support of candidate FT itemsets. In this paper we present a novel algo-

rithm, which mines FT frequent itemsets using frequent pattern growth approach (FT-PatternGrowth).

FT-PatternGrowth adopts a divide-and-conquer technique and recursively projects transactional database

into a set of smaller projected transactional databases and mines FT frequent itemsets in each projected

database by exploring only locally frequent items. This mines the complete set of FT frequent itemsets

and substantially reduces those candidate itemsets that do not exist in the database. FT-PatternGrowth

stores the transactional database in a highly condensed much smaller data structure called frequent pat-

tern tree (FP-tree). The support of candidate itemsets are counted directly from the FP-tree without scan-

ning the original database multiple times. This improves the processing speed of algorithm. Our experi-

ments on benchmark databases indicates mining FT frequent itemsets using FT-PatternGrowth is highly

efficient than Apriori-like algorithms.

© 2019 Elsevier Ltd. All rights reserved.

1

a

c

J

e

d

M

i

2

r

c

2

F

&

2

T

o

o

s

c

T

i

b

i

f

i

i

h

t

2

H

t

f

i

i

i

s

f

h

0

. Introduction

Mining frequent itemsets from transactional databases play

n important role in many data mining applications, e.g., so-

ial network mining (Jiang, Leung, & Zhang, 2016; Moosavi,

alali, Misaghian, Shamshirband, & Anisi, 2017), finding gene

xpression patterns (Becquet, Blachon, Jeudy, Boulicaut, & Gan-

rillon, 2001; Creighton & Hanash, 2003; Cremaschi et al., 2015;

allik, Mukhopadhyay, & Maulik, 2015), web log pattern min-

ng (Diwakar Tripathia & Edlaa, 2017; Han, Cheng, Xin, & Yan,

007; Iváncsy, Renáta, & Vajk, 2006; Yu & Korkmaz, 2015). In

ecent years, many algorithms have been proposed for effi-

ient mining of frequent itemsets (Apiletti et al., 2017; Bodon,

003; Burdick, Calimlim, Flannick, Gehrke, & Yiu, 2005; Gan, Lin,

ournier-Viger, Chao, & Zhan, 2017; Han, Pei, & Yin, 20 0 0; Kosters

 Pijls, 2003; Liu, Lu, Yu, Wang, & Xiao, 2003; Pei, Tung, & Han,

001; Uno, Kiyomi, & Arimura, 2004; Vo, Pham, Le, & Deng, 2017).

hese algorithms take a transactional database and support thresh-

ld (minimum itemset support) as input and mines complete set

f frequent itemsets with support greater than minimum itemset

upport . Traditional frequent itemset mining (FIM) approach dis-
E-mail address: shariq.bashir@fui.edu.pk

ttps://doi.org/10.1016/j.eswa.2019.113046

957-4174/© 2019 Elsevier Ltd. All rights reserved.
overs only exact matching itemsets that are absolutely matched.

his creates problem when the database contains missing items

n transactions and may cause some implicit frequent itemsets not

eing discover (Yu, Li, & Wang, 2015). In the presence of missing

tems users face difficulties in setting suitable support threshold

or mining desired itemsets. For example, if the support threshold

s set too large then FIM discovers only a small number of frequent

temsets, which do not provide desirable output. On the other

and if the support threshold is set too small then FIM generates

oo many redundant short length frequent itemsets (Cheung & Fu,

004; Huynh-Thi-Le, Le, Vo, & Le, 2015; Saif-Ur-Rehman, Ashraf,

abib, & Salam, 2016). This not only consumes large processing

ime but also increases the complexity of filtering interesting

requent itemsets. In both settings, the ultimate goal of mining

nteresting frequent itemsets is undermined.

To mine frequent itemsets in the presence of missing

tems, (Pei et al., 2001) proposed fault tolerant (FT) frequent

temsets mining approach. The task of mining FT frequent item-

ets from a transactional database can be understand from the

ollowing conditions (Pei et al., 2001).

• Under a user-defined fault tolerant (FT) factor (δ), an itemset

X with length greater than (δ + 1) is a FT frequent itemsets

if it has support of at least T number of FT-transactions.

https://doi.org/10.1016/j.eswa.2019.113046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.113046&domain=pdf
mailto:shariq.bashir@fui.edu.pk
https://doi.org/10.1016/j.eswa.2019.113046

2 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Table 1

A sample transactional database. Items are removed from the trans-

actions that have item support less than 3.

TID Items (Ordered) Frequent Items

10 b, c, e, f e, f, c, b

20 a, b, e, f e, f, a, b

30 a, d, f f, d, a

40 e, g e

50 a, b, c, e, h e, a, c, b

60 a, e, f e, f, a

70 d, c, f f, d, c

80 d, i, k d

90 d, j d

a

a

a

d

a

e

o

i

e

o

i

c

f

t

d

(

f

i

t

u

e

c

l

a

S

s

f

o

S

t

S

2

F

s

r

d

2

t

t

s

t

a

p

s
• A transaction t is a FT-transaction of T under FT factor if it

contains at least (| X| − δ) number of items of X .
• T is the support of X which must be greater or equals to the

minimum itemset support (min _ sup δ) . Each individual item

i of X must appear in at least m number of FT-transactions

of X . The m is the minimum item support (item _ sup δ) under

fault tolerant factor δ.

Table 1 shows a transactional database as our running example.

It contains eleven items and nine transactions. To mine frequent

itemsets if the user gives the minimum itemset support equals to 3

then there exists no itemset with length more than 2 items (see

column 2 of Table 1). The database has many short length item-

sets with low support count. To discover generalized knowledge

users would be interested to mine itemsets of long length with

high support count. If we further analyze the database, then we

can discover some long length frequent itemsets. These are not

absolutely matched in transactions but have support more than

2. For example, further analysis reveals that the itemset (abcef)

has itemset support 3 as the transactions 10, 30, and 50 contain

four out of five items of abcef , and every single item of (abcef) is

appeared in two out of three transactions. This frequent itemset

mining phenomenon is interesting in terms of that it discovers

generalized frequent itemsets that are not absolutely matched by

slightly relaxing the notion of traditional frequent itemset. This

phenomenon motivates us to develop an automatic method to

mine such kind of knowledge. This task is called mining fault

tolerant (FT) frequent itemsets (Pei et al., 2001).

Given the definition of mining FT frequent itemset if the look

again at the database of Table 1 . Suppose the (min _ sup δ) = 3

and the (item _ sup δ) = 2 . Suppose one mismatch is allowed, i.e.,

fault tolerant (δ = 1) . The itemset X = (abce f) is a FT frequent

itemset since it’s 4 out of 5 items are present in FT transactions

10,20 and 50 which qualifies min _ sup δ = 3 , and each single

item a, b, c, e and f is present in at least two transactions with

qualifies (item _ sup δ) = 2 threshold. (Pei et al., 2001) proposed

FT-Apriori algorithm for mining FT frequent itemsets from

transactional databases. FT-Apriori uses candidate generation-

and-test approach for mining FT frequent itemsets. Although, the

performance of FT-Apriori is efficient when database is sparse

and FT support thresholds are given large. However, FT-Apriori
encounters difficulties and takes long processing time for dense

and spare databases if the FT support thresholds are given small.

We list here main limitations of FT-Apriori that do not make

it an attractive solution for mining FT frequent itemsets.

• FT-Apriori is based on Apriori-like candidate generation-

and-test approach. This approach is not efficient for

databases having large number of items. For example,

to mine complete set of FT frequent itemsets of a database

with 200 items. FT-Apriori has to generate and test all

the 2 200 candidates.
• FT-Apriori applies bottom-up search mechanism and

this enumerates each subset of itemset X before mining

itemset X . This implies that in order to produce FT frequent

itemsets of length Y , the algorithm must generate all subsets

of Y which are 2 Y , since all subsets must be frequent. This

exponential complexity of FT-Apriori fundamentally

restricts the algorithm to mine complete set of itemsets in

a reasonable time limit.
• To mine FT frequent itemsets of length Y the FT-Apriori

requires full scan of database multiple times for count-

ing support of itemsets. These scans are costly when the

database is large and number of candidates to be examined

are numerous.

