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• We formulate the fractional counterpart of the Rosenzweig model.
• We analyze the stability of this fractional order model.
• We identify a threshold for the memory effect parameter.
• Below this threshold value the system is always stable independent of enrichment.
• Fractional differential equations may be an important tool for resolving the paradox of enrichment.
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a b s t r a c t

The paradox of enrichment (PoE) proposed by Rosenzweig [M. Rosenzweig, The paradox of
enrichment, Science 171 (1971) 385–387] is still a fundamental problem in ecology. Most
of the solutions have been proposed at an individual species level of organization and so-
lutions at community level are lacking. Knowledge of how learning and memory modify
behavioral responses to species is a key factor in making a crucial link between species and
community levels. PoE resolution via these two organizational levels can be interpreted
as a microscopic- and macroscopic-level solution. Fractional derivatives provide an excel-
lent tool for describing this memory and the hereditary properties of various materials and
processes. The derivatives can be physically interpreted via two time scales that are consid-
ered simultaneously: the ideal, equably flowing homogeneous local time, and the cosmic
(inhomogeneous) non-local time. Several mechanisms and theories have been proposed
to resolve the PoE problem, but a universally accepted theory is still lacking because most
studies have focused on local effects and ignored non-local effects, which capture mem-
ory. Here we formulate the fractional counterpart of the Rosenzweig model and analyze
the stability behavior of a system. We conclude that there is a threshold for the memory
effect parameter beyond which the Rosenzweig model is stable and may be used as a po-
tential agent to resolve PoE from a new perspective via fractional differential equations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The paradox of enrichment (PoE) phenomenon in population ecology was first proposed by Michael Rosenzweig in
1971 [1]. Rosenzweig observed that enrichment may destroy the steady state of a predator–prey system. He formulated his
model using ordinary differential equations (ODEs) and considered enrichment by increasing the prey-carrying capacity.
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He observed that this gradually leads to destabilization of the system, usually into a limit cycle. This cyclical pattern was
further studied by May [2] and Gilpin and Rosenzweig [3]. Enrichment leads to destabilization of the equilibrium of the
Rosenzweig and many other models [4]; huge amplitudes occur that frequently drive population densities to very low
values and this may result in extinction. The word ‘‘paradox’’ is used because enrichment leads to extinction. Since the
1990s, the word ‘‘paradox’’ has also been associated with the fact that destabilization is not always (or rarely) observed in
natural environments, as discussed by Jensen and Ginzburg [5]. They reviewed the literature on experimental attempts to
demonstrate PoE and found an insufficient number of studies in favor of PoE. Some commonlymisinterpreted examples and
experiments (artificial lake eutrophication, Didinium–Paramecium systems [6,7], Rotifer–Algae systems [8]) addressing the
question of whether PoE exists need further discussion.

Several theoretical and empirical studies have been carried out in attempts to explain the PoE phenomenon. Roy and
Chattopadhyay provide a detailed review of the studies and a brief overview of the proposed solutions [4]. They described
some reasonable mechanisms, such as the presence of inedible prey, invulnerable prey, unpalatable prey, ratio-dependent
functional responses, spatiotemporal chaos, inducible defense, density-dependent predator mortality and toxic food, to
resolve the paradoxical outcome of ecosystem enrichment. Several additional mechanisms have also been proposed. For
example, Abrams andRoth proposed refuges and immigration as a possible solution [9].More recently,Mougi andNishimura
showed that rapid trait evolution of predator–prey species can stabilize the system [10]. An imperfect optimal foraging
mechanismwas proposed byMougi andNishimura [11]. Rall et al. predicted that a sigmoidal or predator inference functional
response can dampen population oscillations due to enrichment that resolves PoE [12]. Disease in ecological systems has
been recognized as an essential mechanism in different ecological issues. Sharp and Pastor recently considered a density-
dependent susceptible deer population, an infected population and an environmental pool of prions that infect the deer
population [13]. They showed that the disease population has the ability to dampen population oscillations. Solutions to
the PoE problem have been established by several authors from diverse perspectives and dimensions, but most of the
solutions have some common factors associated with the behavioral aspects of predator–prey species at the individual
level and inducible or morphological defense mechanisms of the prey. However, solutions that consider community-level
organization are still lacking. Knowledge of how learning andmemorymodify behavioral responses to species is a key factor
inmaking a crucial link between the species and community levels [14]. Resolution of PoE via these two organizational levels
can be interpreted as a microscopic- and macroscopic-level solution.

