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In this paper the mathematical SIRC epidemic model is considered. It efficiently describes

diseases in which a cross immune class (C) is present, along with the susceptible (S), the

infected (I) and the removed (R) ones. Controlling epidemic diseases corresponds to the intro-

duction of vaccination, quarantine and treatment strategies; generally only one of these

actions is considered. In this paper the possibility of optimal controls both over the suscep-

tible  and the infected subjects is assumed, taking into account also limitations of resources.

A  suitable cost index is introduced and via the Pontryagin’s Minimum Principle the opti-
ptimal control

pidemic models

IRC model

ptimization

ystem analysis

mal control strategy is determined and the existence of the optimal solution is assessed.

Numerical results are developed analyzing the effects of different control strategies.

© 2013 Elsevier Ireland Ltd. All rights reserved.

Different kind of infectious disease calls for different
.  Introduction

athematical models have become important instruments in
he analysis and control of infectious diseases. Several mod-
ls corresponding to epidemic with different characteristics
ave been proposed and discussed in literature. The funda-
ental assumption in epidemic models is that the population

an be divided into distinct groups; the most common are:
he susceptible (S) that are the subjects that may catch the
isease; the infected (I) that are the subjects that are already

nfected and can spread the disease to susceptible individ-
als; the removed (R) that are the subject that are immune

or life. Therefore these models are referred to as SIR models.
ther descriptions may include the presence of subjects in the
uarantine state (Q) and in this situation SIRQ models are ana-
yzed [1]. Recently in [2] the class of cross-immune individuals
C) in the population has been introduced: it is an intermedi-
te state between the fully susceptible state (S) and the fully
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protected one (R). Therefore the obtained SIRC model takes
into account temporary partial immunity and may well
describe, for example, influenza A.

The study of mathematical models for epidemics allows
the evaluation of the effects of different control strategies:
the scheduling of a proper vaccination campaign [3,4], the
screening and educational campaigns [5], isolation policy [6],
the resource allocation [5,7]. An encouraging approach lies
in the framework of the optimal control theory; interesting
reviews can be found in [8]. Analytical results on the optimal
control problems for epidemics were extensively described in
[9], where models with control by vaccination, quarantine,
screening or health campaigns were studied with a rather
general choice for the interaction function.
D. Iacoviello), nicolino.stasio@gmail.com (N. Stasio).

models and strategies. In [10] the severe acute respiratory
syndrome (SARS) disease was considered to find the strat-
egy of tracing and quarantining contacts of identified cases;

erved.
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it was shown that this can be very successful in reducing
transmission. In [11] it was proved that a maximum quar-
antine/isolation measures for the exposed and the infectious
class would reduce the SARS epidemics; a bang–bang switch-
ing control was obtained. In the last decade great attention
has been devoted to the modeling and control of the human
immunodeficiency virus (HIV) infection; in [12] an output
feedback scheme based in CD4 T-cell and viral load mea-
surements has been introduced. For the control in Dengue
epidemics optimal and sub-optimal strategies were consid-
ered in [13]; the effects of educational campaigns organized
to motivate the population to break the reproduction cycle of
the mosquitoes by avoiding the accumulation of still water
in open-air recipients were modeled and the assumed cost
index reflected a compromise between actual financial spend-
ing and population health. Optimal and suboptimal solutions
were introduced also in [14] with reference to quarantine and
isolation control in SARS epidemics, demonstrating that the
maximal applications of the control strategies in the early
stage of the epidemic were of very significant impact in both
the considered control cases.

In this paper the SIRC model is considered aiming at the
control of the epidemic spreading, taking into account the lim-
itations of the resources. Among the cause of death related
with influenza, pneumonia, heart and circulatory are the most
significant; moreover most of these deaths are in individuals
in the age group over 65 years whereas younger children are
at significant risk of influenza hospitalization. These consid-
erations lead to recommendation of vaccination for subjects
above 64 years (59 in some countries) and for young children
(above 6 months). Characteristic of influenza is its seasona-
lity; the peaks of the influenza are related with the weather
condition, and social patterns, for example schools holidays.

In this paper, in the framework of multiple optimal controls
[15–17], the controls both in the susceptible and in the infected
class are introduced and the existence of the optimal solution
is assessed in the SIRC epidemic model. Note that a similar
approach was presented in [18] with reference to vector-borne
diseases and not considering the cross-immune class.

The paper is organized as follows; in Section 2 the
SIRC model is described and an optimal control strategy is
introduced; the proposed control action is analyzed and exist-
ence results are assessed. In Section 3 numerical results are
presented and discussed.