To overcome these limitations in this paper we proposed a new

pproach for mining FT frequent itemsets using pattern growth

pproach (FT-PatternGrowth). FT-PatternGrowth adopts a divide-

nd-conquer technique and recursively projects a transactional

atabase into a set of smaller projected transactional databases

nd mines FT frequent itemsets in each projected database by

xploring only locally frequent items. This mines the complete set

f FT frequent itemsets and substantially reduces those candidate

temsets that do not exist in the database (Han & Pei, 2014; Han

t al., 20 0 0; Han, Pei, Yin, & Mao, 20 04). The major advantage

f mining FT frequent itemsets using pattern growth approach

s that it removes two costly operations of Apriori heuristic:

andidate generate-and-test and repeatedly scanning of database

or counting support of itemsets. The first scan of database counts

he support of all frequent items of length one. The second scan of

atabase builds a compact data structure called frequent pattern

FP)-tree. Each node of FP-tree corresponds to an item which was

ound frequent in first scan of database. Next, all FT frequent

temsets are mined directly from this FP-tree without scanning

he database multiple times. The approach traverses search space

sing depth first order and during traversing each node it gen-

rates FT frequent itemsets using conditional patterns and builds

ompacted child FP-trees for mining FT frequent itemsets of next

evel. We tested our approach on several benchmarks databases

nd found computationally efficient than FT-Apriori .
The remainder of this paper is structured as follows.

ection 2 reviews related work on mining FT frequent item-

ets. In Section 3 we provide formal definition of mining FT

requent itemsets. In Section 4 we explain design and construction

f pattern growth approach for mining FT frequent itemsets.

ection 5 explains experimental setup and databases and analyzes

he performance of algorithms on benchmark databases. Finally,

ection 6 briefly summarizes the key results of our work.

. Related work

This section provides a review on related algorithms for mining

T frequent itemsets. We start this section by first introducing

ome applications for FT frequent itemsets, and then we introduce

elated algorithms of FT frequent itemsets by providing their

escriptions and limitations.

.1. Applications of mining FT frequent itemsets

Li and Wang (2015) used the concept of FT frequent itemsets

o mine FT frequent subgraphs from graph databases. They found

hat traditional exact matching algorithms generates only frequent

ubgraphs which have exact match in the graph databases. Thus,

he interesting subgraphs could be left undiscovered if their

re slightly different occurrences of edges in databases. They

roposed algorithm using Apriori heuristic to mine FT frequent

ubgraphs. They also enhanced the working of algorithm by

S. Bashir / Expert Systems With Applications 143 (2020) 113046 3

m

f

i

e

t

P

T

a

f

a

p

m

p

s

d

c

t

e

a

K

f

t

m

e

i

T

p

t

F

i

d

s

e

d

r

b

m

f

b

r

u

t

o

s

2

o

d

a

r

h

s

a

d

F

p

e

a

i

t

r

a

e

o

t

Y

V

b

p

b

t

b

t

s

g

i

l

F

m

c

f

δ

a

t

m

f

S

m

p

t

c

b

f

a

c

s

m

F

m

o

w

m

t

m

t

w

t

l

p

t

t

t

d

m

a

2

b

L

o

p

P
ining non-redundant representative frequent subgraphs which

urther summarizes the frequent subgraphs by allowing approx-

mate number of matches in a graph database. They performed

xperiments on both real as well as synthetic databases and found

heir approach more efficient than traditional algorithms.

Morales-González, Acosta-Mendoza, Alonso, Reyes, and Medina-

agola (2014) used FT frequent subgraphs for image classification.

hey designed a classification framework in which frequent

pproximate subgraphs of images are utilised for classification

eatures. They tested their approach on two real images databases

nd reported better classification accuracy than non mining ap-

roaches by keeping in view the fact that FT frequent subgraph

ining is a better approach than exact mining approach for this

articular task.

Ashraf and d. Tabrez Nafis (2017) proposed FT frequent item-

et mining algorithms for both certain and uncertain composite

atasets. In experiments they showed their algorithms are effi-

ient for mining such patterns. They also discovered whenever

he frequent itemset mining is done on distributed computing

nvironment, the problem of false positive and false negative can

lso be handled accordingly. Kargupta, Han, Yu, Motwani, and

umar (2008) presented an approach for mining approximate

requent sequential patterns. Through experiments they showed

heir approach is efficient to mine globally repeating approxi-

ate sequential patterns which could not be discovered through

xisting exact matching techniques.

Lee, Peng, and Lin (2009) developed algorithms for mining

temsets from biological databases by using FT frequent itemsets.

hey showed the number of tolerable faults occurred in a pro-

ortional FT itemsets are directly proportional to the length of

he itemsets. They proposed two algorithms to solve this problem.

irst algorithm is based on Apriori heuristic which mines all FT

temsets with any number of faults occurred. The second algorithm

ivides complete set of FT itemsets in groups keeping in view a

et ratio of tolerable faults which returns the mined itemsets from

ach group. They showed the working of their algorithms on real

atabases and reported epitopes of spike protein of SARS-CoV in

esulting itemsets and reported FT frequent itesmets technique is

etter than exact matching techniques.

Besson, Pensa, Robardet, and Boulicaut (2005) proposed a

ethod to mine extensions of bi-set itemsets with fault tolerant

actor. They also evaluated three declared specifications of FT

i-sets by considering constraints based mining methodology. As a

esult, their mining framework posted a better and comprehensive

nderstanding on the requisite trade-off between pattern extrac-

ion feasibility, ease of interpretation, relevance and completeness

f these fault tolerant patterns. They showed experimental demon-

tration empirically on real-life medical and synthetic databases.

.2. FT frequent itemset mining algorithms

Majority of algorithms proposed in recent years are based

n candidate generation-and-test approach. We presented brief

escriptions and limitations of these algorithms. These algorithms

pply a top down complete search space exploration. These algo-

ithms prune infrequent FT itemset using anti-monotone Apriori

euristic. The major drawbacks of these algorithms are repeatedly

canning of full database for counting itemset support, and gener-

ting too many candidates including those that do not exist in the

atabase.

Pei et al. (2001) proposed FT-Apriori algorithm.

T-Apriori in based on candidate generation-and-test ap-

roach. The algorithm applies a top down complete search space

xploration. The algorithm prunes infrequent FT itemset using

nti-monotone Apriori heuristic: i.e., if any FT itemset of length k

s discovered infrequent, then it discards all of its supersets since
hey too be infrequent. The major drawbacks of FT-Apriori is

epeatedly scanning of full database for counting itemset support,

nd generating too many candidates including those that do not

xist in the database. For example, to mine FT frequent itemsets

f a database with 200 items. FT-Apriori has to generate and

est all the 2 200 candidates.

To avoid costly repeatedly scanning of database, Koh and

o (2005) proposed an algorithm called VB-FT-Mine .
B-FT-Mine scans the database only once and constructs

it-vectors for each item. VB-FT-Mine then applies depth-first

attern generation approach to generate candidate itemsets. The

it-vectors of candidate itemsets are obtained systematically, and

he VB-FT-Mine quickly counts the itemset support by applying

itwise operators on bit vectors. Although, bit-vectors increase

he performance of VB-FT-Mine by quickly counting itemsets

upport, however, similar to FT-Apriori the VB-FT-Mine
enerates many non-existing candidate itemsets.

Bashir, Halim, and Baig (2008) proposed an algorithm for min-

ng FT frequent itemset using pattern growth approach. The main

imitation of their algorithm is that it constructs more than one

P-trees for each itemset to mine its supersets. For example, to

ine supersets of itemset X under FT factor δ = 2 . The algorithm

onstructs three FP-tress. The algorithm constructs first FP-tree

or storing all transactions of database that have mismatch factor

= 0 . The algorithm then constructs second FP-tree for storing

ll transactions that have mismatch factor δ = 1 . The algorithm

hen constructs third FP-tree for storing all transactions that have

ismatch factor δ = 2 . Koh and Lang (2010) proposed an algorithm

or mining FT-frequent itemset using pattern growth approach.

imilar to Bashir et al. (2008) approach, the algorithm constructs

ultiple FP-trees for each itemset to mine its supersets. For exam-

le to mine supersets of itemset X = (ab) under FT factor δ = 2 ,

he algorithm constructs 2 | X | number of FP-trees. The algorithm

onstructs first FP-tree for storing all transactions that contain

oth items: a and b (ab). The algorithm constructs second FP-tree

or storing all transactions that contain only item a (a b) . The

lgorithm constructs third FP-tree for storing all transactions that

ontain only item b (a b) . Finally, it constructs fourth FP-tree to

tore all transactions that do not contain both items: a and b (ab) .

Both algorithms based on pattern growth approach construct

ultiple FP-trees for mining itemsets. Due to constructing multiple

P-trees the transactions that share a similar prefix are split into

ultiple trees. Thus, these algorithms could not gain full benefit

f FP-tree for counting itemset support. For large databases and

ith low support thresholds both algorithms consume large main

emory for mining itemsets. The pattern growth presented in

his paper does not create multiple FP-trees. If an itemset has

ultiple mismatch transactions, our approach maps all mismatch

ransactions into a single FP-tree. Thus for large databases and

ith low support thresholds our algorithm is more space efficient

han related algorithms.

