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The evolutionary responses of infectious pathogens often have ruinous consequences for the control of
disease spread in the population. Drug resistance is a well-documented instance that is generally driven
by the selective pressure of drugs on both the replication of the pathogen within hosts and its
transmission between hosts. Management of drug resistance therefore requires the development of
treatment strategies that can impede the emergence and spread of resistance in the population. This
study evaluates various treatment strategies for influenza infection as a case study by comparing the
long-term epidemiological outcomes predicted by deterministic and stochastic versions of a
homogeneously mixing (mean-field) model and those predicted by a heterogeneous model that
incorporates spatial pair-wise correlation. We discuss the importance of three major parameters in our
evaluation: the basic reproduction number, the population level of treatment, and the degree of
clustering as a key parameter determining the structure of heterogeneous interactions. The results show
that, as a common feature in all models, high treatment levels during the early stages of disease outset
can result in large resistant outbreaks, with the possibility of a second wave of infection appearing in
the pair-approximation model. Our simulations demonstrate that, if the basic reproduction number
exceeds a threshold value, the population-wide spread of the resistant pathogen emerges more rapidly
in the pair-approximation model with significantly lower treatment levels than in the homogeneous
models. We tested an antiviral strategy that delays the onset of aggressive treatment for a certain
amount of time after the onset of the outbreak. The findings indicate that the overall disease incidence
is reduced as the degree of clustering increases, and a longer delay should be considered for
implementing the large-scale treatment.

Crown Copyright © 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

both the individual and population levels has therefore become a
crucial component of interventions directed against persistent

At the beginning of the 21st century, the emergence and spread
of drug resistant pathogens presents a growing problem world-
wide. The evolution of resistance is primarily affected by factors
that govern pathogen-host interactions, with regard to both
survival (such as the ability to replicate) and extinction (such as
treatment regimens). These, combined with the ensuing processes
of between-host pathogen transmission, call for a better under-
standing of mechanisms by which pathogens overcome the
pressures that are applied to limit their replication and spread
(Domingo and Holland, 1997). Management of drug-resistance at
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fax: +1204 984 5472.
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pathogens (e.g., HIV, tuberculosis, influenza) and preparedness
strategies for emerging infectious diseases (e.g., influenza pan-
demic) (Blower and Chou, 2004; Blower et al., 2003, 2004; Bright
et al., 2005; de Jong et al., 2005; Kiso et al., 2004; Moscona, 2005).

Since resistance is both a cause and a consequence of drug use,
integrated efforts are required to prioritize and develop effective
treatment strategies that address the influence of immunological/
epidemiological characteristics of the individuals/population on
the emergence of resistance. Mathematical models have proven to
be essential tools for evaluating the impact of these competing
strategies, by incorporating critical parameters that describe the
dynamics of pathogen evolution and transmission (Dieckmann
et al, 2002; Keeling and Rohani, 2008). For instance, models
describing the within-host infectious dynamics have provided
new insights into the treatment regimens for acute self-limiting
infections, and suggested that drug-resistance is unlikely to

0022-5193/$ - see front matter Crown Copyright © 2009 Published by Elsevier Ltd. All rights reserved.
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develop if treatment is initiated after the time at which the
immune responses reach a certain threshold (Lloyd and Wodarz,
2006; Wodarz, 2001; Wodarz and Lloyd, 2004). Recent studies
have capitalized on such findings to design strategies for the
prudent use of drugs at the population level, in order to reduce the
pressure to select resistant pathogens (Alexander et al., 2007;
Moghadas, 2008; Moghadas et al., 2008). The results obtained
from these studies for influenza infection as a case study show
that, in the absence of pre-existing pathogen-specific immunity in
the population, resistance is less likely to emerge if the large-scale
treatment is delayed for a certain amount of time after the
introduction of the pathogen. The principal mechanism under-
lying this treatment strategy is to sufficiently deplete the pool of
susceptible hosts through initial prevalence of the drug-sensitive
pathogen, which will in turn avert population-wide spread of
resistance should selection occur when intensive treatment is
implemented (Moghadas, 2008).

In this study, we further investigate the merits of this adaptive
treatment strategy in order to identify key parameters that affect
its long-term epidemiological outcomes. To this end, the findings
of a homogeneously mixing (mean-field) population dynamical
model (Moghadas, 2008) is compared with its stochastic version.
We extend this comparison to a more realistic situation, by
considering heterogeneity of the population and incorporating
local spatial correlations. In general, an individual (site) can
potentially transmit infection to a small number of individuals
through local contacts with neighbours. The set of these local
interactions define a contact network, and disease spreads along
the edges of this network. Such network models have been shown
to offer a better approximation to the behaviour of large-scale
epidemics than homogeneous models (Newman, 2002, 2005).
Here, we consider the simplest case, the so-called pair-approx-
imation, in which the dynamics of only pair-wise interactions of
neighbouring individuals is taken into account. Specifically, the
pair-approximation assumes that the correlation between states
of two neighbouring sites is independent of the state of any other
randomly selected neighbour of the focal pair (Rand, 1999). Taking
correlations into account could significantly impact the spatial
dynamics of an epidemic, particularly when pathogen strains with
different characteristics/transmissibility compete for a single host
population. In the following, we describe the assumptions that are
embedded in the core of these models, and formulate their
equations. To provide a comparative evaluation of treatment
strategies, we simulate these models for influenza infection using
parameter estimates extracted from recent modelling and clinical
studies. Finally, we present the results and discuss the significance
of our findings in the context of disease epidemiology and public
health.