2.  Materials  and  methods

2.1.  The  SIRC  model  and  the  introduction  of  control
strategy

The SIRC model introduced by [2] considered the presence of
susceptible, infectious, removed and cross immune subjects:

Ṡ(t) = �(1 − S(t)) − ˇS(t)I(t) + �C(t)
İ(t) = ˇS(t)I(t) + �ˇC(t)I(t) − (� + ˛)I(t)

Ṙ(t) = (1 − �)ˇC(t)I(t) + ˛I(t) − (� + ı)R(t)

Ċ(t) = ıR(t) − ˇC(t)I(t) − (� + �)C(t)

(1)
Fig. 1 – Block diagram of the adopted SIRC model.

with initial conditions:

S(0) = S0, I(0) = I0, R(0) = R0, C(0) = C0 (2)

and positive real parameters: ˛, ˇ, ı, �, �, �. In Fig. 1
the scheme of the SIRC model is represented. The param-
eters ˛, ı and � are the inverses of the average time spent
by the subjects in the compartments I, R and C respectively.
The parameter � represents the mortality rate in every com-
partment and, following the suggestion in [2], is assumed
equal to the rate of newborn in the population; the parameter
� may be interpreted as the average reinfection probabil-
ity of a cross-immune subject, whereas the parameter  ̌ is
the contact rate. There are some relations among the model
parameters:  ̌ = R̄(� + ˛) and � = r(1/ı + 1/�), with 2 ≤ R̄ ≤ 10
and r ≈ 0.026 (year)−1; in particular, R̄ represents the reproduc-
tion number [19] whereas r represents the rate of infection
[20].

The novelty of this model is that it takes into account the
presence of cross-immune (C) subjects, i.e. subjects that are
temporarily immune. It efficiently describes the mechanism
for influenza A viruses.

In this paper the effects of control strategies over both
susceptible subjects (i.e. vaccination) and infected ones (treat-
ment and quarantine) are studied. To this aim additive terms
must be suitable introduced in the differential equation rela-
tive to susceptible, to immune and to removed subjects:

Ṡ(t) = �(1 − S(t)) − ˇS(t)I(t) + �C(t) − g(S(t), u(t))

İ(t) = ˇS(t)I(t) + �ˇC(t)I(t) − (� + ˛)I(t) − h(I(t), v(t))

Ṙ(t) = (1 − �)ˇC(t)I(t) + ˛I(t) − (� + ı)R(t) + g(S(t), u(t)) + h(I(t), v(t))

Ċ(t) = ıR(t) − ˇC(t)I(t) − (� + �)C(t)

(3)

with initial conditions equal to (2) and with the bounds:

umin ≤ u(t) ≤ umax vmin ≤ v(t) ≤ vmax (4)

The functions g(S(·), u(·)) and h(I(·), v(·)) represent the actions
of the control effort; the former models the control over the
susceptible, for example a vaccination action, whereas the
latter represents the treatment and/or quarantine action. Dif-
ferent mathematical descriptions for these strategies could be
adopted; the expression proposed in [21] has been assumed
(note that in the cited paper only the control by vaccination
was introduced):

g(S(t), u(t)) = � S(t)u(t) (5)
1

h(I(t), v(t)) = �2I(t)v(t) (6)

dx.doi.org/10.1016/j.cmpb.2013.01.006
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ith �1,�2 > 0.

.2.  Existence  of  the  solution  of  the  control  system

o discuss the existence of the solution of control system (3)
ith the above conditions (5) and (6), the classical arguments

pplied in [21] may be followed; the system (3) may be rewrit-
en:

dx(t)
dt

= Ax + F(x) (7)

here x(t) = ( S(t) I(t) R(t) C(t) )
T

is the vector of the state
ariables, A and F(x) are defined as follows:

 =

⎛
⎜⎜⎜⎜⎝

−� − �1u 0 0 �

0 −(� + ˛) − �2v 0 0

�1u �2v +  ̨ −(� + ı) 0

0 0 ı −(� + �)

⎞
⎟⎟⎟⎟⎠ (8)

(x) =

⎛
⎜⎜⎝

−ˇS(t)I(t) + �

ˇS(t)I(t) + �ˇC(t)I(t)

(1 − �)ˇC(t)I(t)

ˇC(t)I(t)

⎞
⎟⎟⎠ (9)

From the Holder inequality, the second term of the right
nd side of Eq. (7) satisfies:

F(x1) − F(x2)| ≤ M(|S1 − S2| + |I1 − I2| + |C1 − C2|) (10)

here the positive constant M is independent of the state
ariables x.