In statistical physics the connection betweenmicroscopic dynamics in a stochastic system and amacroscopic description
of their behavior as awhole is very attractive [15]. It has been already established that themacroscopic behavior of stochastic
systems contains a manifestation of microscopic dynamics due to memory effects [15].

Memory in the biological domain in physical systems ismanifest as a series of events that induce episodicmemory [16,17]
containing information about past and present events and can help in making future decisions [18]. Biological systems are
also enriched with ecological memory [19]. Memory relates to historic events and requires an entire long-term record for
analysis. For example, seasonal succession of phytoplankton in lakes responds to small changes in trophic structure and
natural fluctuations of gradients [19]. Aquatic and phytoplankton systems possess a remarkable memory of climatic events
[20]. Apart from such climatic phenomena, aquatic zooplankton exhibit memory-based phenomenological responses: small
changes in the environment induce morphological defense organs such as helmet formation and the development of spines
through cyclomorphosis [21]. These changes are due to a mixed seasonal and genetically inherited reaction [22] induced
over long time scales, suggesting a phenotypic change through memory-based actions. Prey refuge, group hunting and prey
swarming are all well-coordinated actions based on memories of past events that lead to cultural learning [14]. Experience
accrued through learningmay direct anti-predator responses [23–25]. In aquatic systems, learning of chemical cues and the
production of counter responses arewell documented among zooplankton [26–31].Westerlund remarked that, surprisingly,
even ‘‘deadmatter hasmemory’’ [32]. A recent study by Zheng et al. [33] revealed that discrete earthquake events are related
to seismic memory.

Fractional derivatives provide an excellent tool for describingmemory and the hereditary properties of variousmaterials
and processes [34,35]. In other words, fractional dynamic systems in applications can adequately represent some long-term
memory and non-local effects that are typical for many anomalous processes [36]. In this calculus, a Caputo derivative
implies amemory effect via convolution between an integer-order derivative and a power of time [37]. Note that a fractional-
order system ismore stable than its integer counterpart since the stability domain in the complex space of eigenvalues of the
linearized system for fractional differential equations (FDEs) remains contained and is larger than the corresponding domain
for ordinary differential equations [38]. FDEs also help in reducing errors arising from neglected parameters in modeling of
real-life phenomena [39].

Ahmed and Elgazzar used FDEs to study non-local epidemics synergistic with other complex adaptive systems such
as severe acute respiratory syndrome, avian flu, and foot-and-mouth disease [40]. Local and non-local interactions were
widely observed in recent outbreaks of the above diseases and the model proposed by Ahmed and Elgazzar captured these
interactions. Arafa et al. also used FDEs to elegantly model childhood diseases with constant vaccination and obtained an
approximate analytic solution through the homotopy analysis method [41]. Immune systems include both antigen-specific
and systematic response and involve memory. A fractional-order example of two immune effectors attacking an antigen
was proposed by Hashish and Ahmed [42]. Apart from ecology and epidemiology, FDEs have interdisciplinary applications
in various fields. For example, nonlinear earthquake oscillations can bemodeled using fractional derivatives [41] and a fluid-
dynamics traffic model with fractional derivatives can eliminate the efficiency arising from assumption of continuous traffic
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flow [41]. Gomez et al. used a fractional temporal operator in RC equivalent circuits to modify the standard Kirchhoff law in
an FDE domain [43].

Many researchers have tried to resolve PoE from different perspectives but to the best of our knowledge there have been
no studies involving FDEs. Here we formulate a fractional counterpart of the Rosenzweig model and analyze the stability of
the model. We infer that there is a critical threshold of the memory effect parameter beyond which the Rosenzweig system
is stable and we thus resolve PoE from a new perspective.

The remainder of the paper is organized as follows. We describe local and non-local kernels in Section 2. In Section 3 we
present our mathematical model with highlight the existence and uniqueness of its solution. In Section 4 we investigate the
model behavior around ecologically feasible equilibria. The paper ends with results and conclusions.

