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a b s t r a c t

With the rapid development of the economy and the accelerated globalization process, the
aviation industry plays a more and more critical role in today’s world, in both developed
and developing countries. As the infrastructure of aviation industry, the airport network
is one of the most important indicators of economic growth. In this paper, we investigate
the evolution of the Chinese airport network (CAN) via complex network theory. It is found
that although the topology of CAN has remained steady during the past few years, there are
many dynamic switchings inside the network, which have changed the relative importance
of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers
and cargoes) on CAN. It is found that the traffic continues to grow in an exponential form
and has evident seasonal fluctuations.We also found that cargo traffic and passenger traffic
are positively related but the correlations are quite different for different kinds of cities.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ranging from biological systems to economic and social systems, many real-world complex systems can be represented
by networks, including chemical-reaction networks, neuronal networks, food webs, telephone networks, the World Wide
Web, railroad and airline routes, social networks and scientific-collaboration networks [1–3]. Obviously, real networks are
neither regular lattices nor simple random networks. Since the small-world network model [4] and the scale-free network
model [5] were put forward at the end of the last century, people have found that many real complex networks are actually
associatedwith the small-world property and a scale-free, power-law degree distribution. In the past ten years, the theory of
complex networks has drawn continuous attention from diverse scientific communities, such as network modelling [6–8],
synchronization [9,10], information traffic [11–14], epidemic spreading [15,16], cascading failures [17–20], evolutionary
games [21–25], social dynamics [26] etc. One interesting and important research direction is understanding transportation
infrastructures in the framework of complex network theory [27–34].
With the acceleration of the globalization process, the aviation industry plays a more and more critical role in the

economy and many scientists have paid special attention to the airline transportation infrastructure. Complex network
theory is naturally a useful tool since the airports can be denoted by vertices and the flights can be denoted by edges.
In the past few years, some interesting research has been reported studying airport networks from the point of view of
network theory. For example, Amaral et al. and Guimerà et al. comprehensively investigated the worldwide airport network
(WAN) [35,36]. They found thatWAN is a typical scale-free small-world network and themost connected nodes inWAN are
not necessarily the most central nodes, which means critical locations might not coincide with highly-connected hubs in
the infrastructures. This interesting phenomenon inspired them to propose a geographical–political-constrained network
model. Barrat et al. and Colizza et al. further investigated the intensity of WAN’s connections in the view of weighted

∗ Corresponding author at: School of Electronic and Information Engineering, Beihang University, Beijing, 100083, PR China.
E-mail address: xbcao@ustc.edu.cn (X.-B. Cao).

0378-4371/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2010.05.042

http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:xbcao@ustc.edu.cn
http://dx.doi.org/10.1016/j.physa.2010.05.042


J. Zhang et al. / Physica A 389 (2010) 3922–3931 3923

a

b c

Fig. 1. The development of Chinese gross domestic product (a), number of airlines (b) and number of airports (c) from 1950 to 2008.
Source: The data are obtained from Ref. [45].

networks and found correlations between weighted quantities and topology [37,38]. They proposed a weighted evolving
network model to expand our understanding of the weighted features of real systems. Furthermore, they proposed a global
epidemic model to study the role of WAN in the prediction and predictability of global epidemics. Also, several empirical
works on the Chinese Airport Network [39–41] and the Indian Airport Network [42] reveal that the scale of national airport
networks can exhibit different properties from the global scale of WAN, i.e., the two-regime power-law degree distribution
and the disassortative mixing property.
As the aviation industry is an important indicator of economic growth, it is necessary and very meaningful to investigate

the evolution of the airport network. Recently, Gautreau et al. studied the US airport network in the time period 1990–2000.
They found that most statistical indicators are stationary and that intense activity takes place at the microscopic level, with
many disappearing/appearing links between airports [43]. Rocha studied the Brazilian airport network (BAN) in the time
period 1995–2006. He also found the network structure is dynamic, with changes in the importance of airports and airlines,
and the traffic on BANhas doubled during a period inwhich the topology of BANhas shrunk [44]. Inspired by their interesting
work, we investigate the evolution of Chinese Airport Network (CAN) from the year 1950 to 2008 (1991–2008 for detailed
traffic information and 2002–2009 for detailed topology information). It is found that the airway traffic volume increased
in an exponential form while the topology had no significant change.
The paper is organized as follows. In the next section, the description of CAN data is presented. The statistical analysis of

CAN topology is given in Section 3. In Section 4, we analyze the evolution of traffic flow on CAN. The paper is concluded in
the last section.

