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a b s t r a c t

We present a dynamical model for the spread of HIV in a finite discrete population
of size n represented by the set V . The model takes into account the structure of the
sexual network, the density of infected population in each individual’s sexual partners,
and a reasonable amount of the influence of noninfectious HIV positive individuals on
HIV infectious partners which may occur in communities. In our analytic results, we
give a precise epidemic threshold which, together with certain network properties, is
then used to analyse and investigate the existence of epidemic and stability in the HIV
spreading dynamics. Our results reproduce common observed patterns in the dynamics of
HIV spreading in communities.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The most urgent public-health problem in Sub-Saharan Africa and other parts of the world today, in the absence of a
cure, is to devise effective strategies to minimise the spreading of the human immunodeficiency virus (HIV). In general
mathematical models have been used in such complex problems to make predictions which help in the understanding of
the infectious disease dynamics and thereby assisting public-health researchers and policymakers to prepare for, detect, and
respond to these infectious disease threats. To date, most mathematical models [1–5] put forward to explain HIV spreading
among humans are standard compartmental models based on ordinary or partial differential equations. Although most
of these traditional models have succeeded in explaining important aspects involved in the HIV transmission, they have
some limitations. Firstly, they assume a very large density of interacting agents [6], yet in some communities the number of
interacting actors maybe small; or even if it is large, the local number of interacting actors can be very low. These standard
epidemiological models assume that interaction of agents or actors is random. For sexually transmitted diseases, however,
randommixing is clearly a poor approximation of the underlying social reality [7]. Sex is simply not random (see, Ref. [8]).

Secondly, they assume that every actor has equal contact with every other actor in the population. Thus, these
models provide a good approximation of virus spreading in networks where the contact among individuals is sufficiently
homogeneous. However, most infectious diseases are transmitted through populations via links formed by contacts among
individuals. The patterns of these contacts tend to be highly heterogeneous. For instance empirical studies (see, for example
Refs. [8,9]) demonstrate that variations in the number of sexual partners is very large and while most people report 1–4
sexual partners during their lifetimes, some report several hundred or more. In recent applications (see, for example
Ref. [10]) of the standard models to Severe Acute Respiratory Syndrome (SARS), the estimates of the basic reproduction
number, R0, predicted by the model were different from the observed epidemiology patterns. This inconsistency was
attributed to two factors, namely, the basic premise of standard models that all individuals in a community are equally
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likely to become infected (or infect others) and the fact that in standardmodels R0 > 1 predicts, with certainty, an epidemic,
whereas in practise R0 > 1 does not guarantee that an outbreak will ignite an epidemic [10].

Thirdly, thesemodels often assume a universal infection rate, based on the fact that rate of infection is largely determined
by the density of infected population [11]. Traditional epidemiological theory assumes that each infected actor infects
R0 other actors. In practise it is conceivable that certain individuals only infect one or zero other actors whereas other
individuals infect dozens of other actors—the latter individuals being the superspreaders [10].

As such various discrete models [12,7,13,14,10] have also been proposed to explain the spread of diseases in general.
The starting point for most discrete models is the fact that the human population can be described as a network (graph)
whose vertices are the single individuals and edges representing interactions among them. Analytic tools are then sought
to conceptualise interaction structure at the level of persons and as such a cross-disciplinary field known as Social Network
Analysis (SNA) is providing these tools [8]. These models have considerable success in capturing local behaviour of actors.
Some of the limitations and applicability of these earlier discretemodels are reported in Refs. [8,11,15]. Apart from assuming
homogeneity and assuming particular propagation topology, e.g., models that are tailored to fit special-case graphs (BA
power-law, Erdos–Renyi), most of these models have been prized as powerful tools to conceptualise static networks, but
because sexual interaction is not static [8], they are inefficient to make predictions. Another tool used in these discrete
models is computer simulation. Although computer simulations allow for all sorts of heterogeneity of persons and networks
to be easily built into themodel, it is difficult to ignore the fact that this results in themodel containing a very large parameter
space. Consequently the model becomes much harder to thoroughly analyse than in an analytical mathematical model [8].
Further, some of the network models (for example, Ref. [11,10]) offer simple and accurate predictions, but are just not
applicable to HIV studies.

In this paper, we aim to develop a general simple non-static model for HIV spreading in communities. Our dynamical
model assumes neither homogeneity in connectivity of the network nor a universal infection rate and it makes no a priori
assumptions about the community network structure. In the model individuals and sexual relationships are represented
as a general graph and the spread of the virus via contacts is monitored over time. Our results are derived from rigorous
mathematical proof, and not from computer simulations. The article is organised as follows: In the next section we present
the model. Results are presented in Sections 3 and 4 is reserved for discussion.