2. Development of the models

To formulate the models for disease transmission, we assume
that the population is initially entirely susceptible to the invading
pathogen that is sensitive to the drugs, but can subsequently
develop resistance. Susceptible individuals may become infected
through contacts with sensitive or resistant infections. Individuals
infected with the sensitive pathogen may receive treatment and
develop drug resistance during the course of treatment. Since the
evolution of resistance is generally associated with fitness cost
(Domingo and Holland, 1997), we assume that the resistant
pathogen is less transmissible than the sensitive pathogen. It is
assumed that treatment reduces the infectiousness level of the
sensitive infection (and therefore its transmissibility), but remains
ineffective against resistant infection. For outbreaks with short
duration, we ignore rates of birth and natural death, but consider

disease-induced mortality. We also assume that recovered
individuals acquire immunity that confers full protection against
all pathogen strains.

2.1. Mean-field model

Assuming homogeneous mixing, we divided the population
into classes of susceptible (S), infected with the sensitive pathogen
who are untreated (Iy) and treated (I7), infected with the resistant
pathogen (I,), recovered (R), and dead (D) individuals. Fig. 1 shows
the movements of individuals between these classes during the
course of infection. Since treatment is ineffective against the
resistant pathogen, we combined classes of untreated and treated
resistant infection into a single population compartment (I;).
Taking into account the above assumptions, the model can be
expressed as the following system of deterministic equations:

S = — By + orlr + 9;1,)S, (1)
Iy = = p)pdy + 6rIn)S = (du + ylu, (2)
It = pply + o1lr)S — (dr + yp)lr — agly, (3)
I/r = 5r,BIrS + ol — (dU,,— =+ ’))U)Ir, (4)
R =vyyy + 1)+ y¢Ir, (5)
D = du]u + dTIT + dU,rIrv (6)

where the prime “’ denotes the derivative of the compartments
with respect to time; S is the baseline transmission rate of the
sensitive pathogen; d7 represents the reduction in transmission of
the sensitive pathogen from treated infected individuals; o, is the
relative transmissibility of the resistant pathogen; dy and dy, are
disease-induced death rates of sensitive and resistant pathogens,
respectively; dr is the disease-induced death rate of treated
infected individuals; 7y, and y; represent recovery rates of
untreated and treated infected individuals, respectively; or is
the rate at which treated individuals develop drug-resistance; and
p is the fraction of infected individuals which receives treatment,
referred to as the treatment level. Further details of the model
structure can be found in Moghadas (2008).

2.2. Stochastic model

Again assuming homogeneity, we develop an alternative
stochastic model for the dynamics of pathogen transmission in
the context of drug-resistance, using the same classes of
individuals as described for the mean-field model. Considering

sensitive infection

without treatment Removed
resistant
infection Removed R

O ©

development
of resistance

—

sensitive infection

with treatment Removed

©

Fig. 1. Model diagram for the movements of individuals between population
compartments.
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Table 1

Possible transitions between compartments of the stochastic model that can occur in At unit of time.

Event Transition during At

Transition rate

Infection of a susceptible
Increase of untreated infection
Increase of treated infection
Development of drug resistance
Increase of resistant infection
Recovery from untreated infection
Recovery from treated infection
Recovery from resistant infection
Increase in immune population
Death from untreated infection
Death from treated infection
Death from resistant infection
Increase in death

S(t) — S(t) — 1
Iy(t) = Iy +1
Ir(t) = It(H) + 1
Ir(t) — Ir(t) — 1
I(t) = () + 1
Iy(t) - Iy —1
Ip(t) = It(H) — 1
I(t) —» I(t) — 1
R(t) — R(t) + 1
Iyt) - Iy(H) -1
Ir(t) — Ir(t) = 1
Ir(t) — L(t) - 1
D(t) — D(t) + 1

Py + orlr + 0r1;)SAt + o(At)
(1 — p)py + Orlr)SAt + o(At)
pBy + drlr)SAt + o(At)
ol At + o(At)

(Porl;S + orlr)At + o(At)
YuluAt + o(At)

yrIrAt + o(At)

YulrAt + o(At)

Yulu + yrlr + yulr)At + o(At)
dylyAt + o(At)

drlr At + o(At)

d, I At + o(At)

(dyly + drly + dy,Ir)At + o(At)

time t as a continuous variable, we define the following random
vector for t € [0, o0):

X(t) = (S0, Iy(0), Ir(0), 1+(6), R(t), D(©),

and AX(t) = X(t + At) — X(t). Thus, the transition probability
associated with the movements of individuals between the model
compartments during the time interval At is defined as

Pr{AX(t) = (O(S), O(ly), O(Ir), Oy), OR), OD)IX(H)}, (7)
where

—1 decrease in the class (-),
O()=< 0 no changes in the class (),
1 increase in the class (.).

The function @(-) describes the change in the status of an
individual in the population by moving from one class to another
during the time interval At. It is assumed that At is sufficiently
small to allow for the occurrence of at most one change in every
state of the model. Thus, the corresponding continuous time
Markov chain model is fully described through possible transition
rates given in Table 1. Based on transition probabilities, the It
stochastic differential equation (SDE) model can be formulated as

dX(t) = fX(t) dt + DX(t)) dadxe), (8)

where f()?(t)) is the drift vector, D(X(t)) is the diffusion matrix, and
dad(t) is a vector of independent Wiener processes (Allen, 2003).
The stochastic differential model can be explicitly expressed by
defining f()?(t)) = E(AX(t)), where, for example,

E(O(S(1)) = [~ By + drlt + 3,1,)SIAL + o(Ab).