To discover more interesting FT itemsets, Lee and Lin (2006) re-

axed the definition of mining FT frequent itemsets by mining

roportional FT frequent itemsets. The concept of mining propor-

ional FT itemsets is similar to traditional FT itemsets, however,

he fault tolerant factor in proportional FT itemsets is proportional

o the length of itemset. Thus, the definition of proportional

iscovers much large number of itemsets than the FT itemset

ining definition proposed in (Pei et al., 2001). Our proposed

lgorithm in based on the FT definition proposed in (Pei et al.,

001). Thus, the processing time of our proposed algorithm cannot

e directly comparable with the algorithm proposed in (Lee &

in, 2006). In (Lee et al., 2009), authors discussed the applications

f proportional FT frequent itemsets in bioinformatics. To discover

roportional FT frequent itemsets in a reasonable time Liu and

oon (2014, 2018) proposed efficient heuristic method to mine ap-

4 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Fig. 1. FP-tree after inserting first transaction.

i

s

f

F

b

l

m

s

i

h

s

T

i

o

i

o

(

o

t

i

F

o

t

i

b

t

t

a

1

T

w

t

〈

b

F

a

s

m

i

4

d
proximation version of the itemsets. Their study showed heuristic

algorithm is much faster than the exact algorithms while the error

is acceptable. In all studies on mining proportional FT frequent

itemsets the authors proposed algorithms by mining itemsets on

the basis of Apriori-like candidate generation-and-test property.

However, no effort is made how to use FP-tree structure and

pattern growth for increasing the speed of counting itemset sup-

port and reducing the number of candidate itemsets. Our work is

different to this research. Our proposed algorithm utilises FP-tree

for quickly counting itemset support and reduces the number of

candidate itemsets using pattern growth approach.

3. Fault tolerant (FT) frequent itemset mining: Problem

statement

The FT frequent itemset mining problem was first introduced

by Pei et al. (2001) as fault-tolerant frequent pattern mining:

problems and challenges .

Let I = i 1 , . . . , i m

be a set of items. An itemset X ⊂ I is a subset

of items, an itemset with X items is called an itemset of length | X |.

A transaction T = (t id, t) is a tuple where tid is a transaction-id

and t is a transaction of length n with set of items t = t 1 , . . . , t n .

A transaction T = (t id, t) is said to contain itemset Y if Y is subset

of t . A transaction database TDB is a set of transactions. The

support of an itemset X in transaction database TDB , denoted as

sup (X), is the number of transactions in TDB containing X . Given

a transactional database TDB and a minimum support threshold

min _ sup > 0 , X is a frequent itemset it it has sup(X) ≥ min _ sup.

Given a user-defined fault tolerant (FT) factor (δ), a transaction

t is a FT-transaction t δ if it contains at least (| X| − δ) number of

items of X . An itemset X with length greater than (δ + 1) is a FT

frequent itemset if it satisfies the following two conditions.

• Given (min _ sup δ) minimum itemset support under fault

tolerant (FT) factor (δ), the itemset X is FT frequent item-

set if it has support of at least (min _ sup δ) number of

FT-transactions.
• Each individual item i of X must appear in at least m

number of FT-transactions of X . The m is the minimum item

support (item _ sup δ) under fault tolerant factor δ.

Given the FT frequent itemset mining definition above if the

look again at the database of Table 1 . Suppose the (min _ sup δ) = 3

and the (item _ sup δ) = 2 . Suppose one mismatch is allowed, i.e.,

fault tolerant (δ = 1) . The itemset X = (abce f) is a FT frequent

itemset since it’s 4 out of 5 items are present in FT transactions

10, 30 and 50 which qualifies min _ sup δ = 3 , and each single item

a, b, c, e and f is present in at least two transactions with qualifies

(item _ sup δ) = 2 threshold.

4. Mining fault tolerant (FT) frequent itemsets using pattern

growth: Design and construction

The algorithm mines FT frequent itemsets using two phases.

In first phase, the algorithm mines all itemsets directly from the

FP-tree of transactional database which have itemset length equals

to (δ + 1) . The second phase of algorithm mines itemsets which

have itemset length greater than (δ + 1) . Both phases construct

FP-trees for mining itemsets.

FP-tree is a compact data structure which represents complete

information of transactional database (Han & Pei, 2014; Han et al.,

20 0 0; Han et al., 2004). FP-tree avoids costly candidate generation-

and-test and multiple scans of database. Each transaction of

database is mapped to a branch of FP-tree. If multiple transactions

share a similar set of items, the shared parts of transactions are

merged into a single branch. The merging of transactions not only

increases the scalability of algorithm for large databases but also
mproves the processing speed of algorithm for counting itemset

upport. To facilitate tree traversal a header table is constructed

or items. This header table contains head pointers of items of

P-tree. Nodes in the tree with similar items are linked together

y making linked lists of items. For mining, the head pointers and

inked lists of items are used for generating candidate itemsets.

Example: Table 1 shows a transactional database. Let the

inimum itemset support (min _ sup δ) = 3 and the minimum item

upport (item _ sup δ) = 2 . Suppose two mismatches are allowed,

.e., FT factor δ = 2 .

The first scan of database derives a list of frequent items that

ave frequency greater or equals to item _ sup δ . All items that have

upport less than item _ sup δ are removed from the transactions.

his is because, if an item has support less than item _ sup δ then

t cannot become part of any FT frequent itemset. The items are

rdered in transactions by decreasing frequency. This ordering is

mportant since each path of FP-tree follows this order. The scan

f database discovers the following frequent items, 〈 (e : 4), (f : 4),

 d : 4), (a : 4), (c : 3), (b : 3) 〉 , the number after “:” indicates support

f item. All transactions are mapped in the FP-tree and if multiple

ransactions share a similar set of items, the shared part is merged

n a common branch.

In the second scan of database the algorithm constructs the

P-tree. The scan of the first transaction constructs the first branch

f FP-tree 〈 (e, f, c, b) 〉 (see Fig. 1). The frequent items in the

ransaction are ordered according the order in the list of frequent

tems. The second transaction has ordered frequent items 〈 (e, f, a,

) 〉 . Items e,f of second transaction share a common prefix with

he existing path 〈 (e, f, c, b) 〉 , the count of each shared node along

he prefix is incremented by 1. One new chid node (a : 1) is created

nd linked with the parent node (f : 2), and another child node (b :

) is created and linked with the parent node (a : 1) (see Fig. 2).

he third transaction 〈 (f, d, a) 〉 does not share any common prefix

ith the existing tree, therefore it leads to the construction of

he second branch of the tree (see Fig. 3). The fourth transaction

 (e) 〉 has only one item and it shares a common prefix with the

ranch (e : 2), the count of node (e : 2) is incremented by 1 (see

ig. 4). Other transactions are scanned using the same mechanism

s desired for the first four transactions. If multiple transactions

hare a similar set of items, the common prefix of transactions is

erged in a common branch. Fig. 5 shows complete FP-tree after

nserting all transactions of database (Table 1).

.1. Mining FT frequent itemsets of length equals to (δ + 1)

All itemsets that have length equals to (δ + 1) can be mine

irectly from FP-tree of database. To examine the support of

S. Bashir / Expert Systems With Applications 143 (2020) 113046 5

Fig. 2. FP-tree after inserting second transaction.

Fig. 3. FP-tree after inserting third transaction.

Fig. 4. FP-tree after inserting fourth transaction.

6 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Fig. 5. Complete FP-tree after inserting all transactions.

t

p

o

c

itemsets of length equals to (δ + 1) the algorithm counts item

support and itemset support directly from the conditional patterns

of items stored in the FP-tree. Example: To examine whether

itemset X = (bca) is a frequent itemset. The algorithm generates

conditional patterns of item b , item c , and item a . The algorithm

ignores the conditional patterns of other items; this is because if a

branch of FP-tree does not contain any item of X then the FT factor

of the branch becomes (δ = 3), which does not qualify (δ = 2). The

algorithm enumerates items of X in increasing frequency order,

i.e., first b , then c and then a . For X , the FP-tree generates the

following set of conditional patterns.

• For Item b , FP-tree generates conditional patterns 〈 efab : 1 〉 ,
〈 efcb : 1 〉 , and 〈 eacb : 1 〉 .