2. Local and non-local kernels

It is well known that integer-order derivatives have local kernels with clear physical interpretations, which significantly
simplifies their use for solving applied problems in various fields of science. However, this is not true in the case of fractional-
order integrals and derivatives, which have non-local kernels. Nevertheless, there is rapidly growing interest in both theory
and applications to realworld problems [44]. The physical interpretation of fractional integration and differentiation is based
on cosmic time and individual time [45].

The fractional integral of a function is generally interpreted as the real distance passed by a moving object, for which
the recorded local values of its speed represent individual speed and the local values of time represent individual time.
The relationship between the locally recorded time (which is considered as flowing equably and is represented as t)
and cosmic time (which is considered as flowing non-equably) τ is given by a known mathematical function gt(τ ). The
function gt(τ ) describes the inhomogeneous time scale, which depends on both τ and t , which here is the last value
measured for the individual time of the moving object. When t changes, the entire preceding cosmic time interval changes
as well. The derivative of this distance based on local time, which is also a function of non-local time, is interpreted as the
fractional derivate [45]. In other words, the homogeneous time scale is just an ideal notion and is necessary for developing
mathematical models describing inhomogeneous cosmic time and its change. Thus, the ideal model of equably flowing
homogeneous time can be considered as a rough approximation of cosmic time,which is non-local [45]. Fractional dynamical
systems adequately represent some long-term memory and these non-local effects that are typical for many anomalous
processes [36]. Such non-local effects can be captured through the fractional differential operator, which has a power law
form [46].

Several mechanisms have been proposed to resolve the PoE problem. This universally accepted theory is still an un-
achieved goal because most researchers consider only local effects and ignore non-local effects, which capture memory.

3. Model formulation

There are many definitions of fractional derivatives. Those most frequently used are the Grunwald–Letnikov, Riemann–
Liouville (RL), and Caputo definitions [44,47–49]. Note that the zero singularity inherent to the RL derivative may pose
challenges and difficulties. The Caputo derivative needs more regularity as it uses the first derivative of the function in
question, whereas the RL derivative does not require as much smoothness. In the Caputo case the derivative of a constant
is zero and we can properly define the initial conditions for FDEs so that they can be handled analogously to the classical
integer case. The Caputo derivative implies amemory effect bymeans of a convolution between the integer-order derivative
and a power of time [44,48,49].

We consider themodel proposed by Rosenzweig [1, Model 4] and explicitly studied by Gilpin [3]. Themodel is as follows:

dN
dt

= rN

1 −

N
K


− kP(1 − e−cN)

dP
dt

= AkP( e−cJ
− e−cN),

(3.1)

where N is prey density and P is predator density. K is the prey carrying capacity. The predator isocline is at N = J . The
other parameters of (3.1) influence the shape of the prey zero isocline and the rate of system response [3]. We assume that
all parameters are positive.

Now we introduce fractional order into model (3.1). The fractional Rosenzweig model is obtained from the classical
equations by replacing the first-order time derivatives by fractional derivatives of order α, where 0 < α < 1. The fractional
relaxation equations [50–52] contain an integral operator with a slowly decaying power law kernel so that the process is
not Markovian and depends on the prehistory of the system [46,53].

The new system is described by the following set of FDEs:

DαN(t) = rN

1 −

N
K


− kP(1 − e−cN)

DαP(t) = AkP( e−cJ
− e−cN),

(3.2)
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where Dαy(x), α ∈ (0, 1] is the fractional-order derivative of y in the sense of Caputo, defined as

Dαy(x) := Im−αym(x), x > 0,

where m = [α] is the value of α rounded up to the nearest integer, ym(x) is the usualmth derivative of y(x),

Iβz(x) :=
1

Γ (β)

 x

0
(x − t)β−1z(t) dt

is the RL integral operator of order β > 0, and Γ (β) is the gamma function [44,47–49,54].
We are now in a position to discuss the existence and uniqueness of the solution of (3.2). Consider the fractional-order

Rosenzweig predator–prey system (3.2) with initial conditions N(0) = c1, P(0) = c2. This can be written as

DαN(t) = f1(N, P)

DαP(t) = f2(N, P)
(3.3)

with initial conditions N(0) = c1, P(0) = c2.
Let I = [0, T ], T < ∞, and let C2(I) be the class of all continuous column vector functions X(t) = (N(t), P(t)) defined

on I with norm

∥X∥
∗

= sup
t

e−Mt
|N(t)| + sup

t
e−Mt

|P(t)|, M > 0, (3.4)

which is equivalent to the sup-norm ∥X∥ = supt |N(t)| + supt |P(t)|. When t > σ ≥ 0, we write C2(Iσ ).
Let L21(I) be the class of all Lebesgue-integrable column vector functions on I with norm

∥X∥1 =

 T

0
| e−MtN(t)| dt +

 T

0
| e−MtP(t)| dt,

which is equivalent to the norm ∥X∥L1 =
 T
0 |N(t)| dt +

 T
0 |P(t)| dt .