Let set G(x) = Ax + F(x); we  get:

G(x1) − G(x2)| ≤ Q |x1 − x2| (11)

here Q = max {M, ‖A‖} < ∞.  Therefore the function G is uni-
ormly Lipschitz continuous. The solution of the system (7)
xists from (11) and taking into account the constraints on the
ontrols u and v and the restrictions on the non-negativeness
f the state variables [22].

.3.  Optimal  control  strategy

et us define the following cost index:

(x, u, v) =
∫ tf

ti

L(x, u, v) =
∫ tf

ti

[
˛1S(t) + ˛2I(t) + 1

2
�1u2(t)

+1
2

�2v2(t)
]

dt (12)

ith ˛1,˛2, �1,�2 > 0 representing the weights in the cost index,

i ≥ 0 is the fixed initial time and tf > 0 is the fixed final time of

he control interval. The aim is to minimize the infected and
usceptible individuals and to maximize the total number of
emoved subjects using minimal control efforts. Obviously the
dopted cost index takes into account also the more  common
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 333–342 335

case in which the objective is to minimize only the infected
subjects, and not also the susceptible ones.

Let us consider the following problem.
Problem: Given the model (3) with initial conditions (2),

determine the state x◦ and the controls u and v satisfying the
system (3), the conditions (4) and that minimize the cost index
(12).

The aim is to determine the best strategy that minimizes
the number of susceptible and infected subjects and the con-
trol resources in the fixed control interval.

Let’s now previously discuss the existence of the optimal
control. It is guaranteed by the following arguments [23]:

1. The set of controls and state variables is non-empty
2. The control space is closed and convex
3. The right hand side of the state system is bounded by a

linear function in the state and control
4. The integrand in the cost index is convex with respect to

the controls u and v
5. There exists a constant � > 1 and positive numbers ˇ1 and

ˇ2 such that:

J(u(t), v(t)) ≥ ˇ2(|u(t)|2 + |v(t)|2)
�/2 − ˇ1 (13)

Condition 1 is satisfied by the result in [24], theorem 9.2.1;
condition 2 is verified by definition. Condition 3 follows from
the arguments in the previous Subsection. The integrand is
obviously convex with respect to the controls u and v. Condi-
tion 5 and disequation (13) follow taking into account that the
state variables are bounded.

Now we will solve the optimal control problem and we
denote by U = (u v) the collection of the admissible controls that
are the two controls satisfying the constraints (4). Let us define
the Hamiltonian:

H(x(t), U(t), �0, �(t)) = �0L(x(t), u(t), v(t)) + �T(t)f (x(t), u(t), v(t))

= �0

[
˛1S(t) + ˛2I(t) + 1

2
�1u2(t) + 1

2
�2v2(t)

]

+ �1(t)[�(1 − S(t)) − ˇS(t)I(t) + �C(t)

− �1u(t)S(t)] + �2(t)[ˇS(t)I(t) + �ˇC(t)I(t)

− (�+˛)I(t)−�2v(t)I(t)]+�3(t)[(1 − �)ˇC(t)I(t)

+ ˛I(t) − (� + ı)R(t) + �1u(t)S(t) + �2v(t)I(t)]

+ �4(t)[ıR(t) − ˇC(t)I(t) − (� + �)C(t)] (14)

where �0 and � are the Lagrange multipliers. From the
minimum principle of Pontryagin (for a survey of different for-

mulations of the minimum principle see, for example [25]), the
following result holds.

Let (x*U*) satisfies the dynamic control system (3), the initial
condition (2) and the constraint (4). It is an optimal solution

dx.doi.org/10.1016/j.cmpb.2013.01.006
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(global minimum) if there exist a constant �0 ≥ 0, functions
�∗ ∈ C̄1[ti, tf ] not simultaneous equal to zero such that:

�̇∗ = − ∂H

∂x

∣∣∣∗T

H(x∗(t), ω, �0
∗, �∗(t)) ≥ H(x∗(t), U∗(t), �0

∗, �∗(t)) ∀ admissible control ω

H|∗ = 0

�(tf ) = 0

(15)

The notation C̄1[ti, tf ] denotes all the function piece-wise
continuously differentiable. Note that the singular case �0 = 0
is not possible; in fact in this case, taking into account the
last condition in (15), the existence and uniqueness theorem
for differential equations implies �1 = �2 = �3 = �4 = 0 which is
impossible.