• FP-tree is again traversed for item c and the following three

conditional patterns are discovered: 〈 efc : 1 〉 , 〈 eac : 1 〉 , and

〈 fdc : 1 〉 . If a conditional pattern (c B) is a subset of any

already discovered conditional pattern (c A) of previous item,

then the support of c B is subtracted from the support of

c A . If the support of c B becomes zero, then the conditional

pattern c B is ignored. Since conditional patterns 〈 efc : 1 〉
and 〈 eac : 1 〉 are subsets of conditional patterns (〈 efcb : 1 〉
and 〈 eacb : 1 〉) of item b , and after subtracting the support

of 〈 efc : 1 〉 and 〈 eac : 1 〉 from the support of conditional

patterns of b , the support of both conditional patterns

become zero. Thus, both patterns are removed from the

conditional patterns of c . After removing two patterns, the

item c contains only conditional pattern 〈 fdc : 1 〉 .
• The FP-tree is again traversed for item a and the following

three conditional patterns are discovered: 〈 efa : 2 〉 , 〈 ea : 1 〉 ,
and 〈 fda : 1 〉 . The pattern 〈 efa : 2 〉 is a subset of conditional

pattern 〈 efab : 1 〉 of item b . The support of 〈 efa : 2 〉 is sub-

tracted from the support of (〈 efab : 1 〉), which makes the

support of 〈 efa : 2 〉 equals to 1. The pattern 〈 ea : 1 〉 is a sub-

set of conditional pattern 〈 eacb : 1 〉 of item b . The support

of 〈 ea : 1 〉 is subtracted from the support of (〈 eacb : 1 〉),
which makes the support of 〈 ea : 1 〉 equals to 0. The pattern

〈 ea : 1 〉 is ignored. After removing, the item a contains two

conditional patterns 〈 efa : 1 〉 and 〈 fda : 1 〉
• The three conditional patterns of b (〈 efcb : 1 〉 , 〈 efab : 1 〉 , and

〈 eacb : 1 〉), one conditional pattern of c (〈 fdc : 1 〉), and two

conditional patterns of a (〈 efa : 1 〉 and 〈 fda : 2 〉) are used for

counting items support and itemset support. Since all items

of itemset (bca) qualify item _ sup δ = 2 , and (bca) qualifies

itemset support (min _ sup δ = 3) . Therefore, (bca) is a FT
frequent itemset of length three.
The FP-tree is continuously scan for generating conditional pat-

erns of other itemsets of length equals to (δ + 1) . The item sup-

ort and itemset support are calculated by following the example

f itemset (bca). Lines from 4 to 8 of Algorithm 1 show the pseudo

ode for mining FT frequent itemsets of length equals to (δ + 1) .

Algorithm 1: Procedure for Mining Fault Tolerant Frequent

Itemsets.

Data : Transactional database, min _ sup δ , item _ sup δ , Fault

Tolerant factor (δ)

Result : All Fault Tolerant (FT) frequent itemests

1 Procedure FT-FP-Growth(T ree, α)

2 β = ∅ ;

3 if α == ∅ then

4 for each itemset X of length = | δ + 1 | do

5 for each item i of X do

6 C = C ∪ i ’s conditional patterns from Tree;

7 if itemset − support(X) > = min _ sup δ then

8 output X as FT frequent itemset;

9 β = X;

10 FT-FP-Tree(C, β);

11 else

12 if T ree contains a single path P then

13 for each item P i in the P do

14 X = α ∪ P i ;

15 if itemset − support(X) > = min _ sup δ and each item

i in X has item _ support(i) > = item _ sup δ then

16 output X as a FT frequent itemset;

17 else

18 for each header item h i in the header table of Tree do

19 generate itemset X = α ∪ h i ;

20 for each path P of Tree do

21 C = C ∪ generate conditional pattern from P ;

22 if itemset − support(X) in C > = min _ sup δ and each

item i of X in C has item _ support(i) > = item _ sup δ

then

23 output X as a FT frequent itemset;

24 β = X;

25 FT-FP-Tree(C, β);

S. Bashir / Expert Systems With Applications 143 (2020) 113046 7

Table 2

Conditional patterns and FT-conditional patterns of itemset (bca).

Item Conditional Patterns FT-Conditional Patterns

b efcb : 1 (〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 1 〉 , 〈 a : 0, c : 1, b : 1 〉〉)
b efab : 1 (〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 1 〉 , 〈 a : 1, c : 0, b : 1 〉〉)
b eacb : 1 (〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 0 〉 , 〈 a : 1, c : 1, b : 1 〉〉)
c efc : 1 Ignored, because it has been already discovered from item b (efcb : 1), and its support becomes zero after subtracting its

support fromthe support of efcb : 1.

c eac : 1 Ignored, because it has been already discovered from item b (eacb : 1), and its support becomes zero after subtracting its

support fromthe support of eacb : 1.

c fdc : 1 (〈〈 fd 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 0, c : 1, b : 0 〉〉)
a efa : 2 (〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 0, b : 0 〉〉)
a ea : 1 Ignored, because it has been already discovered from item b (eacb : 1), and its support becomes zero after subtracting its

support fromthe support of eacb : 1.

a fda : 1 (〈〈 fd 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 0, b : 0 〉〉)

4

w

F

F

o

a

i

t

t

t

a

f

o

t

F

c

g

o

m

c

i

o

(

s

T

E

fi

m

f

a

p

p

4

m

w

w

F

f

a

F

f

f

i

t

t

F
.2. Mining FT frequent itemsets of length more than (δ + 1)

To mine FT frequent itemsets of length greater than (δ + 1)

e propose an approach for generating FT-FP-tree (fault tolerant

P-tree) and mining FT frequent itemsets from the FT-FP-tree. The

T-FP-tree is iteratively constructed for each FT frequent itemset

f length (δ + 1) . Similar to FP-tree, FT-FP-tree of an itemset X is

 compact data structure which maps all conditional patterns of X

n the tree. This helps in avoiding costly candidate generation-and-

est and scanning database multiple times for generating itemsets

hat are supersets of X . The FT-FP-Tree of X is constructed from

he FT-conditional patterns of X . The FT-conditional patterns of X

re generated from the conditional patterns of items in X .

A conditional pattern is a FT-conditional pattern of mismatch

actor f if has f number of items missing in the pattern. The value

f f should be less or equals to δ. If multiple FT-conditional pat-

erns share similar set of items, then all are merged into a single

T-conditional pattern. A FT-conditional pattern of itemset (X)

ontains four segments. The first segment contains items that can

enerate itemsets contain X . The second segment contains support

f FT-conditional pattern. The third segment contains number of

issing items of X in FT-conditional pattern. The fourth segment

ontains item support of each item of X , which is useful for count-

ng support of items. To map segments of FT-conditional patterns

n FT-FP-Tree the algorithm creates FT-conditional pattern table

 FT-CP-Table) at the end of each branch of FT-FP-Tree. The first

egment of pattern is directly mapped on the nodes of FT-FP-Tree.

he other segments of patterns are mapped on the FT-CP-Tree.

ach FT-CP-Table contains three columns. The first column maps

rst segment (δ) of FT-conditional pattern. The second column

aps second segment (support of pattern). The third column maps

ourth column (items support) of FT-conditional pattern.

For example, to construct FT-FP-tree of itemset X = (bca) . The

lgorithm generates conditional patterns using items b, c , and a .

• Item b contains three conditional patterns: 〈 efab : 1 〉 , 〈 efcb :

1 〉 , and 〈 eacb : 1 〉 . These conditional patterns are converted

into FT-conditional patterns. The pattern 〈 efab : 1 〉 is a

FT-conditional pattern of FT factor δ = 1 because item c

is missing from the pattern. The pattern 〈 efcb : 1 〉 is a

FT-conditional pattern of FT factor δ = 1 because item a

is missing from the pattern. The pattern 〈 eacb : 1 〉 is a

FT-conditional pattern of FT factor δ = 0 because no item

is missing from the pattern. The pattern 〈 efab : 1 〉 is con-

verted into FT-conditional pattern 〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 1 〉 ,
〈 a : 1, c : 0, b : 1 〉〉 . The FT-conditional pattern 〈 efab : 1 〉 has

four segments. The first segment contains the items that

generate supersets of itemset ((bca)). The second segment

contains support of pattern. The third segment says one

item of itemset ((bca)) is missing in the pattern. The fourth

segment contains item support of each item of (bca). The
pattern 〈 efcb : 1 〉 is converted into FT-conditional pattern

〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 1 〉 , 〈 a : 0, c : 1, b : 1 〉〉 . The pattern 〈 eacb :

1 〉 is converted into FT-conditional pattern 〈〈 e 〉 , 〈 sup : 1 〉 ,
〈 δ: 0 〉 , 〈 a : 1, c : 1, b : 1 〉〉 . All FT-conditional patters of item

c are mapped into FT-FP-tree. The frequency ordering of

items (that is discovered from the first scan of database) is

followed for mapping items on branches.
• Item c generates three conditional patterns: 〈 efc : 1 〉 , 〈 eac :

1 〉 , and 〈 fdc : 1 〉 . Conditional patterns 〈 efc : 1 〉 and 〈 eac : 1 〉
are ignored as both are subsets of conditional patterns of

item b with similar support, and both are already mapped

on FT-FP-tree of itemset (bca). 〈 fdc : 1 〉 is a FT-conditional

pattern of FT factor δ = 2 because items b and a are missing

from the pattern. The pattern 〈 fdc : 1 〉 is converted into FT-

conditional pattern 〈〈 fd : 1 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 0, c : 1, b : 0 〉〉 .
• Item a generates conditional patterns 〈 efa : 2 〉 , 〈 ea : 1 〉 and

〈 fda : 1 〉 . The pattern 〈 efa : 2 〉 is a subset of pattern 〈 efab : 1 〉
of item b . Its support becomes 1 after subtracting its sup-

port from the support of pattern 〈 efab : 1 〉 . The pattern 〈 ea :

1 〉 is a subset of pattern 〈 eacb : 1 〉 of item b . This pattern is

ignored because its support becomes zero after subtracting

its support from the support of pattern 〈 eacb : 1 〉 . The

pattern 〈 efa : 1 〉 and pattern 〈 fda : 1 〉 are FT-conditional pat-

terns of FT factor δ = 2 because items c and b are missing

from the patterns. The pattern 〈 efa : 1 〉 is converted into

FT-conditional pattern 〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 0, b :

0 〉〉 . The pattern 〈 fda : 1 〉 is converted into FT-conditional

pattern 〈〈 fd 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 0, b : 0 〉〉 .
All FT-CP-Tables at leaf nodes are linked to each other through

ointers. Table 2 lists all conditional patterns and FT-conditional

atterns of itemset (bca), and Fig. 6 shows FT-FP-tree of (bca).