2. The model

Unlike in standard SIR models for epidemics (see, for example Ref. [2]) where the population is divided into three
compartments, susceptibles, infectives and recovered, here for HIV we adopt (see, for example Ref. [4]) three basic
states which an actor in the community may have at a given time: susceptible (S), infectious (I) and noninfectious (P).
The compartment of susceptibles consists of those actors not infected by the virus, i.e., the HIV negative individuals.
The infectious class consists of HIV positive individuals who do not take due care and can transmit the virus, and the
noninfectious class consists of AIDS patients and HIV positive individuals with a deontologist view on the risks involved
in sexual partnering and therefore cannot transmit the virus. In the dynamics, infectious actors are the only actors who can
transmit the virus to the susceptibles. Further, we propose that the spread of the HIV from one actor to the other in each
discrete time step (which may range from days to years) is governed by the following basic transitional rules:

R1: A susceptible individual becomes infected in the next time step if the density of his/her HIV infectious sexual partners in his/her
sexual partners exceeds a fraction α∗; otherwise the individual stays susceptible.
This rule is an actor-localised version of the fact that the rate of infection is largely determined by the density of the
infected population [2,4,11]. Further, this is also how we incorporate each uninfected individual’s number of sexual
partners and the states of these sexual partners. We will call α∗ the parameter of infectivity.

R2: An infectious actor v becomes noninfectious if at least half of its partners are noninfectious, otherwise it stays infectious.
This is how we model the fact that opinion change on HIV infectious class follows a majority process in which at each
time step an infectious individual changes his/her opinion regarding taking due care, i.e., joins the noninfectious class, if
at least half of his/her contacts have a deontological view onHIV spreading consequences. In general, majority processes
do not seem to be relevant to the spread of disease, but they are relevant for opinion change [16,17]. Hence here we
assume the majority-rule model, which states that individuals preferentially follow the crowd in their opinion update.

R3: Noninfectious actors remain noninfectious.

In this paper we investigate, using graph-theoretic methods, how changes in α∗, in conjunction with the graph structure,
determine the spreading dynamics of HIV.

2.1. Graphs

A graph G = (V , E) consists of a finite set V = V (G) of vertices together with a set E = E(G) of edges joining certain
pairs of vertices of G. The distance d(u, v) between vertices u and v in G is defined as the length of a shortest path joining u
and v in G. For a subset S ⊆ V and a vertex v of G the distance d(v, S) between v and S is defined as the minimum value of
d(v, x), x ∈ S. The set of neighbours of v is denoted by N(v) = {x ∈ V : d(v, x) = 1} and |N(v)| is the degree of v denoted
deg(v). An end-vertex is a vertex of degree 1. We will denote the largest degree of vertices in G by ∆.
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Fig. 1. G:α∗
= 50%; initial configuration: c0(y) = red, c0({u, v, w, x}) = white, c0(z) = black.

Fig. 2. Applying the rules for G above: w = white, r = red, and b = black.

We model the above situation, i.e., the community and its sexual partnering by a graph G as follows. The vertex set
of G is the set of people in which two vertices are joined by an edge if and only if the corresponding individuals have a
sexual relationship. Thus, for example, the number of neighbours of a vertex is simply the number of sexual partners the
corresponding individual has. At each time step we will, according to rules equivalent to R1, R2 and R3 above, colour the
vertices of G using colours, white, red and black. The colours signify a susceptible individual, infectious individual, and a
noninfectious individual, respectively. We will use the following notation. Let v be a vertex of G. Then ct(v) denotes the
colour of v at time t and ηt(v, C) denotes the number of neighbours of v with colour C at time t . If B ⊆ V is such that all its
vertices have the same colour C , say, at time t , we write ct(B) = C .

Nowweplay the following gameonG. Amove consists of anupdate of the colours of the vertices in a synchronisedparallel
way, according to the following rules: Initially at time 0 some vertices of G are coloured white and a few are coloured red
and black.

Let v ∈ V .

G1: If ct(v) = white, then

ct+1(v) =

red if
ηt(v, red)
deg(v)

≥ α∗

white otherwise.

G2: If ct(v) = red, then

ct+1(v) =

black if
ηt(v, black)

deg(v)
≥

1
2

red otherwise.

G3: If ct(v) = black, then ct+1(v) = black.