Now we consider the following assumptions [55].

1. fi : D → R+,D ⊂ R+

2 .

2. ∂ fi(N,P)

∂N ,
∂ fi(N,P)

∂P (i = 1, 2), exists and is bounded on D.

Condition (2) implies that the functions fi satisfy the Lipschitz condition

|fi(N, P) − fi(N1, P1)| ≤ M1∥X(t) − X1(t)∥2, (3.5)

where ∥X(t) − X1(t)∥2 = |N(t) − N1(t)| + |P(t) − P1(t)| andM1 ≥

 ∂ fi
∂N

 ,  ∂ fi∂P

 for i = 1, 2.

Lemma 1. System (3.3) with initial conditions can be written in the form

DαX(t) = F(X(t)), t ∈ (0, T ] and X(0) = X0, (3.6)

where X(t) =


N(t)
P(t)


, F(X(t)) =


f1(N, P)
f2(N, P)


and X0 =


N(0)
P(0)


.

Now let D = {X ∈ R2
: 0 ≤ X ≤ B}. Then (3.3) satisfies conditions (1) and (2) withM1 = max{B, rB, AkcB, Ak}.

Now we have the following theorem.

Theorem 1. Let assumptions (1) and (2) be satisfied. Then the initial value problem (3.3) has a unique solution X ∈ C2(I),
X ′

∈ C2(Iσ ), and X ′
∈ L21(I).

Proof. The proof follows from [55, Theorem 1]. �

An approximate analytic solution of system (3.2) obtained using the homotopy analysis method [56] is presented in
Appendix A.
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4. Equilibrium points and stability analysis

The equilibrium points of system (3.2) are E0(0, 0), E1(K , 0) and E

J,

rJ

1− J

K


k(1− e−cJ )


.

The Jacobian matrix at E0(0, 0) is

J0 =


r 0
0 Ak( e−cJ

− 1)


.

The eigenvalues corresponding to E0 are r, Ak( e−cJ
− 1), so E0 is unstable for all α ∈ (0, 1].

The Jacobian matrix at E1(K , 0) is

J1 =


−r −k(1 − e−cK )

0 Ak( e−cJ
− e−cK )


.

The eigenvalues corresponding to E1 are −r, Ak( e−cJ
− e−cK ), so E1 is locally asymptotically stable if K < J .

The Jacobian matrix at E

J,

rJ

1− J

K


k(1− e−cJ )


is

J =

r −
2rJ
K

−
crJ

1 −

J
K


e−cJ

(1 − e−cJ)
−k(1 − e−cJ)

ArJc

1 −

J
K


e−cJ

(1 − e−cJ)
0

 .

The eigenvalues corresponding to E are

λ1 =
1
2

r −
2rJ
K

−
crJ

1 −

J
K


(1 − e−cJ)

e−cJ
+

r −
2rJ
K

−
crJ

1 −

J
K


(1 − e−cJ)

e−cJ

2

− 4AkcrJ

1 −

J
K


e−cJ


λ2 =

1
2

r −
2rJ
K

−
crJ

1 −

J
K


(1 − e−cJ)

e−cJ
−

r −
2rJ
K

−
crJ

1 −

J
K


(1 − e−cJ)

e−cJ

2

− 4AkcrJ

1 −

J
K


e−cJ

 .