Hence, f()?(t)) is determined by the right hand side of the
equations in the corresponding mean-field model. The term
DX(t)) in (8) is given by the square root of the covariance
matrix [V(X(t))], where

VX(1) = EQAX(DIAX()]T2Po5) + o((AD?).

2.3. Pair-approximation model

The homogeneous mixing approach, in either its deterministic
or stochastic formulation considered above, assumes that popula-
tions are uniformly spread through space and that individuals mix
rapidly. More realistically, disease propagation occurs through
localized, discrete interactions between susceptible and infected
individuals, and therefore it is imperative to determine the effects
of including spatial effects. A previous study of species interac-
tions (Durrett and Levin, 1994), represented by various models

excluding mean-field and including spatial structure and stochas-
tic effects, exhibited qualitatively different behaviours. More
recently, stochastic, individual-based SIR models (Schiitz et al.,
2008) and other types of disease mechanism have shown the
existence of stable spatial structures and other qualitative
differences with the mean-field model. It is therefore essential
to compare the results derived from the models considered above,
with those that incorporate spatial structure. Inevitably, the latter
possess parameters (e.g., the number of nearest neighbours and
the degree of clustering in the population) that have no counter-
parts in the mean-field model, and it will be necessary to examine
their behaviour over some realistic ranges of these parameters.

While agent-based models can fully capture spatial effects
through the dynamics of individual interactions, there are various
methods that include some aspects of these effects and the
simplest and most tractable way is to consider pair-wise
correlations between neighbouring individuals (Keeling, 1999;
Morris, 1997; Rand, 1999). The resulting system is comprised of a
coupled infinite hierarchy of pair-, triplet-, and higher-order
correlations; and therefore some form of moment closure
assumption is required. The lowest-order closure (no correlations)
yields the mean-field model. The next order, which is considered
below, includes pair-wise interactions exactly and employs a
closure assumption for representing triplets in terms of singlets
and pairs. The population is represented by nodes of a contact
network, and contacts between individuals by edges between
nodes. Let A,B,C, ... represent the states of individual nodes, and
[A] the number of individuals in state A, [AB] the number of A — B
pairs, and [ABC] the number of A— B - C triplets, using the
convention that [AB] counts both A — B and B — A pairs (also, note
that [ABC] = [CBA] but [ABC]#[BCA], etc.). Therefore, all correla-
tions of order three or higher are effectively treated as random
noise (Rand, 1999). It is worth mentioning that despite its
simplicity, the pair-approximation appears to provide good
quantitative agreement with stochastic simulation modelling of
disease spread across a network (Keeling, 1999).

Let ¢ be the fraction of all triplets that also form triangles
(Keeling, 1999; Morris, 1997), and consider the triplet A — B — C: if
this forms an open triangle (no edge between A and C) there is no
correlation between A and C, whereas for a closed triangle
correlation exists. For the entire population of N nodes, each node
having n neighbours, the correlation between nodes of type A and

C is defined as (Keeling, 1999)
_ N [AC]
AC — Em (9)

Thus, when Cyc =1, A and C are uncorrelated and randomly
located with respect to each other. To formulate closure in the
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pair-approximation model, we use the pair-closure assumption

(Morris, 1997; van Baalen, 2000)

n — 1[AB][BC]
n [B]

[ABC] = (1 — ¢ + ¢Cac). (10)

Local interactions describing the pair dynamics in our model
can be obtained in a similar way to the stochastic formulation
above, as was also done in the standard 3-state SIR model
(Keeling, 1999). In the present model, the transmission rate per
infected-susceptible pair is given by 7 = f§So/n, where Sy is the
initial size of the susceptible population. Also, both recovery and
(disease-induced) death remove individuals from further interac-
tions in the system, and for purposes of simplifying the dynamics
can be merged into ‘absorbing states’ X and X, for recovery or
death from sensitive and resistant pathogens, respectively. This
reduces the model to a 6-state system: S, Iy, I, I, X, X; whose
pair-dynamics are described by (6 x 7)/2 =21 equations (see
Appendix A). The corresponding singlet dynamics (number of
individuals in each state at a given time) follow from the general
relationship (Keeling, 1999):

Ay = =A%) (11)

which allows for a direct comparison with the mean-field and
stochastic models. Note that since the total population
N = [S] + [Iy] + [IT] + [I;] + [X] + [X;] = constant, one of the 21
equations is redundant; however, it is retained in order to track
numerical accuracy of the simulations (see Appendix A).

3. Reproduction numbers

One of the most important parameters in disease transmission
models is the basic reproduction number, defined as the number
of new infections generated by a single infected individual
introduced into an entirely susceptible population (Diekmann
and Heesterbeek, 2000). This threshold quantity, which charac-
terizes whether or not an invasion is successful, is the product of
three important parameters: the number of contacts with
susceptible hosts per unit time; the probability of pathogen
transmission; and the generation time. A related quantity is the
control reproduction number that can be used to evaluate the
potential impact of public health intervention strategies on
containment of disease spread.