For an example, see Figs. 1 and 2.
Here and in the sequel I and P are subsets of V consisting of all vertices of G coloured red and black, respectively, in the

initial configuration. Note that in practise, I and P represent the set of infectious and noninfectious actors, respectively, in
the initial infection. We also use the following notation. The integer e = e(I ∪ P) is the maximum value of d(x, I ∪ P), x ∈ V .
For each integer i = 0, 1, 2, . . . , e, let Ni denote the set Ni = {x ∈ V : d(x, I ∪ P) = i}. So for t > e,Nt = ∅. It is elementary
to show that for i ≠ j,Ni ∩ Nj = ∅ and that no vertex in Ni has a neighbour in Ni+2, i = 0, 1, . . . , e − 2. Further, we will
also assume that e > 1. For our purposes, this assumption is reasonable since in a community it is natural to expect that
not all actors are partners of initially infectious or noninfectious actors. We will also assume that the graph G is connected
since the virus can only be transmitted between connected actors.

3. Results

We will make an investigation on the conditions guaranteeing an epidemic and stability. Unlike in continuous
compartmental methods where a threshold, R0, widely known as the reproduction number, depends on the transmissivity
rate, the recovery rate and the initial number of susceptibles, we will show here that a critical value for our model depends
on the infectivity parameter, α∗, and the largest of the degrees of the vertices in the network. Recall that we denote the
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maximumdegree of G by∆. A vertexwith the biggest degree represents an actor with the largest number of sexual partners.
In most considered homogeneous models all actors are assumed to have the same degree, i.e., ∆. For brevity we denote the
quantity ∆−1

α∗∆
by R0. We will prove that R0 is a threshold for this model though it possesses no obvious direct relationship

with the reproduction number for standard models.

3.1. Existence of infection free subpopulation: R0 < 1

We will show in the next theorem that if R0 < 1, then there exists a subpopulation of a reasonable size which, despite
being connected to the network, will never contract the disease.

Theorem 1. Assume the above notation. If R0 < 1, then there exists a set W ⊂ V such that

ct(W ) = white for all t.

Moreover |W | ≥ e(I ∪ P).

Proof. R0 < 1 iff ∆−1
∆

< α∗. Let A = {x ∈ N1 : N(x) ⊆ I ∪ P} and setW = V − (I ∪ P ∪ A). We show that

if v ∈ W , then ct(v) = white for all t (1)

fromwhich it follows that ct(W ) = white for all t . Clearly c0(W ) = white. Therefore, to establish (1), it is sufficient to show
that there is no vertex v ofW for which ct(v) = red for some t . Suppose to the contrary that v ∈ W is such that ct(v) = red.
We choose v so that t is the smallest integer with this property. By G1, we must have

ηt−1(v, red)
deg(v)

≥ α∗ >
∆ − 1

∆
. (2)

Denote ηt−1(v, red) by p, ηt−1(v, black) by k and ηt−1(v,white) by q. Then deg(v) = p+ k+ q and in conjunction with (2),
we obtain

p
p + k + q

>
∆ − 1

∆
.

Hence ∆(k + q) < p + k + q = deg(v) ≤ ∆. Therefore, k = q = 0. Thus ηt−1(v, black) = 0 and ηt−1(v,white) = 0, i.e., at
time t−1, all the neighbours of v are red. By construction ofW , v has at least one neighbour, x say, inW . Then ct−1(x) = red,
contradicting our choice of v and the minimality of t . This proves (1).

We now prove that |W | ≥ e(I ∪ P). Since e > 1, |N1 − A| ≥ 1. Note that W = (N1 − A) ∪ N2 ∪ N3 ∪ · · · ∪ Ne, where
e = e(I ∪ P). Since |Ni| ≥ 1 for all i = 0, . . . , e, we have |W | = |N1 − A| +

∑e
i=2 |Ni| ≥ e(I ∪ P), as desired. �

3.2. Existence of an epidemic: R0 > 1

In this subsection we will show that the presence of certain substructures enhance the spread of HIV. Each substructure
is rooted on an individual whomwewill refer to here as a ‘‘superspreader’’. We formally define this idea below, but first we
require some notation.

For a vertex v ofGwewill denote the set {x ∈ N(v) | deg(x) = 1}, i.e., the set of all neighbours of vwhich are end-vertices,
by S(v) and S[v] = S(v) ∪ {v}.

Definition 1. Let v be a vertex of G for which |S(v)| >
deg(v)

2 ≥ 1. We say that v is an i-superspreader if ci(v) = red and
ci(S(v)) = white.

As an example consider Figs. 1 and 2. Note that S(y) = {u, v, w} and vertex y is a 0-superspreader.
Now let s(t) be the number of i-superspreaders of G, i ≤ t . Clearly s is a non-decreasing function and since n is finite,

there exists a unique integer t∗ satisfying s(t) ≤ s(t∗) for all t .