.3. Mining FT frequent itemsets from FT-FP-tree

The compact FT-FP-tree provides facility that subsequent

ining of itemsets can be performed directly on the FT-FP-tree

ithout scanning the database multiple times. In this section, we

ill show how to explore information stored on the branches of

T-FP-tree, and develop a mining approach for generating all FT

requent itemsets. Since FT-FP-tree of itemset X maps all trans-

ctions of X on tree that are needed for obtaining the possible

T frequent itemsets that contain X . Therefore, we observe the

ollowing interesting property from the FT-FP-tree for mining FT

requent itemsets.

For any FT frequent itemset X , all the possible FT frequent

temsets that contain X can be generated by traversing all condi-

ional patterns of FT-FP-tree, staring from head of FT-CP-Table in

he header table.

Example: Let us examine the mining method from the FT-

P-tree of itemset (bca) shown in Fig. 6 . According to the list of

8 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Fig. 6. FT-FP-tree of itemset (bca).

Fig. 7. FT-FP-tree of itemset (bcad).

Table 3

FT-conditional patterns of itemset (bcad).

FT-Conditional Patterns Discovered

from FT-FP-tree of itemset (bca)

FT-Conditional Patterns used for

Constructing FT-FP-tree of (bcad)

〈〈 fd 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 1, b : 0 〉〉 〈〈 f 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 d : 2, a : 1, c :

1, b : 0 〉〉
〈〈 ef 〉 , 〈 sup : 2 〉 , 〈 δ: 1 〉 , 〈 a : 1, c : 1, b : 2 〉〉 〈〈 ef 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 d : 0, a : 1, c :

1, b : 2 〉〉
〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 0, b : 0 〉〉 Ignored because it has 〈 δ: 2 〉 and

item d is missing in the pattern

〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 0 〉 , 〈 a : 1, c : 1, b : 1 〉〉 〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 1 〉 , 〈 d : 0, a : 1, c :

1, b : 1 〉〉

a

a

o

a

o

c

(

t

F

c

F

2

c

A

o

t

3

i

T

s

a

(
frequent items in the header table the set of frequent itemsets

contain itemset (bca) are divided into three subsets without

overlap: (1) FT frequent itemsets having item d , (2) FT frequent

itemsets having item f , and (3) FT frequent itemsets having item e .

The algorithm discovers all these itemsets as follows.

To examine whether itemsets (bcad) is a FT frequent itemset

and to generate supersets of itemsets (bca) having item d , the

algorithm first examines the itemset support and items support

of (bcad) form the FT-conditional patterns of itemset (bcad). The

algorithm then generates supersets of (bcad) from the FT-FP-tree

of itemset (bcad). FT-FP-tree of (bcad) is constructed from the con-

ditional patterns of (bcad). The FT-conditional patterns of (bcad)

are collected from the FT-FP-tree of itemset (bca) by traversing all

pointers of the FT-CP-Table starting from the head pointer of FT-

CP-Table. Note each row of FT-CP-Table generates an independent

FT-conditional pattern. The pointers of FT-CP-Table drive following

FT-conditional patterns:

• 〈〈 fd 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 1, b : 0 〉〉 ,
• 〈〈 ef 〉 , 〈 sup : 2 〉 , 〈 δ: 1 〉 , 〈 a : 1, c : 1, b : 2 〉〉 ,
• 〈〈 ef 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 a : 1, c : 0, b : 0 〉〉 , and

• 〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 0 〉 , 〈 a : 1, c : 1, b : 1 〉〉 .
The conditional pattern (〈〈 ef 〉 , 〈 δ: 2 〉〉) is ignored because it

contains FT factor δ = 2 and item d is missing from the pattern,

this makes the FT factor equals to δ = 3 . All other conditional

patterns qualify FT factor δ = 2 which make the support count

of itemset (bcad) equals to 5. Table 3 shows the FT-conditional

patterns of (dacb). The support of items are collected from

the FT-conditional patterns of (dacb) which makes the support

of items: 〈 d : 2 〉 , 〈 a : 3 〉 , 〈 c : 3 〉 , and 〈 b : 3 〉 . All items qualify

item _ sup δ = 2 . Thus (bcad) is a FT frequent itemset of length four.

The Fig. 7 shows the FT-FP-tree of (bcad).

To generate and examine the support of supersets of itemsets

(bcad) the algorithm generates itemsets and FT-conditional pat-

terns from the FT-FP-tree of (bcad). The itemsets contain (bcad)

are divided into two subsets: (1) FT frequent itemsets having item

f , and (2) FT frequent itemsets having item e .
To examine whether itemsets (bcadf) is a FT frequent itemset

nd to generate supersets of itemsets (bcad) having item f , the

lgorithm first examines the itemset support and items support

f (bcadf) form the FT-conditional patterns of itemset (bcadf). The

lgorithm then generates supersets of (bcadf) from the FT-FP-tree

f itemset (bcadf). FT-FP-tree of (bcadf) is constructed from the

onditional patterns of (bcadf). The FT-conditional patterns of

 bcadf) are collected from the FT-FP-tree of itemset (bcad) by

raversing all pointers of the FT-CP-Table starting from head of

T-CP-Table (see Fig. 7). The pointers of FT-CP-Table drive FT-

onditional pattern (〈〈 f 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 d : 2, a : 1, c : 1, b : 0 〉〉),
T-conditional pattern (〈〈 ef 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 d : 0, a : 1, c : 1, b :

 〉〉), and FT-conditional pattern (〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 d : 0, a : 1,

 : 1, b : 1 〉〉). Table 4 shows the FT-conditional patterns of (bcadf).

ll patterns qualify FT factor δ = 2 thus make the support count

f itemset (bcadf) equals to 5. The support of items collected from

he FT-conditional patterns of (bcadf) are: 〈 f : 4 〉 , 〈 d : 2 〉 , 〈 a : 3 〉 , 〈 c :
 〉 , and 〈 b : 3 〉 . The item supports of all items of (bcadf) qualify

tem _ sup δ = 2 . Thus, (bcadf) is a FT frequent itemset of length five.

he Fig. 8 shows the FT-FP-tree of (bcadf).

In next iteration, the algorithm generates and examines the

upport of supersets of itemsets (bcadf). The algorithm gener-

tes itemsets and FT-conditional patterns from the FT-FP-tree of

 bcadf). Since, FT-FP-tree of (bcadf) has only one item e , therefore,

S. Bashir / Expert Systems With Applications 143 (2020) 113046 9

Fig. 8. FT-FP-tree of itemset (bcadf).

Table 4

FT-conditional patterns of itemset (bcadf).