A sufficient condition for the local asymptotic stability of the equilibrium point E is

|arg(λi)| >
απ

2
, i = 1, 2. (4.1)

5. Results and conclusion

The major review of empirical and theoretical PoE studies presented by Roy and Chattopadhyay [4] provides a number
of plausible solutions and partial resolution of the problem. The experimental evidence was challenged by Jensen and
Ginzburg [5], who showed that most examples proposed as evidence of PoE are insufficient to justify the phenomenon in
natural systems. A common example of PoE is the process of lake eutrophication. Enrichment of aquatic systems appears to
increase the carrying capacity of producers and leads to a bloom that covers the lake. PoE may be suggested as a cause
of this phenomenon, but in fact it is the limiting dissolved oxygen that is responsible for system collapse in this case,
irrespective of the enrichment response. Other empirical studies using the Didinium–Paramecium system were carried out
by Luckinbill [6] and Veilleux [7]. Both authors showed that the system proposed by Gause [57] could be modified to allow
coexistence of predator and prey. Addition of methyl cellulose prevented the extinction of any of the species in the system
and provided an artificial refuge for prey species. Similarly, a study of Rotifer–Algae by Fussmann et al. showed that predator
extinction resulted from enrichment [8]. Similar to the experiments of Luckinbill and Veilleux, the results showed that
reducing nutrient input can bring the system from a region of consistent predator extinction to a region of coexistence.
Capture of this ubiquitous dynamic behavior involved in PoE remains an open problem from both theoretical and ecological
perspectives.

Here we considered the Rosenzweig model of PoE to provide a plausible solution from a new perspective that considers
the ecological memory that exists for most species. Most of the solutions proposed so far involve species-level organization
and ignore the community level. As a consequence, the impact of memory on system dynamics has been neglected. This
memory can be well captured by a fractional derivative consisting of non-local operators.

The memory effect can also be incorporated using other frameworks such as Volterra integral equations and delay
differential equations [58]. Volterra integral equations describe systemswith continuously distributedmemory over all past
events. For example, the spread of epidemics with a general (not necessarily exponential) distribution of infection times can
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Table 1
Parameter values used to solve (3.2) (taken from [3]).

Parameter r k c A J

Value 0.05 0.025 0.1 1 20

a b c

Fig. 1. Phase-plane diagram depicting the trajectory of predator–prey density for interior equilibrium of the classical Rosenzweig model with no memory
(α = 1) and gradual enrichment of the system through the carrying capacity K . (a) exhibits a stable trajectory with low enrichment (K = 48) whereas
(b) shows a limit-cycle oscillation undermoderate enrichment (K = 60) and (c) exhibits a limit-cycle oscillationwith greater amplitude for high enrichment
(K = 80).

be modeled by Volterra integral equations. In another example, the evolution of a set of competing biological species with
memory can be modeled through a system of integro-differential equations, which can be reduced to a system of Volterra
integral equations [58]. Besides population dynamics, the evolution of capital stock under an investment strategy can be
described by a Volterra integral equation.

In an ODE system in ecology, the representation of a process by a function is often based on experiments. The response
of the function chosen can be fitted to experimental data. This functional response should not be derived mechanistically
but phenomenologically [59]. The functional response may be prey- and/or predator-dependent according to experimental
results. Naturally, these types of experiment can have various time lengths and integrate memory. Note that even if an
ODE describes an instantaneous process, the notion of instant depends on the time scale considered, whereas FDEs have
the property of fading memory and depend on the range of α (0 < α < 1). Such memories can describe current events
with the collective information from preceding events, while events in the far past can often be neglected compared to
contributions from the near past [60]. Volterra defined the notion of fading memory as ‘‘the principle of dissipation of
hereditary action’’ [61]. Podlubny [44] called this the ‘‘short memory principle’’.

In this study we used FDEs to capture the memory effect in an ecological framework. Naturally we expect that our
modified Rosenzweig model (3.2) with memory characterized by α ∈ (0, 1) is more stable than the classical Rosenzweig
model with integer α(=1). Note that α plays a key role in understanding memory effects on species. The system sensitivity
with respect to α is an important aspect to be discussed. We analyzed the sensitivity of model (3.2) with input parameter
α and output the range of K up to which the system is stable (Appendix C). We observe that when the value of α decreases,
the system has a high elasticity index, that is, the system is more sensitive with respect to α.

Since most FDEs do not have exact analytic solutions, approximation and numerical techniques must be used. Several
analytical and numerical methods exist for solving FDEs. For numerical solution of (3.2), we used the FDE12 package in
Matlab which is an implementation of the Adams–Bashforth–Moulton predictor–corrector method [62–65]. The parameter
values listed in Table 1 were used.