Theorem 2. Assume the above notation. If R0 > 1, then there exists a set D ⊂ V such that

ct(D) = red for all t > t∗.

Moreover |D| ≥ 2s(t∗).

Proof. Let W be the set of all i-superspreaders, i ≤ t∗ and let D = ∪v∈W S[v]. We first show that ct(D) = red for all t > t∗.
Let v ∈ W . Then ci(v) = red and ci(S(v)) = white for some i ≤ t∗. Now

ηi(v, black)
deg(v)

≤
deg(v) − |S(v)|

deg(v)
<

deg(v) − deg(v)/2
deg(v)

=
1
2
.
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Fig. 3. Sexual Network at Jefferson High [7]; circles denote individual students and links between circles indicate romantic or sexual relationship between
the corresponding students.

Therefore, by G2, ci+1(v) = red. Since R0 > 1, we have that α∗ < ∆−1
∆

. If x ∈ S(v), then

ηi(x, red)
deg(x)

= |{v}| >
∆ − 1

∆
> α∗.

Hence, by G1, ci+1(x) = red and so ci+1(S(v)) = red. From the fact that ci+1(S(v)) = red we deduce, as above, that
ηi+1(v,black)

deg(v)
< 1

2 . Therefore, by G2, ci+2(v) = red. If x ∈ S(v), then from the fact that ci+1(v) = red, we have ηi+1(x, black) =

0. Hence by G2, ci+2(x) = red. It follows that ci+2(S(v)) = red. Inductively, cj(S[v]) = red for all j ≥ i+ 1. This, the fact that
i ≤ t∗, in conjunction with the equality D = ∪v∈W S[v] proves that ct(D) = red for all t > t∗, as claimed.

We now prove the second part of the theorem. First note that if u and v are distinct vertices inW , then S(u) ∩ S(v) = ∅.
Thus

|D| = | ∪v∈W S[v]|

=

−
v∈W

|S[v]|

>
−
v∈W

[
1 +

deg(v)

2

]
≥

−
v∈W

2 = 2s(t∗),

as desired. �

4. Conclusion

Our contribution has been to provide, for the first time, an analytical discrete dynamic model, for the study of HIV
propagation in communities, which is more general and which accurately incorporates local density of HIV positive agents
in an individual’s sexual partners, network structure, and the influence on opinion change of HIV positive individuals.
Moreover, our model has a high ability, through sexual relations (edges), to capture realistic patterns of mixing behaviour,
which undoubtedly has a huge impact on the transmission patterns. Our results proved in Theorem 1 show that for a
community, if R0 < 1, then the epidemic does not ensue. Thus we have managed to find a single property of the network,
∆, and a threshold value depending on it which informs us when epidemic is prevented.
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Cycles

Fig. 4. Graph of the four largest chlamydia components, Colorado Springs [18].

Wehave identified critical substructures S[v], where v is a ‘‘superspreader’’, in the network and showed in Theorem2 that
the existence of these special substructures ignites an epidemic. Empirical evidence (see, for example Refs. [7,18,19,8]) reveal
a highpresence of such substructures in sexual networks of communities. Examples of graphs visualising these substructures
are presented in Figs. 3 and 4. On one hand Fig. 3 shows the observed romantic and sexual network at Jefferson High linking
573 students. On the other hand Fig. 4 illustrates the results of the study in Ref. [18] where sexual network structure in a
community was used as an indicator of a sexually transmitted disease (chlamydia) epidemic phase and graphs were drawn
from historical contact tracing data set recorded. In Ref. [19], the first sociocentric study of sexual networks among a general
population of Sub-Saharan Africa, a giant sexual network of 1803 young adults in the sample villages was constructed. The
network constructed has a high prevalence of these substructures.

Medical anthropologists are of the view that in many communities individuals classify their sexual partners into two
categories, namely, the ‘‘besties’’ and the ‘‘spares’’. The observed tendency (see for example Ref. [20]) is that no HIV
preventive method, such as condoms, is used during intercourse with besties; preventive methods are only reserved
for spares. In our substructure, S[v], where v is a superspreader, the interpretation is simple. Every individual x in S(v)
has only one partner v who, by default, is the individual’s bestie. It follows that x will not take due care on interaction
with v. It is therefore conceivable that the high prevalence of these substructures in empirical networks explain why
there have been reports (see, for example Ref. [9]), in some communities, of a low condom use during intercourse. Our
results on substructures encourage policy-makers and public healthy campaigners to direct their prevention efforts on
described superspreader individuals rather than pursuing any policy based on large-scale random distribution of the
available resources. Thus while it is obvious that in the present form our abstract model is still a toy model, it offers an
excellent starting point for relevant research in the subject.
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