Let’s particularize the necessary condition of optimality
assuming �0 = 1:

�̇∗
1(t) = − ∂H(x(t), U(t), �(t))

∂S

∣∣∣∗T

= −[˛1 + �∗
1(t)(−� − ˇI(t) − �1u∗(t)) + �∗

2(t)ˇI

�̇∗
2(t) = − ∂H(x(t), U(t), �(t))

∂I

∣∣∣∗T

= −[˛2 − �∗
1(t)ˇS(t) + �∗

2(ˇS(t) + �ˇC(t) − (� +

�̇∗
3(t) = − ∂H(x(t), U(t), �(t))

∂R

∣∣∣∗T

= �∗
3(t)(� + ı) − �∗

4(t)ı

�̇∗
4(t) = − ∂H(x(t),  U(t), �(t))

∂C

∣∣∣∗T

= −�∗
1(t)� − �∗

2�ˇI(t)  − �∗
3(t)(1 − �)ˇI(t) − �∗

4(

1
2

�1u∗2(t) + 1
2

�2v∗2(t) − �∗
1(t)�1u∗(t)S(t) − �∗

2(t)�2v∗(t)I(t)

+ �∗
3(t)[�1u∗(t)S(t) + �2v∗(t)I(t)] ≤ 1

2
�1ū2(t) + 1

2
�2v̄2(t)

− �∗
1(t)�1ū(t)S(t) − �∗

2(t)�2v̄(t)I(t) + �∗
3(t)[�1ū(t)S(t)

+ �2v̄(t)I(t)] ∀(ū(t), v̄(t)) admissible control (17)

H|∗ = 0 (18)

�1(tf ) = �2(tf ) = �3(tf ) = �4(tf ) = 0 (19)

Exploiting the minimum condition (17) it follows:

∂H

∂u

∣∣∣∗
= �1u∗(t) − �∗

1(t)�1S(t) + �∗
3(t)�1S(t) = 0 ⇒ u∗(t) = �1S(t)

�1
(�∗

1

∂H

∂v

∣∣∣∗
= �2v∗(t) − �∗

2(t)�2I(t) + �∗
3(t)�2I(t) = 0 ⇒ v∗(t) = �2I(t)

�2
(�∗

2(t)

And therefore, taking into account the box constraints on
the controls, we  obtain:

⎧⎪⎪⎪⎪⎨ 0 if
�1S(t)

�1
(�∗

1(t) − �∗
3(t)) ≤ 0
u∗(t) = ⎪⎪⎪⎪⎩
�1S(t)

�1
(�∗

1(t) − �∗
3(t)) if 0 <

�1S(t)
�1

(�∗
1(t) − �∗

3(t)) < 0.9

0.9 if
�1S(t)

�1
(�∗

1(t) − �∗
3(t)) ≥ 0.9

(21)
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 333–342

∗
3(t)(�1u∗(t))]

 �2v∗(t)) + �∗
3(t)((1 − �)ˇC(t) +  ̨ + �2v∗(t)) − �∗

4(t)ˇC(t)]

(t) − (� + �))

(16)

�∗
3(t))

(t))

(20)

and

v∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if
�2I(t)

�2
(�∗

2(t) − �∗
3(t)) ≤ 0

�2I(t)
�2

(�∗
2(t) − �∗

3(t)) if 0 <
�2I(t)

�2
(�∗

2(t) − �∗
3(t)) < 0.9

0.9 if
�2I(t)

�2
(�∗

2(t) − �∗
3(t)) ≥ 0.9

(22)

In the next section we  discuss the numerical solution of
the optimal control problem.

3.  Results  and  discussion

In this section the necessary conditions (16)–(19) are stud-
ied, from a numerical point of view; they are solved by using
the © Matlab Optimization Toolbox and the function fmin-
con. It allows the finding of a constrained minimum of a
function of several variables; this function uses sequential

quadratic programming method [26]. It solves a quadratic
programming subproblem [27] at each iteration in which a
positive definite quasi-Newton approximation of the Hes-
sian of the Lagrangian function was updated using the
Broyden–Fletcher–Goldfarb–Shanno method [28]. Eq. (3) were
discretized by using the classical trapezoidal rule dividing the
time duration interval into n − 1 equally spaced subintervals;
in the simulation we assumed n = 500 with ad hoc integration
step in order to simulate a control period of one year.

To discuss the effects of the control strategy over the
number of susceptible and infectious subjects, the following
values for the SIRC model were adopted:� = 1

75 (year)−1, � =
1
2 (year)−1,  ̨ = 365

5 (year)−1, ı = 1 (year)−1, R̄ = 2,  ̌ =
R̄(� + ˛) ≈ 146 (year)−1, � = 0.026

(
1
ı + 1

�

)
≈ 0.078

They are taken from the relevant literature; in particu-
lar the realistic variations of their minimum and maximum

values are discussed in Table 1 of [2]; the assumed values
are particularly suited for the influenza A model: their esti-
mation was based on clinical observation and on genetic
studies on this kind of influenza. Moreover it was noted that

cross-immunity and booster effects were constraints to the
maximization of transmissibility and that large values of the
contact rate  ̌ may imply a delay in the spread of the disease;
for the proposed choice of parameters this happens for val-

dx.doi.org/10.1016/j.cmpb.2013.01.006
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Fig. 2 – Case I. The optimal controls u(t) and v(t) when the
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Fig. 3 – Case I. Solutions of the SIRC model using the two
optimal controls.
pidemic has not yet widespread.

es of the reproduction number less than 2 that will not be
onsidered in the present paper.