Fig. 1(a) shows that the classical Rosenzweig model with no memory is stable for a carrying capacity of K = 48. When
we enrich the prey carrying capacity (K = 60, K = 80) and keep the other parameter fixed, the system destabilizes
(Fig. 1(b) and (c)). However, when we incorporate the memory effect in the classical model with α ∈ (0, 1), the system
no longer shows a pattern of destabilization on enrichment (Figs. 2 and 3). Fig. 4 shows that the system has a memory
threshold (α ≈ 0.2332) belowwhich it is always stable, even ifwe further increase the carrying capacitywithout restriction.
Mathematically this intermediate value of α can be interpreted as a filter with partial memory that falls between two
extreme filters with complete memory and with no memory [66].

The individual-level organization discussed above is mainly associated with the behavioral aspects of predator–prey
relationships and inducible or morphological prey mechanisms. Learning and memory can modify these anti-predator
behavioral responses, which is key to making the link between individual-level processes and higher-level organization
in ecological systems [14]. For example, prey refuge is one of the most manifest and well-coordinated actions based on
memories of past events that lead to cultural learning [14]. To illustrate this issue, we incorporated a refuge parameter
in the fractional-order Rosenzweig model. The individual-level solution of PoE with a refuge effect can be obtained from
model (3.2) with α = 1. The community-level solution based on memory can be illustrated by model (3.2) with α ∈ (0, 1).
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a b c

Fig. 2. Phase-plane diagram depicting the trajectory of predator–prey density for interior equilibrium of the classical Rosenzweig model with memory
effect parameter α = 0.86, with gradual enrichment of the system through the carrying capacity K . (a) and (b) exhibit a stable trajectory for moderate
(K = 48) and high (K = 60) carrying capacities but (c) shows limit-cycle oscillation for high enrichment (K = 80).

a b c

Fig. 3. Phase-plane diagram depicting the trajectory of predator–prey density for interior equilibrium of the classical Rosenzweig model incorporating
the memory effect parameter α = 0.68, with gradual enrichment of the system through different levels of the carrying capacity K . All the subplots exhibit
a stable trajectory.

a b

Fig. 4. The parameter regions in which the interior equilibrium is stable (blue region) or unstable based on α and K . (a) A systemwith nomemory (α = 1)
allows stable equilibrium for a carrying capacity of K ≈ 50. (b) System with a memory threshold (α ≈ 0.2332) below which it is always stable for all
further increases in the carrying capacity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Conditions for which the modified Rosenzweig model is stable are given in Appendix B. The region of stability for the
corresponding enrichment parameter (K) and refuge parameter (m) expands if we gradually increase the memory effect in
comparison to a systemwith nomemory (Fig. 5). Estimation of themodel parameters for such a system is an important task
from a data analysis perspective. The total least squares approach is suitable for this purpose and we applied this method
to illustrate model (3.2) and fitted an estimated curve for a simulated data set (Appendix C). This memory phenomenon
is clearly an approximate tradeoff between fractional differentiation and stability. Against this backdrop, we conclude that
ecological memories can protect a system against destabilization andmay represent a potential agent for resolving PoE from
a new perspective using FDEs.
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Fig. 5. Domain of the stability region inwhich the interior equilibrium of the Rosenzweigmodel with a refuge effect (B.1) is stable or unstable based on the
carrying capacity (K) and refuge parameter (m). (a) Region R1 corresponds to the systemwith nomemory (α = 1). (b) The expanded region comprising R1
and R2 together corresponds to the system with memory effect parameter α = 0.5. (c) The largest region comprising R1 , R2 and R3 represents the system
with memory effect parameter α = 0.2.
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Appendix A

An approximate analytic solution: homotopy analysis method
In this appendix we apply the homotopy analysis method [56] to obtain a numerical analytical solution for fractional

system (3.2).
We choose the base function as {t(n+m)α

|n,m ≥ 0}, so the solutions are of the form

N(t) = a0,0 +

∞
n,m=0

an,mt(n+m)α

P(t) = b0,0 +

∞
n,m=0

bn,mt(n+m)α,

(A.1)

where an,m, bn,m are the coefficients. It is straightforward to choose N0(t) = c1, P0(t) = c2 as our initial approximation of
N(t) and P(t), and the linear operator is then