For evaluating and comparing the outcome of an adaptive
treatment strategy in models developed above, we first compute
the control reproduction number (R;) when treatment is put in
place. Since sensitive and resistant pathogens may have different
transmissibility, we need to consider the introduction of each one
into the population in the absence of the competing pathogen. In
the mean-field model, assuming that an individual infected with
the sensitive pathogen is introduced into the population of size Sy
such that Iy(0) = 1, and I7(0) = I,(0) = R(0) = D(0) = 0, the num-
ber of new infections generated during treatment is
porPSo/(dr + yr + or). Without treatment, the number of second-
ary cases is given by (1 — p)fSo/(duy + ), and therefore the total
number of infections with the sensitive pathogen is

_ (1-p por
Ri_ﬁso<du+“/u+dr+?r+dr>' (12)

A sensitive infection can develop drug-resistance during treat-
ment with probability «r/(dr + y; + ar), and thereby generate a
number of new resistant cases given by

. o%rp
Re = 0:BSo ((dT + 71 +or)d,, + Vu)) v

Assuming that an individual infected with the resistant
pathogen introduced into the population such that [(0) =1,
Iy(0) = It(0) = R(0) = D(0) = 0, and considering that treatment is
ineffective, the total number of secondary cases with the resistant
pathogen is given by R, =06,S0/(d,, +7y). Using the next
generation matrix (Diekmann and Heesterbeek, 2000), the control
reproduction number is given by R, = max{R},R;}. In the absence
of treatment (p = 0), R. reduces to R} = f8So/(dy + yy) as the basic
reproduction number of the sensitive pathogen. It is generally
expected that if the basic reproduction number is less than one,
then the pathogen will be unsuccessful in invading the population
and causing an outbreak. This motivates the implementation of
public health measures (such as treatment) for reducing the
transmissibility of a pathogen, should it invade with a reproduc-
tion number greater than one.

Since the mean-field and stochastic models are concerned with
the dynamics of individuals on a global scale, the method of next
generation matrix can also be employed for the stochastic model,
which leads to the same reproduction number R} as obtained
above. However, the pair-approximation model describes the
dynamics of pairs of individuals at a local scale, and the first
generation of infection occurs when an infected individual
transmits infection to neighbouring individuals. Assuming in the
pair model that each individual has n neighbours, and introducing
one infected into a purely susceptible population, each of its n
neighbours has a finite probability of infection in one generation.
Since infected-neighbour pairs are state-independent, the expres-
sion for R} in the absence of treatment is given by

% = nt/(dy + yy)- A generalization of a previously established
technique for computing the control reproduction number in SIR
models (Keeling, 1999) is presented in Appendix B when
correlations are taken into account.

4. Simulations and results

For the purpose of simulations, we consider influenza infection
for which drug resistance is a well-documented evolutionary
consequence of antiviral agents used for treatment of clinical
disease. Here, we investigate a scenario in which drug resistant
mutants are initially absent, and resistance may emerge during
the course of an outbreak as a result of treatment. To simulate the
models formulated above, estimated parameters are taken from
the published literature for influenza, with the values of R} in the
range 1-3 (see Table 2).

We consider a susceptible population of size Sg = 100,000, and
assume fixed values of n = 6 and ¢ = 0.2. We also assume that the
resistant strain is initially absent (I,(0) = 0), but emerges with a
relative transmissibility o, = 0.8 during the outbreak. Further-
more, we seed the population with Iy(0) = 100 infections such
that each infected individual makes initial contact with only
susceptible neighbours. This would be the case, for example, if
infected individuals were initially uniformly distributed through
the population. Figs. 2a-c show the final size of the outbreak (the
total number of infections caused by both strains at the end of the
epidemic including recovered and dead individuals) in each model
as a function of treatment level p, for different values of Ry. Since
treatment reduces the transmission of the sensitive strain, a
substantial reduction in morbidity (and therefore mortality) of the
population is achieved when treatment is maintained at low to
moderate levels. However, high treatment levels exert significant
selective pressure that allows the resistant strain to gain enough
competitive advantage to establish a self-sustaining resistant
outbreak, thereby increasing the total number of infections. These
simulations indicate that there is an optimal treatment level
associated with each value of R} that minimizes the final size of
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Table 2

Description of model parameters with their baseline values for influenza infection obtained from the published literature (Ferguson et al., 2005; Handel et al., 2006; Longini

et al., 2005; Regoes and Bonhoeffer, 2006).

Parameter Description Baseline value (range) Unit
p Transmission rate of the sensitive strain Variable (day people)™!
p Treatment level of infected individuals Variable (0-1) -

or Relative transmissibility of treated sensitive infection 0.4 -

or Relative transmissibility of the resistance strain 0.8 (0-1) -

or Rate of developing resistance during treatment 104 (10°%-107") day!
Yu Recovery rate of untreated infection 1/4.1 day™"
Yr Recovery rate of treated infection 1/4.1 day™"
dy Disease-induced death rate of untreated sensitive infection 0.002 day™"
dr Disease-induced death rate of treated sensitive infection 0.0002 day™!
d,, Disease-induced death rate of resistant infection ~ordy day™!
Ry Basic reproduction number Variable (1-3) -

For a particular value of R, the transmission rate of the sensitive strain can be obtained using the expression = Rj(dy + 7y)/So-

a mean-—field model b stochastic model c pair—approximation
model
10 6 8
N TS _
5 : S
. . S 6
< .~ - A
= 4 e .
25 400N
1 3 N
T O \
52 R
% 2 \'\’/
1 0 &

0 02 04 06 08 1
treatment level

0 02 04 06 08 1
treatment level

0 02 04 06 08 1
treatment level

Fig. 2. Total number of infections (final size of the outbreak) caused by both sensitive and resistant strains as a function of the treatment level (p), for different reproduction
numbers of the sensitive strain. (Ry: black solid line, 1.4; black dashed line, 1.8; black dotted line, 2.2; black dot-dashed line, 2.4; grey solid line, 3). Transmission rate /3 is
computed for each value of R}, and baseline values of other parameters are given in Table 2.

the outbreak. While these models produce qualitatively similar
results, the emergence of resistance in the pair-approximation
model (Fig. 2c) requires a higher reproduction number with a
significantly lower optimal treatment level compared to the
homogeneous models (Figs. 2a and b). As is evidence, treatment
levels above approximately 40% leads to the wide-spread
resistance for Ry = 1.4, 1.8, 2.2 (solid, dashed, dotted curves in
Figs. 2a and b, respectively) in both mean-field and stochastic
models, whereas the spread of disease is largely controlled in the
pair-approximation model with very few resistant infected
cases.