As far as the constraints for the control terms, in [29] it
as been noted that vaccination of all the entire susceptible

ndividuals at one time is not possible; therefore they proposed
 limitation on the vaccination control that we  extended also
or the quarantine strategy:

 ≤ u(t) ≤ 0.9 0 ≤ v(t) ≤ 0.9

Each control u and v was weighted in Eqs. (5) and (6) with
he parameter �1 = 2 and �2 = 2 respectively. The weights in the
ost index were chosen in order to privilege the minimization
ffect over the infective subjects with respect to the suscepti-
le ones and with respect to the control terms that had been
lready constrained by the bounding box limits:

1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3 (23)

The number of susceptible, infected, removed and cross-
mmune subjects was assumed normalized with respect to
he total population, therefore they were limited between zero
nd one. Two different situations were considered; in the first
ne the epidemic was just at the beginning of its diffusion,
hereas in the second the number of infected subjects is

lready significant at the beginning of the control action. The
ifferent initial conditions yielded results different in the peak
f the epidemic spread and in the control effort, as will be
ointed out later.

The first choice for the initial conditions was:

0 = 1 − I0, I0 = 10−6, R0 = 0, C0 = 0

In the following this will be recalled as Case I. In Fig. 2
he two obtained controls are presented. Note that the con-
rol u, which acts directly over the susceptible, assumed its
aximum value at the beginning of the control period till four
onths (more precisely, 126 days) and successively decreased
onotonically, whereas the control v augmented to its maxi-
mum value, that reached after almost two months and a half
since the beginning of the treatment, and then it decreased
monotonically from the third month and a half. The control
over the infected subjects could be reduced almost to zero
after about 6 months since the beginning of the treatment.

In Fig. 3 the behavior of the susceptible, infected, removed
and cross immune subjects when the two optimal controls
were active is shown. To check the effects of the control
strategy that directly acted both on susceptible and infected
subjects, the same simulation of Fig. 3 was repeated also in
other three situations: assuming no control, neither on sus-
ceptible nor on the infected, assuming the control only on
the susceptible and finally considering the control only on the
infected. In Figs. 4 and 5 the behavior of the susceptible and
the infected subjects in the four analyzed situation are rep-
resented in the first eleven and twelve months of the control
period, respectively. As far as the number of susceptible is con-
cerned, its reduction with respect to the initial value S0 was
almost equivalent both when the strategy with double control
was adopted and when only the susceptible were controlled,
with a value of about 65%. In absence of all control actions or in
presence of control only on the infected subjects the reduction
with respect to S0 was about 71%.

Although the situation seems to be worse adopting the
double control strategy, in Fig. 4 one can notice that the num-
ber of susceptible subjects strongly decreased at the beginning
of the outbreak due to their relocation in the removed class,
resulting in an important leak of potential infected people, as
can be appreciated in the lower peak of epidemic and in its
delay, Fig. 5.

To compare numerically the different strategies over the
infected subjects, as reference situation was assumed the
absence of control and the following percentage was evalu-
ated:
qI = max(I) − max(Ī)

max(Ī)
× 100

dx.doi.org/10.1016/j.cmpb.2013.01.006
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where the superscript Ī represented the infected subjects in
the reference situation of no control and I were the infected
subjects in one of the considered control situations; it is a
measure of the reduction of the peak of influence. The quan-
tity qI was equal to −87% when the double control strategy
was adopted, whereas when controlling only the susceptible
or only the infected the same quantity was equal to −84% and

−5% respectively.

This result enhanced that the strategy that controlled both
the susceptible and the infected yielded a more  significant

Fig. 4 – Case I. Comparison of the incidence of the
susceptible subjects in the four considered situations:
assuming no control, neither on susceptible nor on the
infected, assuming the control only on the susceptible,
considering the control only on the infected, considering
the proposed double controls.

Fig. 5 – Case I. Comparison of the incidence of infected
subjects in the four considered situations assuming no
control, neither on susceptible nor on the infected,
assuming the control only on the susceptible, considering
the control only on the infected, considering the proposed
double controls.

Fig. 6 – Case II. The optimal controls u(t) and v(t) when the

epidemic was already significantly widespread.

reduction in the number of infected subjects than the other
control strategies.