Lα[N̂] = DαN̂

Lα[P̂] = Dα P̂
(A.2)

with Lα[A] = 0, where A is the integration constant, which is determined by the initial conditions.
If q ∈ [0, 1] and h indicate the embedding and non-zero auxiliary parameters, respectively, then the zero-order defor-

mation problems are of the following form:

(1 − q)Lα[N̂(t; q) − N0(t)] = qhBN [N̂(t; q), P̂(t; q)]

(1 − q)Lα[P̂(t; q) − P0(t)] = qhBP [N̂(t; q), P̂(t; q)]
(A.3)

subject to the initial conditions

N̂(0; q) = c1, P̂(0; q) = c2
in which we define the nonlinear operators BN and BP as

BN [N̂(t; q), P̂(t; q)] =
∂αN̂(t; q)

∂t
− rN̂(t; q)


1 −

N̂(t; q)
K


+ kP̂(t; q)(1 − e−cN̂(t;q))

BP [N̂(t; q), P̂(t; q)] =
∂α P̂(t; q)

∂t
− AkP̂(t; q)( e−cJ

− e−cN̂(t;q)).

(A.4)
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For q = 0 and q = 1, zero-order (A.3) have the solutions

N̂(t; 0) = N0(t), P̂(t; 0) = P0(t)

and

N̂(t; 1) = N(t), P̂(t; 1) = P(t).

When q increases from 0 to 1, then N̂(t; q) and P̂(t; q) vary from N0(t) and P0(t) to N(t) and P(t), respectively.
Expanding N̂ and P̂ in Taylor series with respect to q, we have

N̂(t; q) = N0(t) +

∞
m=1

Nm(t)qm

P̂(t; q) = P0(t) +

∞
m=1

Pm(t)qm
(A.5)

in which Nm(t) =
1
m!

∂mN̂(t;q)
∂qm


q=0

, Pm(t) =
1
m!

∂m P̂(t;q)
∂qm


q=0

N(t) = N0(t) +

∞
m=1

Nm(t)

P(t) = P0(t) +

∞
m=1

Pm(t).

(A.6)

We take the mth-order homotopy derivative of the zero-order (A.3) and use [67, Properties 1–5] to obtain the m-order
deformation equations

Lα[Nm(t) − χmNm−1(t)] = hRN
m(t)

Lα[Pm(t) − χmPm−1(t)] = hRP
m(t)

(A.7)

with the initial conditions

Nm(0) = 0, Pm(0) = 0, (A.8)

where

RN
m(t) = DαNm−1 − rNm−1 +

r
K

m−1
i=0

NiNm−1−i + kPm−1 − k
e−cN0

m!

m
l=0


m
l


φ

(l)
1 φ

(m−l)
2

RP
m(t) = DαPm−1 − Ak e−cJPm−1 + Ak

e−cN0

m!

m
l=0


m
l


φ

(l)
1 φ

(m−l)
2

(A.9)

φ1 =


∞

m=1 Pm−1qm, φ2 = e−c


∞
m=1 Nmqm and φ

(l)
1 =

∂ lφ1
∂ql

|q=0 and χm =


0 ifm ≤ 1
1 ifm > 1 .

In this way, it is easy to solve the linear non-homogeneous equations (A.7) with initial conditions (A.8) for allm ≥ 1 and
we obtain

N1(t) =


−rc1 +

rc21
K

+ kc2 − c2 e−cc1


htα

Γ (α + 1)

P1(t) = [−Akc2 e−cJ
+ Akc2 e−cc1 ]

htα

Γ (α + 1)

N2(t) = h(1 + h)

−rc1 +

rc21
K

+ kc2 − c2 e−cc1


tα

Γ (α + 1)
+ h2


−r +

2rc1
K

− cc2k e−cc1


×


−rc1 +

rc21
K

+ kc2 − c2 e−cc1


+ k(1 − e−cc1)(−Akc2 e−cJ

+ Akc2 e−cc1)


t2α

Γ (2α + 1)

P2(t) = h(1 + h)[−Akc2 e−cJ
+ Akc2 e−cc1 ]

htα

Γ (α + 1)

+ h2

A2k2c2( e−cJ

− e−cc1)2 − Akc2 e−cc1


−rc1 +

rc21
K

+ kc2 − c2 e−cc1


t2α

Γ (2α + 1)
.
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Table 2
Estimated parameter values.