2. Development of CAN with Chinese GDP

The airport network is the backbone of the aviation industry. It includes airports and direct flights linking airport pairs.
Since the aviation industry is closely related to economic development,we firstly investigate the development of the Chinese
economy, airports and flights. Fig. 1(a) shows the development of Chinese GDP from 1950 to 2008. One can see that it has
greatly increased in those 58 years. However, the development of airlines (Fig. 1(b)) and airports (Fig. 1(c)) is not consistent
with that of GDP. For the development of airports (Fig. 1(c)), one can see that the number of airports grew in 1950–1975,
1987–1995 and 2005–2008, but stayed constant in 1975–1987 and 1995–2005. The first increase (1950–1975) mainly
connected large prefecture-level cities, and the second increase (1987–1995) mainly connected medium prefecture-level
cities. The third increase (2005–2008) is due to the rapid development of the Chinese economy and China plans to build
more airports by 2020. From Fig. 1(b), one can also see that the number of airlines has remained constant since 1995 and
rose again in year 2007 and 2008.
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Fig. 2. (Color online) (a) The development of passengers, (b) The development of cargoes, (c) Relation of passengers over GDP, (d) Relation of cargoes
over GDP.
Source: The data are obtained from Ref. [45].

Although the airline infrastructure (e.g., airports and airlines) does not keep growing due to various constraints, the traffic
on CAN keeps growingwith the GDP. As shown in Fig. 2, the traffic (passengers and cargoes) grows almost linearlywith GDP.
By calculation, one can see that 1 million RMB of GDP can support about 7 passengers and 153 kg of cargo. Moreover, the
Chinese aviation industry was also shocked by the 2008 global financial crisis. The top 3 Chinese airline companies have
reported their operating information for 2008 and the most important indicators are declining. This has been demonstrated
by the annual report of the Civil Aviation Administration of China (CAAC) and we can find in Fig. 2 that the traffic for 2008
is almost the same as that of 2007.

3. Topological properties of CAN

The topology data of CAN are obtained from 14 timetables provided by the Civil Aviation Administration of China (CAAC)
from 2002 to 2009 (2 timetables for years 2003–2008, and 1 timetable for the second half of 2002 and the first half of 2009).
It should be noted that:

• The timetable contains both domestic and international airlines. As we only focus on the domestic information, the
international airlines are excluded.
• Since Ref. [45] is a statistical yearbook edited by CAAC, it contains not only the scheduled flights but also the temporary
flights,whereas the timetables only comprise the scheduled flights. Thus the number of airlines in the timetable is smaller
than the data in Ref. [45] by about 150.
• Airports in one city are view as one airport. For instance, there are 3 airports in Shanghai and Chengdu, and 2 airports in
Beijing.
• The timetables are not perfectly consistent with real flights due to weather or emergencies.

Fig. 3 shows some basic topological characteristics of CAN in the first half year of 2009. Fig. 3(a) shows the degree
distribution P(k) of CAN, which follows a two-regime power-law distribution with two different exponents as in
Refs. [39–41] (i.e., for small degrees, P(k) ∝ kλ1 and λ1 = −0.49; and for large degrees, P(k) ∝ kλ2 and λ2 = −2.63). We
also investigated the directed CAN and it is found that P(kin) and P(kout) are almost the same as P(k), where kin is the ingoing
degree and kout is the outgoing degree. Fig. 1(b) shows the correlation between kin and kout. One can see that the in-out degree
correlation is very strong: the slope is 1.000421. This means that one can fly from one airport to another and return using
the same airline. Another important topological property is the degree–degree correlation. It is defined as the mean degree
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Fig. 3. (Color online) (a) Degree distribution of CAN; (b) Correlation between kin and kout of CAN; (c) The degree–degree correlation of CAN; (d) The
clustering-degree correlation of CAN in the first half year of 2009.

Fig. 4. (Color online) The degree-betweenness correlation of CAN in the first half year of 2009. The fitting function is y = A ∗ ex/t1 + y0 with
A = 42.0, t1 = 22.6 and y0 = −53.9.

of the neighbors (knn, which is closely related to the network modularity [46]) of a given airport. Fig. 3(c) shows the results
of degree–degree correlation of undirected CAN and we can find that the degrees of adjacent airports have significant linear
anti-correlation. Fig. 3(d) exhibits the relationship of clustering coefficient C and degree k. As it shows, lower degree nodes
have larger clustering coefficient. All the results above are well in accordance with the results reported by Li and Cai [39],
Liu and Zhou [40] and Liu et al. [41].
In networks, a node participating in more shortest paths is usually more important. Thus the betweenness is proposed

to quantify the node’s importance in traffic [47]. Fig. 4 shows the relation between degree and betweenness. One can see
that betweenness generally obeys an exponential function of degree but there exist three nodes whose betweenness is
obviously much larger: Urumqi, Xi’an and Kunming. The three nodes are all located in west China: Kunming is the central
city of the southwest, Xi’an is the central city of the northwest and Urumqi is the central city of the far northwest. The
western population needs to be connected to the political centers (e.g., Beijing) and economic centers (e.g. Shanghai and
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Fig. 5. (Color online) (a) The average shortest path length d, (b) The diameter D, (c) The clustering coefficient C , (d) The reciprocity parameter R of CAN
and BAN.
Source: The data of BAN is reproduced from Ref. [44].