FT-Conditional Patterns Discovered

from FT-FP-tree of itemset (bcad)

FT-Conditional Patterns used for

Constructing FT-FP-tree of (bcadf)

〈〈 f 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 d : 2, a : 1, c : 1,

b : 0 〉〉
〈〈〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 f : 2, d : 2, a :

1, c : 1, b : 0 〉〉
〈〈 ef 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 d : 0, a : 1, c : 1,

b : 2 〉〉
〈〈 e 〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 f : 2, d : 0, a :

1, c : 1, b : 2 〉〉
〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 1 〉 , 〈 d : 0, a : 1, c : 1,

b : 1 〉〉
〈〈 e 〉 , 〈 sup : 1 〉 , 〈 δ: 2 〉 , 〈 f : 0, d : 0, a :

1, c : 1, b : 1 〉〉

t

o

T

(

(

p

c

0

m

T

e

p

i

e

a

t

t

o

f

5

d

R

f

s

d

(

t

s

n

F

V

(

u

F

t

s

a

I

V

b

c

v

i

o

d

m

i

f

a

a

M

W

(

(

R

a

F

c

i

o

fi

2

R

t

m

i

i

F

1 The C ++ Implementation of our algorithm (FT-PatternGrowth) is avail-

able on the following link to download (https://sites.google.com/site/drshariqbashir/

shariqpublications/FTFPPatternGrowth.zip).
he algorithm examines the itemset support and items support

f itemsets (bcadfe) from the FT-conditional patterns of (bcadfe).

he FT-conditional patterns are collected from the FT-FP-tree of

 bcadf). The pointers of FT-CP-Table drive FT-conditional pattern

 〈〈〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 f : 2, d : 2, a : 1, c : 1, b : 0 〉〉) and FT-conditional

attern (〈〈 e 〉 , 〈 sup : 3 〉 , 〈 δ: 2 〉 , 〈 f : 2, d : 0, a : 2, c : 2, b : 3 〉〉). The

onditional pattern (〈〈〉 , 〈 sup : 2 〉 , 〈 δ: 2 〉 , 〈 f : 2, d : 2, a : 1, c : 1, b :

 〉〉) is ignored because it contains FT factor δ = 2 and item e is

issing in the pattern, this makes the FT factor equals to δ = 3 .

he second FT-conditional pattern has item support for item d

quals to 0. The total item support of d in second FT-conditional

atterns does not qualify item _ sup δ = 2 , thus, the itemset (bcadfe)

s a FT infrequent itemset.

The algorithm backtracks to FT-FP-tree of itemset (bcad) and

xamines the FT conditions of itemset (bcade). Similarly, the

lgorithm mines the remaining FT-frequent itemsets by generating

heir corresponding FT-conditional patterns and FT-FP-trees, and

hen performs mining on them, respectively. Lines from 18 to 25

f Algorithm 1 and Algorithm 2 show pseudo code of mining FT

requent itemsets of length greater than (δ + 1) .

Algorithm 2: Procedure for constructing FT-FP-Tree of itemset.

Data : Conditional patterns of itemset X

Result : Construct FT-FP-Tree of X

1 Procedure FT-FP-Tree(C, X)

2 for each conditional pattern c in C do

3 convert c into FT-conditional pattern c α;

4 if c α contains at-least (| X| − α) items of X then

5 C α = C α ∪ c α;

6 construct FT-FP-Tree of X using C α;

7 if FT-FP-Tree of X != ∅ then

8 FT-FP-Growth(FT-FP-Tree of X , X);

. Experiments

To test the performance of algorithms we used three real

atabases and one synthetic database. The four databases are

etail, BMSWebView1, FoodMart , and T10I4D100K , which are
requently used in previous studies on mining frequent item-

ets. The Retail, BMSWebView1, FoodMart and T10I4D100K are

ownloaded from FIMI repository (http://fimi.ua.ac.be) and

 http://www.kdd.org/kdd- cup/view/kdd- cup- 20 0 0). Table 5 shows

he characteristics of these databases, where columns of table

how the average transaction length, the number of items and the

umber of transactions of each database.

We compare the performance of our algorithm

T-PatternGrowth with FT-Apriori (Pei et al., 2001),

B-FT-Mine Koh & Lang, 2010), and FT-TreeBased
 Bashir et al., 2008). FT-Apriori mines the FT frequent itemsets

sing candidate generation-and-test approach. The limitation of

T-Apriori is it generates many candidate itemsets including

hose that do not exist in the database. FT-Apriori counts the

upport of itemset using costly full scan of database. VB-FT-Mine
lso mines itemsets using candidate generation-and-test approach.

t also generates many nonexisting candidate itemsets. However,

B-FT-Mine improves the speed of counting itemset support

y storing transactions in bit-vectors. The support of itemsets are

ounted efficiently by performing bitwise-AND operators on bit-

ectors (Burdick et al., 2005). FT-TreeBased mines FT frequent

temsets using pattern growth approach. The major limitation

f FT-TreeBased is it constructs multiple FP-trees for each

iscovered itemset to mine its supersets. In FT-TreeBased
ultiple transactions of database that share a common prefix of

tems are distributed into multiple FP-trees if they have different

ault tolerant mismatch. Thus FT-TreeBased does not gain full

dvantage of FP-tree for counting itemset support. All algorithms

re implemented in C ++

1 The experiments are performed on

acBook Pro-3.2 GHz processor with main memory of size 8GB.

e analyze the performance of all algorithms on two FT factors

 δ = 1 and δ = 2) with various values of minimum item supports

 item _ sup δ). Table 6 explains the setting of experiments. For

etail and T10I4D100K datasets we compare the performance of

lgorithms with FT factors δ = 1 , δ = 2 , δ = 3 , δ = 4 and δ = 5 .

The runtime comparisons of all algorithms are shown in

igs. 9–12 . Note that, execution time here means the total exe-

ution time of algorithm, which is the period between providing

nput and mining all FT frequent itemsets. On low support thresh-

lds the algorithms take very long processing time, therefore, we

nish the execution of an algorithm when it takes more than

30 0 0 seconds.

Fig. 9 shows the processing time of all algorithms on the

etail database. Results shows FT-PatternGrowth is efficient

han FT-Apriori , VB-FT-Mine , and FT-TreeBased for each

inimum item support. We observe that when the minimum

tem support is given very small, the FT-PatternGrowth fin-

sh its execution in less processing time than other algorithms.

T-TreeBased is efficient than VB-FT-Mine and FT-Apriori .

http://fimi.ua.ac.be
http://www.kdd.org/kdd-cup/view/kdd-cup-2000
https://sites.google.com/site/drshariqbashir/shariqpublications/FTFPPatternGrowth.zip

10 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Table 5

Characteristics of transactional databases.

Database Number of Transactions Number of Items Avg. Transaction Length

Retail 88,162 16,470 10

BMSWebView1 59,601 497 3

FoodMart 4,141 1,559 4

T10I4D100K 100,000 870 11

Table 6

Characteristics of experiment settings.

Database Number of transactions δ item _ sup δ min _ sup δ

Retail 88,162 1 and 2 0.2% to 1% 1%

BMSWebView1 59,601 1 and 2 0.05% to 0.35% 0.4%

FoodMart 4,141 1 and 2 0.01% to 0.06% 0.06%

T10I4D100K 100,000 1 and 2 1% to 2% 2%

Fig. 9. The performance of FT frequent itemset mining algorithms on Retail database. (d) Number of FT frequent itemsets discovered with δ = 1 , δ = 2 and min _ sup δ = 1% .

S. Bashir / Expert Systems With Applications 143 (2020) 113046 11

Fig. 10. The performance of FT frequent itemset mining algorithms on BMSWebView1 database. (d) Number of FT frequent itemsets discovered with δ = 1 , δ = 2 and

min _ sup δ = 0 . 4% .

T

i

V

a

i

V

s

t

fi

i

o

o

O

c

F
V

F

fi

m

V

b

e

c

F

e

o

c

o

d

i

t

e

c

s

c

m

l

l

c

F

p

c

c

F

t

F

5

r

f

r

T

o

f

a

l

v

d

g

T

a

r

F

t
his is because FT-PatternGrowth generates itemsets us-

ng pattern growth approach. Whereas the FT-Apriori and

B-FT-Mine generates itemsets using candidate generation-

nd-test approach, and this approach generates many candidate

temsets including those that do not exist in the database.

B-FT-Mine is efficient than FT-Apriori because it counts the

upport the itemset using efficient bit-vectors technique. On δ = 2 ,

he FT-TreeBased , VB-FT-Mine and FT-Apriori could not

nish their execution within 230 0 0 seconds when the minimum

tem support is given less than 0.4%. Fig. 9 (d) shows complete set

f mined FT frequent itemsets with FT δ = 1 and δ = 2 .

Figs. 10 –12 show the runtime of all algorithms on the

ther databases (BMSWebView1, T10I4D100K and FoodMart).

nce again, FT-PatternGrowth mines itemsets more effi-

iently than other algorithms on each minimum item support.

T-PatternGrowth consistently outperforms FT-Apriori ,
B-FT-Mine and FT-TreeBased . Similar to Retail database

T-Apriori , VB-FT-Mine , and FT-TreeBased could not

nish their execution within 230 0 0 seconds when the mini-

um item support is given very small. The FT-Apriori and

B-FT-Mine are slower on all support thresholds because

oth algorithms generate candidate itemsets using Apriori prop-

rty. The FT-PatternGrowth is efficient because it generates

andidate itemsets using pattern growth approach. Moreover,

T-PatternGrowth counts the support of candidate FT itemsets

fficiently from few branches of FP-trees as multiple transactions

f database that share a common set of items are grouped into

ommon branches of FP-tree. FT-Apriori examines the support

f candidate FT itemsets using all transactions of database as it

oes not group transactions that share common set of items. This

ncreases the processing time of FT-Apriori .
Figs. 9 (c), 10 (c), 11 (c) and 12 (c) compare the performance in

erms of how much different algorithms consume memory during

xecution. VB-FT-Mine memory consumption is very small as

ompared to all other algorithms. This is because VB-FT-Mine

a
aves transactions in bit-vectors, and multiple transactions are

ompressed in a single element of bit-vectors. FT-Apriori
emory consumption is second best. FT-Apriori creates linked

ist for each frequent item, and transactions are mapped in the

inked lists of frequent items. FT-PatternGrowth memory

onsumption is higher than VB-FT-Mine and FT-Apriori .
T-PatternGrowth maps transactions in the FP-tree and large

art of memory is consumed for creating nodes of tree and

onnecting parent and child nodes. FT-TreeBased memory

onsumption is higher than all algorithms due to creating multiple

P-trees. In FT-TreeBased multiple transactions of database

hat share a common prefix of items are distributed into multiple

P-trees if they have different fault tolerance mismatch.