To illustrate the time course of the outbreak when treatment is
maintained at a constant level, we assume R, = 2.4, correspond-
ing to the dot-dashed curves in Fig. 2. For a low treatment level
(30%), the sensitive strain spreads quickly (with slower rate in the
pair-approximation model) and depletes the susceptible popula-
tion (Figs. 3a-c, solid curves), and therefore a limited number of
resistant cases is generated (Figs. 3a-c, dashed curves). Increasing
treatment in each model to the optimal level associated with R}, =
2.4 leads to the further reduction in the spread of the sensitive
strain, but the generation of more resistant infections. In this case,
while emergent resistant strains cause a small outbreak
(Figs. 3d-f, dashed curves), the total number of infections is
minimal. Further increase in the treatment level to 80% enhances
the spread of drug-resistance by shifting the competitive balance
in favor of the resistant strain. As shown in Figs. 3g and h (dashed
curves), a single wave of outbreak (virtually identical to the total
number of infections) is largely caused by the spread of resistance
in both mean-field and stochastic models. However, in the pair-

approximation model, we observe two distinct infection curves:
the earlier (smaller) outbreak is caused by the sensitive strain
(which can account for the establishment of the disease in the
population, the so-called seeding phase of the pathogen), and the
subsequent (larger) outbreak is driven by the resistant strain
(Fig. 3i, solid and dashed curves). This phenomenon can also be
observed for a wide range of treatment levels above the optimal
level (37%), with the possibility of distinct large outbreaks of both
sensitive and resistant infections. As illustrated in Fig. 4a for a
37.4% treatment level with a smaller number of initial infections
(Iy(0) = 20), the first wave of infections unfolds with a magnitude
comparable to that of the second outbreak triggered by the
emergence of highly transmissible resistance. Increasing
treatment to higher levels leads to a more rapid emergence of
resistance (with less prevalence of the sensitive strain), and an
earlier occurrence of the subsequent resistant outbreak with a
larger magnitude (Fig. 3i). The magnitude and the peak time for
these outbreaks depend not only on the treatment level, but also
on other parameters involved in the spread of pathogen strains,
such as the fitness of resistance. This is shown in Fig. 4b for
slightly lower fitness of resistance (6, = 0.78) and a 39% treatment
level with Iy(0) =20, demonstrating a lower magnitude of
outbreaks with further delay in the spread of resistance. Our
simulations also indicate that when treatment is maintained at
low levels or sufficiently close to the optimal level, the final size of
infections in each outbreak has very marginal dependence on the
initial number of infections (Figs. 5a-c). This suggests that the
epidemic has spread well beyond the establishment phase
(Figs. 4a and b).



258 M.E. Alexander et al. / Journal of Theoretical Biology 259 (2009) 253-263
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Fig. 3. Time-courses of total infections (solid curves) and resistant infections (dashed curves), with Ry = 2.4. Optimal treatment levels (corresponding to dot-dashed curves
in Fig. 2) are: 57% in mean-field model, 63% in stochastic model, and 37% in pair-approximation model.
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Fig. 4. Time-courses of sensitive infections (solid curves), resistant infections (dashed curve), and total infections (grey curves) in the pair-approximation model for
R} = 2.4, with (a) 6, = 0.8, 37.4% treatment level; and (b) J, = 78, 39% treatment level. Initial number of infections is taken to be I;(0) = 20.

To prevent the spread of resistance in the population, previous
studies suggest an alternative strategy that delays the onset of
large-scale treatment for a certain amount of time after the
introduction of the drug-sensitive pathogen (Moghadas, 2008;
Moghadas et al,, 2008). Here, we investigate this strategy by
allowing the treatment level to change during the outbreak, and
compare the outcome with the scenario in which treatment is
kept constant at the optimal level for each model. With an initial
20% treatment level, we compute the total number of infections
(Tq) when, after a delay, treatment changes to a higher level
during the outbreak. Figs. 6a-c show the ratio T,/T., where T,

represent the total number of infections with a constant
treatment at the optimal level (57% in mean-field model; 63% in
stochastic model; 37% in pair-approximation model). These
comparative simulations reveal a higher final size of infection if
intensive treatment is administered too early (thus promoting
resistance) or too late (allowing the sensitive strain to propagate
widely). In contrast, the prevalence of resistance can be prevented,
and in addition a significant reduction in the size of outbreak
achieved, if a timely increase in the level of treatment is managed.
While this outcome is common to all models, the optimal timing
and increase in the level of treatment depend greatly on the type
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of model, with a larger morbidity-reduction being achieved in
mean-field and stochastic models than in the pair-approximation
model. This is due to the fact that in homogeneously mixing
models, the sensitive strain spreads more readily than the
resistant strain due to higher transmissibility and more frequent
interactions between individuals. By contrast, large-scale
resistance spreads more rapidly in the pair-approximation
model with even lower treatment levels, where heterogeneity in
population interactions lessens the superiority in the fitness-
advantage of the drug-sensitive strain, resulting in its less
extensive propagation than in a homogeneous structure.