As far as the second situation considered the following
choice for the initial values was assumed:

S0 = 0.99, I0 = 5 × 10−3, R0 = 3 × 10−3, C0 = 2 × 10−3

In the following this will be recalled as Case II. This means
that the control strategy started when the epidemic was
already significantly widespread.

In Fig. 6 the two obtained optimal controls are presented.
Note that the control u assumed its maximum value at the
beginning of the control period till one month and a half
(more precisely, 44 days) and successively it decreased mono-
tonically, whereas the control v augmented to its maximum
value, that reached after one week since the beginning of the
treatment, and then it decreased monotonically after about

one month and a half. The control over the infected subjects
should be reduced almost to zero after almost four months
(113 days) since the beginning of the treatment. In Fig. 7

Fig. 7 – Case II. Solutions of the SIRC model using the two
optimal controls.
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Fig. 8 – Case II. Comparison of the incidence of the
susceptible subjects in the four considered situations:
assuming no control, neither on susceptible nor on the
infected, assuming the control only on the susceptible,
considering the control only on the infected, considering
t
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he proposed double controls.

he behavior of the susceptible, infected, removed and cross
mmune subjects when the two optimal controls were active is
hown. Also in this situation, to check the effects of the control
trategy that directly acted both on susceptible and infected
ubjects, the same simulation of Fig. 7 was repeated in three
ituations: assuming no control, assuming the control only
n the susceptible and finally considering the control only on
he infected. In Figs. 8 and 9 the behavior of the susceptible

nd the infected subjects in the four analyzed situations are
epresented in the first seven months of the control period,
espectively. As far as the number of susceptible is concerned,

ig. 9 – Case II. Comparison of the incidence of infected
ubjects in the four considered situations assuming no
ontrol, neither on susceptible nor on the infected,
ssuming the control only on the susceptible, considering
he control only on the infected, considering the proposed
ouble controls.
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its reduction with respect to the initial value S0 was almost
equivalent both when the strategy with double control was
adopted and when only the susceptible were controlled, with
a value of about −70%. In absence of all control actions or in
presence of control only on the infected subjects the reduction
with respect to S0 was about 67%. The effects of the control
strategies over the number of infected subjects were analyzed
by means of the qI quantity. It was equal to −31% when the
double control strategy is adopted, whereas, when controlling
only on the susceptible and only on the infected, the same
quantity was equal to −26% and −5% respectively. This result
enhanced that the strategy that controlled both the suscepti-
ble and the infected yielded a more  significant reduction in the
number of infected subjects than the other control strategies.
Moreover, note that in the Case II, the peak of epidemic did not
change significantly in time, even if, as already pointed out,
changed significantly in its values, depending on the chosen
control strategy.

In both cases it is interesting to study the influence of
the reproduction number (and therefore of the transmission
parameter ˇ) on the optimal control strategy. Note that this
parameter influences not only the contact rate of susceptible
subjects, but also the possibility of re-entering in the removed
compartment after the cross-immune period. Two new situa-
tions were considered: a reproduction number equal to 6 and
to 10, i.e. equal to the half and end point of the allowed range.
In Case I, for R̄  = 6 it was noted that the control u(t) started
from the maximum value allowed and decreased at day 21,
whereas the control over the infected reached the maximum
value at day 16, decreasing after 2 weeks. Similar results may
be observed for R̄ = 10, with the control over the suscepti-
ble that began to decrease from the maximum value after 13
days and the control over the infected that assumed the max-
imum value between the day eleven and twenty-three, and
then decreases.

In the case of R̄ = 6, as far as the number of susceptible
is concerned, its reduction with respect to the initial value
S0 was about of 85%; this value, larger that the correspond-
ing one obtained with R̄ = 2, is reasonable since the contact
rate is greater. The effects of the control strategies over the
number of infected subjects was analyzed by means of the qI

quantity that was equal to −15%, thus enhancing a less evi-
dent reduction of the number of infected subjects, than in the
previous situation; also the peak location, that came earlier
(about after three weeks), reflected the influence of the larger
contact rate. The same considerations hold also in the case
of R̄ = 10, in which the reduction of the number of suscepti-
ble individuals with respect to the initial value S0 was almost
constant whereas the qI quantity was equal to −7% and also
the peak was located significantly earlier (day 14).

Similar considerations hold also for the Case II of an epi-
demic already significantly widespread. As far as the control is
concerned, for R̄ = 6 the control over the susceptible subjects,
starting from the maximum value allowed, began to decrease
at day 10, whereas the control over the infected reached the
maximum value at day 5 and began to decrease after about

3 weeks (20 days). Again, the optimal solution was a maxi-
mum effort at the beginning of the disease, and successively
decreased. Similar results could be observed for R̄  = 10, with
the control over the susceptible that began to decrease from
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Table 1 – Case I. Control parameters sensitivity analysis.