α r k c A J K Error of fit

0.7893 0.1 0.1 0.0598 1.812 21.0428 17.2995 43.2420

Proceeding similarly, the pth term of the approximate solutions of (3.2) is

N(t) = N0(t) +

p
m=1

Nm(t)

P(t) = P0(t) +

p
m=1

Pm(t).

(A.10)

Appendix B

This appendix provides the conditions for which our fractional Rosenzweig model is stable.

DαN(t) = rN

1 −

N
K


− kP(1 − e−c(1−m)N)

DαP(t) = AkP( e−cJ
− e−c(1−m)N),

(B.1)

where m ∈ [0, 1) is the refuge parameter. The interior equilibrium point of model (B.1) is N∗
=

J
1−m , P∗

=
rN∗


1− N∗

K


k(1−e−cJ )

.
The corresponding variational matrix is

V =


r −

2rN∗

K
− kc(1 − m)P∗ e−cJ

−k(1 − e−cJ)

Akc(1 − m)P∗ e−cJ 0


.

The fractional counterpart of model (B.1) is locally asymptotically stable if

|arg(λi)| >
απ

2
, i = 1, 2, (B.2)

where λ1, λ2 are the eigenvalues of the Jacobian matrix V and α (0 < α ≤ 1) is the order of the fractional derivative.

Appendix C

Parameter estimation and sensitivity analysis
We estimated the parameters of our fractional Rosenzweig model and analyzed its sensitivity with respect to α.
To estimate the parameters we used the total least squares method [68,69], also known as orthogonal distance fitting

(ODF), which has significant advantages [70] in the case of several spatial dimensions. ODF uses perpendicular (orthogonal)
distances between givenpoints and the fitting curve. The sumof orthogonal distances between two sets of points is described
by
n

i=1[d((xi, yi), f (α1, α2, . . . , αn))]
2, where n is the number of experimental points and the parameters α1, α2, . . . , αn

influence the function f , which is called the fitting curve or the set of fitting points; d represents the distance from given
experimental points, with coordinates (xi, yi), to the fitting curve f . We used the fmincon optimization algorithm inMATLAB
for data fitting of model (3.2) as described by Skovranek et al. [71].

The coordinates of the points to be fitted in the state space are generated randomly in 2D space. We generated an initial
data set of 30 points from model (3.2) with the parameter values listed in Table 1, along with K = 20 and α = 0.75. The
final data set was generated by adding Gaussian noise to the data set for each predator–prey population with variance of
0.1 and 0.6 for prey and predator populations, respectively. Fig. 6 shows the results, in which the green points are randomly
generated and the red line represents the estimated curve. The estimatedmodel parameters and error of fit using the fmincon
procedure are given in Table 2.

We conducted a sensitivity analysis of model (3.2) with respect to α. We used the sensitivity coefficient proposed by
Loucks et al. for our analysis [72]. This measures the magnitude of change in an output variable Q per unit change in the
magnitude of an input parameter valueα from its base valueα0.Weused the sensitivity coefficient [73] Sα = max{|(Q0−Qi)/

(α0 − αi)|, |(Q0 − Qj)/(α0 − αj)|} and calculated the elasticity index [72,73] Eα =


α0

Q (α0)


Sα , which is a dimensionless sen-

sitivity measure of the relative change in output Q for a relative change in input α. Here the index i represent a decrease
and j an increase in the parameter from its base value α0.
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Fig. 6. Phase-plane diagram of the trajectory of predator–prey density based on 30 selected points (green circles) generated through simulation with
Gaussian noise added to the fractional Rosenzweig model (3.2). The red line shows the fitting curve for the simulated data. Parameter values were taken
from Table 1, along with K = 20 and α = 0.75, to generate the data. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Variation of the elasticity index for α as an input variable and a specified range of K as the output variable. Other parameter values are taken from
Table 1.

For model (3.2) we calculated the elasticity index with respect to input variable α. The output(Q ) is the range of K up
to which the system is stable. We calculated the output (Q ) for values of α from 0.4 to 1 and then calculated the elasticity
index and plotted this as a function of α in Fig. 7. It is clear that the elasticity index increases as α decreases. It should be
noted that enrichment does not hold for values less than a threshold of α = 0.2332, so the range α ∈ [0.4, 1] is used in
Fig. 7.
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