To further explore the effect of contact structure in the pair-
approximation model on the emergence of drug-resistance, the
model was simulated for the final size of outbreak as a function of
¢, when the initial 20% treatment level is raised to 80% during the
outbreak. Assuming R} = 2.4, Fig. 7a shows that for low values of
¢ (approximately <0.3), there is an optimal timing (~30 days
after the start of outbreak) at which increasing the treatment level
minimizes the total number of infections. Fig. 7c shows that the
early onset of intensive treatment leads to a large outbreak by
promoting the spread of resistance. As R} increases, the existence
of an optimal timing can be observed for a wider range of ¢
(approximately <0.45), as illustrated in Fig. 7b for R} = 3. This
clearly indicates that, in addition to the transmissibility of the
pathogen and the treatment level, network structure of the

population can play a major role in determining the complex
dynamics of competition between sensitive and resistant strains.

5. Discussion

This paper compares three models for the propagation of drug-
resistant infection that initially arises from the treatment of a
drug-sensitive pathogen strain. A number of strategies for drug
treatment were considered and compared between the models.
The first two models assume homogeneous mixing of the
population, and ignore spatial effects such as correlations
between neighbouring individuals; thus they implement a
mean-field approach. These homogeneous models are either
deterministic or stochastic, the latter incorporating fluctuations
in the onset and transmission of disease in individuals which may
be important for the occurrence of an outbreak with a small
number of initial infections (see Appendix C). The third model
implements a pair-correlation approximation, representing the
simplest way to include spatial effects, in which higher-order
correlations are treated as ‘stochastic noise’. In order to provide
closure for the pair-approximation equations, a triplet approx-
imation was used that includes a parameter ¢ for specifying the
fraction of triplets that also form triangles, thereby providing a
simple description of social structure within the population.
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When ¢ is large, clustering is high and most (but not all)
interactions occur within local groups. However, for small ¢,
clustering is low and interactions are more uniformly spread.

A number of key findings have emerged from this comparative
study. Foremost is the result that, when the reproduction number
exceeds a threshold value, the emergence of resistance occurs
more quickly with lower treatment levels in heterogeneous
populations (in which local social interactions comprise the
majority of contacts) than in homogeneous populations (in which
all contacts between individuals are equally probable). For
example, simulations in Fig. 8a for Rj =24 show that
population-wide spread of resistance can occur in the pair-
approximation model with a 50% treatment level. However,
despite a much larger magnitude of outbreak for a similar
scenario in homogeneous interactions, few resistant cases are

generated and the final size of infections (largely caused by the
sensitive strain) can still be reduced in the mean-field and
stochastic models by a further 5-10% increase in the treatment
level above 50%. We observed similar comparisons for higher
reproduction numbers, as illustrated in Fig. 8b for a particular
value of R} =3. While the resistant strain is generally out-
competed by the sensitive strain due to the latter’s higher
transmissibility, more complex dynamics may arise from
competition between pathogen strains at high treatment levels.
For homogeneous structure, aggressive treatment beyond the
optimal level (that minimizes the total number of infections in a
constant treatment strategy) will significantly interrupt the
transmission of the dominant competitor (sensitive strain), and
therefore promote the emergence and the large-scale propagation
of resistance. The extent to which resistance spreads in the
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population depends not only on the treatment level, but also the
time at which selection of resistance occurs during the outbreak.
If a significant number of susceptible hosts have already been
infected with the sensitive strain, the selective advantage of the
resistant strain may not be enough for a subsequent resistant
outbreak. In heterogeneous populations, while the outbreak
occurs with a smaller magnitude than in homogeneous
populations, the effects of resistance emergence are much more
pronounced for high treatment levels. This is evident from Fig. 3i
(see also Fig. 4) where the resistant strain dominates the sensitive
strain after several weeks and causes a subsequent wave of
infection. However, due to a larger number of contacts
(essentially, the entire population) in the homogeneous models,
resistance appears within the single wave of outbreak earlier than
in pair-approximation model (Figs. 3g and h). Comparisons
between constant and adaptive treatment strategies in Fig. 6
show that the dominance of local interactions in heterogeneous
populations can largely subdue the fitness-advantage of the
sensitive strain; thereby providing an opportunity for the
resistant strain to spread readily through edges of connected
sites in local groups. This is highlighted in Fig. 7, which
underscores the timely implementation of intensive treatment
for minimizing the likelihood of resistant outbreaks.