Case I
S0 = 1 − I0, I0 = 10−6, R0 = 0, C0 = 0

S(end)−S0
S0

qI Location of the peak of the
epidemic spread (days)

Reference case: ˛1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 2, �2 = 2 −64% −87% 97
˛1 = 0.298, ˛2 = 0.7, �1 = 10−3, �2 = 10−3, �1 = 2, �2 = 2 −89% −0.8% 72
˛1 = 10−3, ˛2 = 0.997, �1 = 0.0005 = 1/3�2, �1 = 2, �2 = 2 −67% −86% 96
˛1 = 10−3, ˛2 = 0.997, �1 = 0.0015 = 3�2, �1 = 2, �2 = 2 −62% −87% 98
˛1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 10, �2 = 1 −85% −99% 33

˛1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 1, �2 = 10 

the maximum value after about a week and the control over
the infected that assumed the maximum value between the
day four and sixteen, and then decreased. Both for R̄ = 6 and
R̄ = 10 the reduction of the number of susceptible subjects
with respect to the initial value S0 was about of 85%, thus
confirming the behavior of Case I. Even more  evident was the
change in the location of the peak of the epidemic, being at
about day 7 and 5 respectively, with a quantity qI equal to
−5.68% and −3.02% for the two choices of the reproduction
number, thus denoting the effects of an epidemic with a con-
tact rate really significant and the limit of the control strategy
with the chosen control parameters, in the case of an epidemic
already widespread and a control action not as effective as it
could be in the Case I.

3.1.  Control  parameters  sensitivity  analysis

It is interesting to analyze in Case I and Case II, with R̄ = 2,
the influence of the weighting parameters ˛1,˛2, �1,�2 > 0 in
the cost index and �1,�2 > 0 in the controls. More precisely,
assuming as reference case the values (23) for ˛1,˛2, �1,�2 > 0
and �1 = �2 = 2, the situations summarized in Tables 1 and 2
were considered.

In the case in which the epidemic has not yet widespread
if the ratio between the weights ˛1,˛2, was about 0.40 (and not
0.001 as in the case already examined) the final number of
susceptible subjects decreased of a percentage of about 89%
with respect to the initial value, but with a control effort in
the prevention that should be equal to the maximum value
allowed umax = 0.9 for almost all the control interval. Moreover
the peak of the infected subjects slightly decreased of about
0.8%.

As far as the influence of the weights �1,�2 > 0, two situa-
tions were compared to the reference case. In the first one �1,
the weight of the control over the susceptible subjects, was
assumed equal to 1/3 of the weight �2; this allowed a more
significant effort in the prevention showing a decrease of sus-
ceptible subjects of about 67%, and a significant decrease of
86% could be appreciated for the peak of the infected ones. In
the second situation considered the weight �1 was assumed
three times larger than the weight �2; in this case the number
of susceptible decreased of about 62% with a decrease of the

peak of epidemic of about 87%.

As far as the influence of the parameters �1,�2 > 0 is
concerned, when �1 = 10, �2 = 1 it is interesting to note the
reduction of the susceptible subjects of about 85% with respect
−60% −70% 94

to the initial value, with a very significant reduction of the peak
of epidemic (99%) that was located after about one month (33
days). When �1 = 1, �2 = 10 it is worth noting the delay of the
peak of influence, about three months (94 days), with a reduc-
tion of 70%; the reduction of the susceptible subjects with
respect to the initial value was of 60%.

In Case II, the case of control strategies acting only when
epidemic has already widespread, when ˛1 = 0.4˛2 the final
number of susceptible subjects decreased of about 88%, with
a control effort in the prevention that should be equal to the
maximum value allowed for almost all the control interval.
Moreover the peak of the infected subjects slightly decreased
(about 0.8%), as in the previous case of well-timed control
strategy.

As far as the influence of the weights �1,�2 > 0, in the
first case considered, �1 = 1/3�2, a more  significant effort in
the prevention was allowed showing a decrease of suscepti-
ble subjects of about 72%, whereas no significant differences
could be appreciated for the infected ones. When �1 = 3�2 the
number of susceptible decreased of about 69% with a decrease
of the peak of epidemic of about 30%.

Note that in all these cases analyzed, when the control
effort started only with the epidemic already diffused, the
temporal location of the peak of the epidemic spread did
not change significantly with respect to the non-control case,
whereas if the control effort is well-timed the location of the
peak of the epidemic spread is significantly delayed.