.1. Scalability analysis

In above experiments we examine the performance of algo-

ithms on various minimum item support (item _ sup δ). However,

urther analyses are required to analyze the scalability of algo-

ithms on varying number of transactions and transaction length.

o test the scalability of FT-PatternGrowth against the number

f transactions, a set of random transactions are selected ranges

rom 10 k to 90 k . We select only Retail and T10I4D100K databases

s both databases are sparse and have transactions of varying

ength. All algorithms are tested over them using the similar

alues of support thresholds.

The advantage of FT-PatternGrowth is dramatic in

atabases with long patterns, which is challenging to the al-

orithms that mine the complete set of FT frequent patterns.

he results on mining the real databases Retail and T10I4D100K

re shown in Figs. 14 and 16 , which show the linear increase of

untime with the number of transactions.

From the figure, one can see that performance of

T-PatternGrowth is scalable even when the number of

ransactions are increased. To deal with large number of trans-

ctions FT-Apriori has to generate many candidates itemsets,

12 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Fig. 11. The performance of FT frequent itemset mining algorithms on T10I4D100K database. (d) Number of FT frequent itemsets discovered with δ = 1 , δ = 2 and min _ sup δ =

2% .

i

d

b

i

2

t

g

t

t

r

F

V

F

t

t

f

F

t

V

even those that do not exist in the database. We also found that

large amount of processing time of FT-Apriori is spend on

counting itemset support. This is because FT-Apriroi does

not provide any functionality to compress the transactions which

share a common set of items. This number of candidates itemsets

becomes tremendous large when the database contains large

number of frequent items. In contrast, the FT-PatternGrowth
is efficient because it generates only those candidate itemsets

which exist in the branches of FP-trees. This mines all FT frequent

itemsets in less processing time as it substantially eliminates

those candidate itemsets that do not exist in the transactions.

FT-PatternGrowth provides much better speed for counting

support of itemsets as it compresses transactions in the sim-

ilar branches of FP-tree if they share a common set of items.

This explains why FT-PatternGrowth is more efficient than

FT-Apriori when the support threshold is low and when the

number of transactions is large.

To analyze the performance of FT-PatternGrowth on trans-

action length, we partitioned the Retail and T10I4D100K databases

into five groups. For each group we construct database by includ-
ng random 30,0 0 0 transactions. For first group, we construct the

atabase by including transactions that have transaction length

etween 1 to 10. For second group, we construct database by

ncluding transactions that have transaction length between 11 to

0. For third group, we construct database by including transac-

ions that have transaction length between 21 to 30. For fourth

roup, we construct database by including transactions that have

ransaction length between 31 to 40, and last group contains all

ransactions that have transaction length between 41 to 50.

Figs. 13 and 15 show the processing time of all algo-

ithms on the Retail and T10I4D100K databases. Results show

T-PatternGrowth is more efficient than FT-Apriori ,
B-FT-Mine , and FT-TreeBased on varying transaction length.

rom the experiments we can observe that when the transac-

ion length increases all algorithms take more processing time

o mine complete FT frequent itemsets due to large number of

requent items. Also, from the experiments we can observe the

T-PatternGrowth finishes its execution in less processing

ime than other algorithms. FT-TreeBased is efficient than

B-FT-Mine and FT-Apriori .

S. Bashir / Expert Systems With Applications 143 (2020) 113046 13

Fig. 12. The performance of FT frequent itemset mining algorithms on FoodMart database. (d) Number of FT frequent itemsets discovered with δ = 1 , δ = 2 and min _ sup δ =

0 . 06% .

Fig. 13. Scalability of FT frequent itemset mining algorithms on various transaction

length for Retail database.
Fig. 14. Scalability of FT frequent itemset mining algorithms on various transaction

size for Retail database.

14 S. Bashir / Expert Systems With Applications 143 (2020) 113046

Fig. 15. Scalability of FT frequent itemset mining algorithms on various transaction

length for T10I4D100K database.

Fig. 16. Scalability of FT frequent itemset mining algorithms on various transaction

size for T10I4D100K database.

6

d

d

o

d

m

d

s

n

g

d

a

d

d

c

s

i

d

F

i

t

o

o

u

a

D

R

A

A

B

B

B

C

C

C

D

H

H

H

. Conclusion

Mining fault tolerant frequent itemsets from transactional

atabases are computationally more expensive than mining tra-

itional exact matching frequent itemsets. Previous algorithms

n mining FT frequent itemsets are based on Apriori-like can-

idate generation-and-test approach. These algorithms generate

any candidate itemsets including those that do not exist in the

atabase and require multiple scans of database for counting the

upport of each candidate itemsets. In this paper we present a

ovel algorithm for mining FT frequent itemsets using pattern

rowth approach (FT-PatternGrowth). FT-PatternGrowth adopts a

ivide-and-conquer technique and recursively projects a trans-

ctional database into a set of smaller projected transactional

atabases and mines FT frequent itemsets in each projected

atabase by exploring only locally frequent items. This mines the

omplete set of FT frequent itemsets in less processing time and

ubstantially reduces those candidate itemsets that do not exist

n the database. FT-PatternGrowth also stores the transactional

atabase in a highly condensed much smaller data structure called

T-FP-tree. The support of candidate itemsets and the support of

tems are calculated directly from the FT-FP-tree without scanning

he database multiple times. This reduces the processing time

f algorithm for counting support of itemsets. Our experiments

n benchmark databases indicate mining FT frequent itemsets

sing pattern growth approach is highly efficient than Apriori-like

lgorithms.

eclaration of Competing Interes

None.

eferences

piletti, D., Baralis, E., Cerquitelli, T., Garza, P., Pulvirenti, F., & Venturini, L. (2017).
Frequent itemsets mining for big data: A comparative analysis. Big Data Re-

search, 9 , 67–83. doi: 10.1016/j.bdr.2017.06.006 .
shraf, S. M. A. , & Tabrez Nafis, d. (2017). Fault tolerant frequent patterns mining in

large datasets having certain and uncertain records. Advances in Computational
Sciences and Technology, 10 .

ashir, S., Halim, Z., & Baig, A. R. (2008). Mining fault tolerant frequent patterns

using pattern growth approach. In 6th ACS/IEEE international conference on com-
puter systems and applications, AICCSA 2008, Doha, Qatar, march 31, - april 4, 2008

(pp. 172–179). doi: 10.1109/AICCSA.2008.4493532 .
ecquet, C. , Blachon, S. , Jeudy, B. , Boulicaut, J.-F. , & Gandrillon, O. (2001). Strong as-

sociation rule mining for large-scale gene-expression data analysis: a sase study
on human sage data. Genome Biology, 3 .

esson, J., Pensa, R. G., Robardet, C., & Boulicaut, J. (2005). Constraint-based mining

of fault-tolerant patterns from boolean data. In Knowledge discovery in inductive
databases, 4th international workshop, KDID 2005, Porto, Portugal, october 3, 2005,

revised selected and invited papers (pp. 55–71). doi: 10.1007/11733492 _ 4 .
Bodon, F. (2003). A fast APRIORI implementation. FIMI ’03, frequent itemset mining

implementations, proceedings of the ICDM 2003 workshop on frequent itemset min-
ing implementations, 19 december 2003, Melbourne, Florida, USA .

Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., & Yiu, T. (2005). MAFIA: A maximal

frequent itemset algorithm. IEEE Transactions on Knowledge and Data Engineer-
ing, 17 (11), 1490–1504. doi: 10.1109/TKDE.2005.183 .

heung, Y.-L., & Fu, A. W.-C. (2004). Mining frequent itemsets without support
threshold: With and without item constraints. IEEE Transactions on Knowledge

and Data Engineering, 16 (9), 1052–1069. doi: 10.1109/TKDE.2004.44 .
reighton, C. , & Hanash, S. (2003). Mining gene expression databases for association

rules. Bioinformatics (Oxford, England), 19 , 79–86 .

remaschi, P. , Carriero, R. , Astrologo, S. , Col, C. , Lisa, A. , Parolo, S. , & Bione, S. (2015).
An association rule mining approach to discover lncrnas expression patterns in

cancer datasets. BioMed Research International, 2015 .
iwakar Tripathia, B. N. , & Edlaa, D. R. (2017). A novel web fraud detection tech-

nique using association rule mining. Procedia Computer Science, 51 .
Gan, W., Lin, J. C., Fournier-Viger, P., Chao, H., & Zhan, J. (2017). Mining of frequent

patterns with multiple minimum supports. Engineering Applications of Artificial
Intelligence, 60 , 83–96. doi: 10.1016/j.engappai.2017.01.009 .

an, J. , Cheng, H. , Xin, D. , & Yan, X. (2007). Frequent pattern mining: Current status

and future directions. Data Mining and Knowledge Discovery, 15 , 55–86 .
an, J., & Pei, J. (2014). Pattern-growth methods. In Frequent pattern mining (pp. 65–

81). doi: 10.1007/978- 3- 319- 07821- 2 _ 3 .
an, J., Pei, J., & Yin, Y. (20 0 0). Mining frequent patterns without candidate gener-

ation. In Proceedings of the 20 0 0 ACM SIGMOD international conference on man-

https://doi.org/10.1016/j.bdr.2017.06.006
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0002
https://doi.org/10.1109/AICCSA.2008.4493532
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0004
https://doi.org/10.1007/11733492_4
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0006
https://doi.org/10.1109/TKDE.2005.183
https://doi.org/10.1109/TKDE.2004.44
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0011
https://doi.org/10.1016/j.engappai.2017.01.009
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0013
https://doi.org/10.1007/978-3-319-07821-2_3

S. Bashir / Expert Systems With Applications 143 (2020) 113046 15

H

H

J

K

K

K

L

L

L

L

L

L

M

M

M

P

I

S

U

V

Y

Y

agement of data, may 16–18, 20 0 0, Dallas, Texas, USA. (pp. 1–12). doi: 10.1145/
342009.335372 .

an, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candi-
date generation: A frequent-pattern tree approach. Data Mining and Knowledge

Discovery, 8 (1), 53–87. doi: 10.1023/B:DAMI.0 0 0 0 0 05258.31418.83 .
uynh-Thi-Le, Q., Le, T., Vo, B., & Le, B. (2015). An efficient and effective algorithm

for mining top-rank-k frequent patterns. Expert Systems with Applications, 42 (1),
156–164. doi: 10.1016/j.eswa.2014.07.045 .

iang, F., Leung, C. K., & Zhang, H. (2016). B-mine: Frequent pattern mining and

its application to knowledge discovery from social networks. In Web technolo-
gies and applications - 18th asia-pacific web conference, apweb 2016, Suzhou,

China, september 23–25, 2016. proceedings, part I (pp. 316–328). doi: 10.1007/
978- 3- 319- 45814- 4 _ 26 .

(2008). Next Generation of Data Mining. In H. Kargupta, J. Han, P. S. Yu, R. Mot-
wani, & V. Kumar (Eds.). Data Mining and Knowledge Discovery Series . CRC Press

/ Chapman and Hall / Taylor & Francis. doi: 10.1201/9781420085877 .

oh, J., & Yo, P. (2005). An efficient approach for mining fault-tolerant frequent pat-
terns based on bit vector representations. In Database systems for advanced ap-

plications, 10th international conference, DASFAA 2005, Beijing, China, april 17–20,
2005, proceedings (pp. 568–575). doi: 10.1007/11408079 _ 51 .

oh, J.-L. , & Lang, t. (2010). A tree-based approach for efficiently mining approxi-
mate frequent itemsets. In Fourth international conference on research challenges

in information science (RCIS) (pp. 25–36) .

osters, W. A. , & Pijls, W. (2003). Apriori, A depth first implementation. FIMI ’03, fre-
quent itemset mining implementations, proceedings of the ICDM 2003 workshop on

frequent itemset mining implementations, 19 december 2003, Melbourne, Florida,
USA .

ee, G. , & Lin, Y.-T. (2006). A study on proportional fault-tolerant data mining. In
proc. 2006 int. conf. innovations in information technology, Dubai .

ee, G., Peng, S.-L., & Lin, Y.-T. (2009). Proportional fault-tolerant data mining with

applications to bioinformatics. Information Systems Frontiers, 11 (4), 461–469.
doi: 10.1007/s10796- 009- 9158- z .

i, R., & Wang, W. (2015). REAFUM: Representative approximate frequent subgraph
mining. In Proceedings of the 2015 SIAM international conference on data min-

ing, vancouver, bc, canada, april 30, - may 2, 2015 (pp. 757–765). doi: 10.1137/
1.9781611974010.85 .

iu, G. , Lu, H. , Yu, J. X. , Wang, W. , & Xiao, X. (2003). AFOPT: An efficient imple-

mentation of pattern growth approach. FIMI ’03, frequent itemset mining imple-
mentations, proceedings of the ICDM 2003 workshop on frequent itemset mining

implementations, 19 december 2003, Melbourne, Florida, USA .
iu, S., & Poon, C. K. (2014). On mining proportional fault-tolerant frequent
itemsets. In 19th international conference on database systems for advanced

applications, bali, indonesia, april 21–24, 2014 (pp. 342–356). doi: 10.1007/
978- 3- 319- 05810- 8 _ 23 .

iu, S., & Poon, C. K. (2018). On mining approximate and exact fault-tolerant fre-
quent itemsets. Knowledge and Information Systems, 55 (2), 361–391. doi: 10.1007/

s10115- 017- 1079- 4 .
allik, S. , Mukhopadhyay, A. , & Maulik, U. (2015). Ranwar: Rank-based weighted

association rule mining from gene expression and methylation data. IEEE Trans-

actions on NanoBioscience, 14 (1) .
oosavi, S. A., Jalali, M., Misaghian, N., Shamshirband, S., & Anisi, M. H. (2017).

Community detection in social networks using user frequent pattern
mining. Knowledge and Information Systems, 51 (1), 159–186. doi: 10.1007/

s10115- 016- 0970- 8 .
orales-González, A., Acosta-Mendoza, N., Alonso, A. G., Reyes, E. B. G., & Medina-

Pagola, J. E. (2014). A new proposal for graph-based image classification us-

ing frequent approximate subgraphs. Pattern Recognition, 47 (1), 169–177. doi: 10.
1016/j.patcog.2013.07.004 .

ei, J. , Tung, A. K. H. , & Han, J. (2001). Fault-tolerant frequent pattern mining: Prob-
lems and challenges. ACM SIGMOD workshop on research issues in data mining

and knowledge discovery, Santa Barbara, CA, USA, may 20, 2001 .
váncsy , Renáta , & Vajk, I. (2006). Frequent pattern mining in web log data. Acta

Polytechnica Hungarica, 3 .

aif-Ur-Rehman, Ashraf, J., Habib, A., & Salam, A. (2016). Top-k miner: Top-k identi-
cal frequent itemsets discovery without user support threshold. Knowledge and

Information Systems, 48 (3), 741–762. doi: 10.1007/s10115-015- 0907- 7 .
no, T. , Kiyomi, M. , & Arimura, H. (2004). LCM ver. 2: Efficient mining algorithms

for frequent/closed/maximal itemsets. FIMI ’04, proceedings of the IEEE ICDM
workshop on frequent itemset mining implementations, brighton, uk, november 1,

2004 .

o, B., Pham, S., Le, T., & Deng, Z. (2017). A novel approach for mining maximal fre-
quent patterns. Expert System with Applications, 73 , 178–186. doi: 10.1016/j.eswa.

2016.12.023 .
u, X., & Korkmaz, T. (2015). Heavy path based super-sequence frequent pattern

mining on web log dataset. Artificial Intelligence Research, 4 (2), 1–12. doi: 10.
5430/air.v4n2p1 .

u, X. , Li, Y. , & Wang, H. (2015). Mining approximate frequent patterns from noisy

databases. 10th international conference on broadband and wireless computing,
communication and applications (BWCCA) .

https://doi.org/10.1145/342009.335372
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1016/j.eswa.2014.07.045
https://doi.org/10.1007/978-3-319-45814-4_26
https://doi.org/10.1201/9781420085877
https://doi.org/10.1007/11408079_51
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0023
https://doi.org/10.1007/s10796-009-9158-z
https://doi.org/10.1137/1.9781611974010.85
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0026
https://doi.org/10.1007/978-3-319-05810-8_23
https://doi.org/10.1007/s10115-017-1079-4
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0029
https://doi.org/10.1007/s10115-016-0970-8
https://doi.org/10.1016/j.patcog.2013.07.004
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0033
https://doi.org/10.1007/s10115-015-0907-7
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0035
https://doi.org/10.1016/j.eswa.2016.12.023
https://doi.org/10.5430/air.v4n2p1
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30763-8/sbref0038