The models considered in this study include a number of key
parameters, such as basic reproduction number, degree of
clustering, and treatment level. Considering realistic ranges of
these parameters, the results of simulations enable us to
determine under what conditions the homogeneous and pair-
wise models are expected to exhibit similar behaviour. However, it
is of greater importance to determine differences in their
predictions that could influence policy making. For example, due
to the assumption of random mixing, homogeneous models
generally represent larger epidemic outbreaks and may over-
estimate the final size of infections. This was highlighted in the
spread of severe acute respiratory syndrome (SARS), for which
estimates of the reproduction number led to predictions of
epidemic size that far exceeded what was observed (Meyers
et al., 2005). On the other hand, the pair-approximation model
displays a much later peak time of outbreak than homogeneous
models and this can have important implications for policy
implementation, as retarding the progression of disease in the
population is generally beneficial for the development of more
aggressive pathogen-specific control measures during the out-
break. Furthermore, we observed that the minimum in the final
size of infections occurs at some intermediate treatment level
when the reproduction number exceeds a threshold-value, and
this threshold is lower for the homogeneous models than for the
pair model—as illustrated in Fig. 2, for a fixed value of ¢ = 0.2.
Further investigation revealed that as ¢ — 0, the profile more
closely resembles that of a homogeneous model. However, for
heterogeneous structures, raising the degree of clustering causes a
reduction in the overall disease incidence in the population,
which occurs at a higher ¢ as the reproduction number increases
(Figs. 7a and b). This fact is also evident in Figs. 7c and d, where
for a fixed delay in treatment, an increase in ¢ rapidly quenches
the resistant outbreak. An important observation is that the
implementation of intensive treatment in the adaptive strategy
requires longer delay (represented by the green valley between
the red areas in Figs. 7a and b) as ¢ increases or the reproduction
number decreases. Finally, we demonstrated that a second
(resistant) wave of infection can potentially occur after a
sufficiently long delay following the outbreak of sensitive
infection (Fig. 4). Moreover, this phenomenon occurs despite the
much reduced number of total infections relative to the homo-
geneous models. This feature is entirely absent from the
homogeneous models, and represents a phenomenon peculiar to

inhomogeneous (clustering) models when a constant treatment
strategy is put in place.

The results of this study are based on dynamical approaches
that consider a constant structure of contact patterns. However, in
addition to being heterogeneous, network contacts generally
evolve during the course of a disease outbreak, due to changes
that occur in individuals’ mobility patterns according to their
clinical/epidemiological status in the population. For example,
infected individuals tend to isolate from the rest of the population
for the duration of their infection, and reconnect once they have
recovered (and acquired immunity). The co-evolution of indivi-
dual disease states and the contact network has recently been
considered for simple SIS and SIRS models (Risau-Gusman and
Zanette, 2008; Shaw and Schwartz, 2008; Zanette and Risau-
Gusman, 2007), and new phenomena (such as backward bifurca-
tions) not encountered in traditional models were found. General-
ization of the models presented in this paper to incorporate co-
evolution of contacts and individual disease progression could
suggest alternative control strategies for mitigating the spread of
infection. Although this study considers treatment as a single
intervention strategy, a combination of control measures (e.g.,
vaccination, isolation/quarantine, and other social distancing
mechanisms) is likely to take place during an outbreak, which
can profoundly influence the dynamics of network contacts and
spread of resistance in the population. This further underscores
the importance of optimizing control strategies from a societal
point of view, especially in the face of inadequate resources and
limited capacity to cope with surging demand in healthcare.

Our results have important implications for the management
of public health crises, particularly those caused by the emergence
of novel infectious pathogens such as pandemic influenza viruses.
This is currently a major global concern due to outbreaks of the
deadly avian strain H5N1 (Jennings and Peiris, 2006) that claims a
high mortality rate amongst infected humans (WHO, 2008).
Several strategies have been proposed and evaluated to mitigate
the impact of a nascent pandemic virus, and antiviral therapy has
been rationalized as the first line defense in the absence of an
effective virus-specific vaccine (Ferguson et al., 2005; Gani et al.,
2005; Gardam et al., 2007; Longini et al., 2005). Considering the
risk of containment failure at the source of a pandemic, potential
evolutionary-epidemiological consequences of drug use should be
taken into account when developing more nuanced, targeted, or
geographically specific antiviral strategies (Moghadas, 2008;
Moghadas et al., 2008). In the presence of antiviral treatment,
emergence of resistance can result in a rapid and wasteful
depletion of available drug supplies that are currently being
stockpiled, and therefore strategies that prolong the effectiveness
of drugs should be prioritized. A recent study, using a stochastic
modelling approach, indicates that an adaptive treatment strategy
may be suitable if a secondary resistant outbreak is unavoidable
(Handel et al., 2009). While being appropriate for management of
resistance and minimizing the final size of infections, this strategy
may involve decisions for rationing of drug supplies and possibly
withholding treatment from infected individuals at low risk of
disease-induced complications or death (Handel et al., 2007). The
ethical framework of such decisions is complex; however,
comparison of the potential consequences of competing strategies
will allow public health authorities to optimize policy decisions
for maximum protection of community health.
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Appendix A. Equations for the pair-approximation model

Define uy = dy + 7y, py = dr + y1, and u, = d;, + 7,. Then, the
pair dynamics are governed by the following exact equations:

[SS]' = —27{[SSIy] + 67[SSI7] + O,[SSI,]},

[SIyl = {1 — p)([SSly] + 61[SSIt]) — (IySly] + or[lySIT] + O:[IuSI; D)}
- (17 + :uU)[SIU]-

[SIt] = t{p([SSly] + 1[SSIt)) — ([IuySIt] + O1(I7SIt]) — 6,[IrSIy] — S1[SIT]}
— (ur + op)[SIt],

[SI] = t{0r(SSIr] — [SI;]) — (UuSIy] + S1[IrSI] + O¢[I;SI]D)}
+ or[SIT] — 1, (S,

[SX] = —t{[IySX] + Or[IrSX]1 + Or[I-SX1} + pylSIul + urlSIt],
[SX,] = —T{[1uSX+] + OrIrSXs] + S:11:SX:1} + 1[I+,
Uulyl = 2t{(1 — p)([ySIy] + 6r[IrSIy] + [SIu)} — 2uyllulyl,

Uylr] = t{p(lySly] + orlIrSIy] + [Slu]) + (1 — p)([ITSly]
+ OrlrSIt] + o1[SIT])
— (ot + py + pp)lylrl,