As far as the influence of the parameters �1,�2 > 0 is
concerned, when �1 = 10, �2 = 1 it is interesting to note the
reduction of the susceptible subjects of about of 84% with
respect to the initial value, with a significant reduction of
the peak of epidemic (79%) that was temporally located at
day 21. When �1 = 1, �2 = 10 it is worth noting the delay of the
peak of influence (about one month) with a reduction of 38%,
whereas the reduction of the susceptible subjects was of 63%
with respect to the initial value.

It is worth noting the more  evident effectiveness of the opti-
mal  control strategy when it was well-timed, with respect to
the situation in which the control effort acted on the epidemic
already spread out. In the first case the action on susceptible
and infected subjects allowed an increase of the number of
removed subjects, yielding a delay in the peak of influence

that was significantly reduced.

The same analysis of Tables 1 and 2 were performed also
in the case of R̄ = 6 and R̄ = 10. As it was to be expected, in
Case I for R̄ = 6 the control parameters that yielded the most
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Table 2 – Case II. Control parameters sensitivity analysis.

Case II
S0 = 0.99, I0 = 5×10−3,

R0 = 3×10−3, C0 = 2×10−3

S(end)−S0
S0

qI Location of the peak of the
epidemic spread (days)

Reference case: ˛1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 2, �2 = 2 −70% −31% 28
˛1 = 0.298, ˛2 = 0.7, �1 = 10−3, �2 = 10−3, �1 = 2, �2 = 2 −88% −0.8% 27
˛1 = 10−3, ˛2 = 0.997, �1 = 0.0005 = 1/3�2, �1 = 2, �2 = 2 −72% −31% 28

−3 −69% −31% 28
−84% −79% 21
−63% −38% 29
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Fig. 11 – Case I. Analysis of the influence of the
˛1 = 10 , ˛2 = 0.997, �1 = 0.0015 = 3�2, �1 = 2, �2 = 2 

˛1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 10, �2 = 1 

˛1 = 10−3, ˛2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 1, �2 = 10 

ignificant reduction of the peak of influence were ˛1 = 10−3,

2 = 0.997, �1 = 10−3, �2 = 10−3, �1 = 10, �2 = 1, obtaining a value
f qI equal to −60% and a reduction of the susceptible sub-

ects of 88% with respect to the initial value. For R̄ = 10, using
he same set of parameter, a qI = −37% and a reduction of the
umber of susceptible subjects of about 88% can be obtained.

Also in Case II, when the control acted over an epidemic
lready widespread, for R̄ = 6 the more  evident percentage
eduction of the peak of influence (qI) at about day 10 was
f 22% when �1 = 10, �2 = 1 and the other parameters equal
o the reference case (23); for this choice there was also a
ignificant reduction of the susceptible subjects with respect
o the initial value (−87%). The same results were obtained
lso for R̄ = 10, with a qI equal to −12% and a location of the
eak of influence after a week of the beginning of the con-
rol period. These results (Case I and II for R̄ = 6 and R̄ = 10)
ere reasonable, since in the cost index it was privileged the
inimization over the number of susceptible subjects. It is

articularly interesting the behavior of the control over the
usceptible: after a first decreasing period (about 40 days) it
ncreased again, see Fig. 10 as an example of Case I, R̄ = 6.
his is due increased contact rate that requested an additional

ontrol.

Even more  evident is the same behavior of the control u in
he case in which ˛1 = 0.4˛2 (and the other parameters equal

ig. 10 – Case I. Analysis of the influence of the
eproduction number on the control strategy, when R̄  = 6
nd �1 = 10, �2 = 1.
reproduction number on the control strategy, when R̄  = 6
and ˛1 = 0.4˛2.

to the reference case (23)), as already noted in the case R̄ = 2,
see Fig. 11; this is because the control u needed an extra effort
to reduce the number of susceptible subjects, as requested by
the cost index. It is worth noting that in these cases (Cases
I and II, ˛1 = 0.4˛2) the reduction of the number of infected
subjects was not, obviously, as effective as in the reference
case.

4.  Conclusions

In this paper the SIRC model of influenza is considered
aiming at the control of the epidemic spreading; control-
ling an epidemic disease corresponds, for example, to an
ad hoc introduction of vaccine or quarantine or medicine
treatment strategy. All the possible strategies should face
with the limitations of the resource. In this paper the con-
trols both in the susceptible and in the infected classes
are introduced, taking into account the constraints in the
controls. A suitable cost index is proposed and existence
result is assessed. The aim is to minimize the suscepti-
ble and infected subjects with as less resources as possible;

the analytical expressions of the optimal controls are pro-
vided and their numerical implementation is discussed.
Numerical results are presented comparing the effects of dif-
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