UulyY = {1 = p)(UuSIF] + S1[IrSI]) + S:[IuSIF]}
+ arllylr] = (1y + p)lluly],

TuX]' = t{(1 — p)([uSX] + o1lIrSXD)} + py(ulu]l — HuXD + prllulr],
UuX:l = t{(1 = p)[UuSXi] + OrlITSX: D} + pllul] — pyuXyl,
Urlr] = 2zp{[lySIr] + orllrSIr] + Sr[SIT]} — 2(pr + an)rIr],

Urly] = tp(llySIy] + orlIrSI]) + 6:UrSLDY + o (Urlr] — Urk]) — (ur + p)lrli]
UrX] = tp(uSX] + SrlIrSX]) — o [IrX] + piyllulr] + pr(lIrlr] — UrXD),

I Xr] = tp([lySXr] + S1[IrSX:r]) — or[IrXe] + i lIrly] — prlIrX:]),

1Y = 2t0-([I:SIF]) + [SIF]) + 2oer[IT]] — 2,111,

XY = ©6:[1:SX] + o [IrX] + pyllelu] + prllelr] —

[ [IXrD),

[

11X,
LXr] =t/ [1:SXi] + oI Xe] + p (1] —
XX] = 2(uylluX] + prllrXD),

XXr] = pylluXel + prlleXe] + w4 [1:X],
XeXr] = 20, [ X5 ).

Here, the triplets are approximated using the closure relation
(Keeling, 1999), where ¢ is an extra parameter chosen in the range
[0,1] and its effect on disease spread and development of
resistance is investigated.

Appendix B. Reproduction numbers of the pair-approximation
model with correlations

When correlations are taken into account, the dynamics of the
infectious states are given by

Iyl = (A = p)t(Sly] + 67[SIT]) — uyllul,
[Ir]" = pr((SIy] + O1(SIT]) — (g + oep)I7],
Y = 6,t[SIy] + otr[lt] — i, [Iy].

We are primarily interested in the dynamics of the system at
the onset of the outbreak. The variables [SIy], [SIT], and [SI;] may be
expressed in terms of the pair correlation functions Csy, Csr, and
Csr (see Eq. (9)), so the above equations may be written in the
form

]l 1A -piCsy -y or(1 = p)iCsr 0 [Iu]
Ur]| = piCsr orpiCsr — (ur + 01) 0 [l |,
[Ir] 0 or 0,%Csp — [I+]
where 7 = nt[S]/N ~ f3Sy during the initial phase of disease outset

(assuming [S] ~ [N]). The coefficient matrix of the above system
has negative eigenvalues provided Ri <1 and R; <1, where

s . [(1—p)Csy = 6rpC )2
ozl st~ gl —pyc U_ §:pCor b,
¢ T{ Ly +MT+O€T 04 (1 —p) SU+MT+OCT TPCst
(14)
k=05~ RiC (15)
T

where R and R; correspond to the homogeneous case described in
Section 3. It is clear that the correlations Csy, Csr, and Cs; play a
significant role in determining whether an epidemic outbreak
occurs. For the initial conditions used in the simulations (Section 4),
we have [SIy]=n[ly]; [SIT]=[SI;]=0; and [S]=N —[ly], from
which we obtain initial values of Csy = N/n[SIy]/[S|lu]=
N/(N —[Iy]) = 1.001; Cst = Cs = 1. Numerical simulations (not
reported here) suggest that these correlations converge to
equilibrium values soon after the onset of the outbreak. For
uncorrelated distributions (Csy = Cst = Csr = 1), the expressions
in (14) and (15) reduce to the homogeneous case, so that Ri =K
and R, = R,. Preliminary analysis confirms that the equilibrium
value of Cs;, and therefore R, is a decreasing function of ¢. The
analysis of the corresponding behaviour of Ri (involving Csy and
Csr) as a function of ¢ appears to be more complicated and is
currently being investigated.

Appendix C. Algorithm for stochastic simulations

We used the Markov Chain Monte Carlo method to simulate
the stochastic dynamic model. In simple stochastic SIR models,
the basic reproduction number can be used to assess the
likelihood of an outbreak taking place, which is determined by
the probability 1 — (1/R} Yo (Allen, 2003), where I is the initial
number of infections. In our model, this means that if R}, is greater
than one but small (for example R} = 1 + ¢), then the probability
of transition for Iy is initially low (= &ly(0)) for small Iy(0). This
reflects the fact that stochastic effects dominate in the system at
the beginning of the transition period. For the purpose of
simulations, we chose the initial number of infections (Iy(0) =
100) sufficient to result in an outbreak. A key parameter in
stochastic simulations is the step-size of the Monte Carlo method.
Using a fixed step-size requires a large number of steps for the
stochastic system to guarantee that every member of the infected
population can transmit the disease, which is computationally
very demanding in terms of both timing and resources. To reduce
such computational load, the sampling scheme can be improved
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and an adaptive step-size used. We therefore employed a
sampling method introduced by Rohani et al. (2002) to estimate
the transition time to the next event (At) by calculating the sum of
the frequencies of all possible events, given by 5= Sy +
orlT)S(t) + 5rﬁ1r5(t)+ orlr + VU(IU + 1)+ VTIT +dyly +drlr + du_,lr-
Then, letting At = U, /x, where U, is uniform distribution in the
interval [0,1], we ordered all possible events as an increasing fraction
of n and generated another uniform deviate (U; €[0,1]) to
determine the nature of next event. These simulations were run
for a large number of samples (N = 100,000) to guarantee the
convergence of the results, and we considered the average of sample
realizations of the stochastic process to generate the infection curve.
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