Table 1
Evolution of topology parameters of CAN from year 2002 to 2009. 〈k〉 is average degree, kin is ingoing degree, kout is outgoing degree, d is average shortest
path length, D is network diameter, C is clustering coefficient, R is a reciprocity parameter to measure the asymmetry of directed networks and is defined

as R =
∑N
i6=j(aij−ā)(aji−ā)∑N
i6=j(aij−ā)

2 with ā =
∑N
i6=j aij

N(N−1) [44]. Here aij = 1 if there is direct flight from airport i to j, otherwise aij = 0.

Year 〈k〉 λ1 λ2 kin kout R C d D

2002(2) 13.90 −0.42 −2.66 13.78 13.78 0.990 0.75 2.21 5
2003(1) 12.85 −0.44 −2.79 12.71 12.71 0.988 0.70 2.24 5
2003(2) 11.81 −0.41 −2.63 11.69 11.69 0.989 0.71 2.26 5
2004(1) 12.78 −0.43 −2.58 12.68 12.68 0.991 0.75 2.22 4
2004(2) 11.70 −0.45 −2.53 11.61 11.61 0.991 0.77 2.23 4
2005(1) 11.55 −0.45 −2.67 11.24 11.24 0.970 0.79 2.27 4
2005(2) 12.03 −0.45 −2.52 11.90 11.90 0.988 0.79 2.25 4
2006(1) 11.71 −0.47 −2.77 11.66 11.66 0.995 0.77 2.28 4
2006(2) 12.55 −0.46 −2.81 11.94 11.94 0.944 0.81 2.22 4
2007(1) 12.33 −0.45 −2.52 12.23 12.23 0.991 0.79 2.28 4
2007(2) 12.85 −0.47 −2.96 12.88 12.88 0.994 0.79 2.25 4
2008(1) 13.22 −0.47 −2.64 13.38 11.37 0.990 0.78 2.23 4
2008(2) 12.06 −0.46 −2.70 11.96 11.96 0.991 0.76 2.29 4
2009(1) 13.07 −0.49 −2.63 12.97 12.97 0.991 0.79 2.27 4

Shenzhen) in the east. However, due to the long distance from western China to eastern China (over 3000 km), it is costly
and unnecessary to make all western airports directly link to the eastern airports. Thus some transit airports are naturally
formed as the bridge between east and west China.
Now we study the evolution of the topological properties of CAN. It can be seen from Table 1 that the topological

properties of CAN do not significantly change from 2002 to 2009. Similarly, the topological properties of the Brazilian
airport network did not significantly change during a long period of time [44]. Next we make a comparison between the
two networks.
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Fig. 6. (Color online) (a) The fluctuation of airports: added indicates the new airports and removed indicates the removed airports; (b) the fluctuation of
airlines: aOO indicates the added airlines between old airports, aON indicates the added airlines between old and new airports, aNN indicates the added
airlines between new airports, dOO indicates the deleted airlines between old airports, dOR indicates the deleted airlines between old and removed airports
and dRR indicates the deleted airlines between removed airports.

Table 2
Distribution of shortest paths in the first half year of 2009.

Shortest path Number of paths Percentage of paths Number of flights to be changed

1 902 9.54 0
2 5561 58.83 1
3 2853 30.18 2
4 137 1.45 3

Fig. 5(a) compares average shortest path length d of CAN and BAN. One can see that d of CAN is around 2.25 and is slightly
smaller than that of BAN. Fig. 5(b) shows the diameter D, which is also slightly smaller in CAN. This means that CAN is more
convenient for passengers. Table 2 gives detailed results of shortest paths of CAN in the first half year of 2009. About 10%
paths are direct connections and over 98% paths consist of no more than 2 flights. Fig. 5(c) shows that average clustering
coefficient C of CAN is apparently larger than that of BAN and Fig. 5(d) shows that CAN is more reciprocal than BAN.
From the discussions above, we know that CAN is an asymmetric small-world network with a two-regime power-

law degree distribution, a high clustering coefficient, a short average path length, a negative degree–degree correlation,
a negative clustering-degree correlation and an exponential betweenness-degree correlation. Although the topology
characteristics of CAN is quite steady from year 2002 to 2009, a dynamic switching process underlies the evolution of CAN.
Fig. 6 shows the measured fluctuation of CAN from year 2002 to 2009. Fig. 6(a) shows the fluctuation of airports and we
can see that the fluctuation (including the added airports and removed airports) is usually between 5 and 15. But for the
second half year of 2007 and the first half year of 2008, the fluctuation is evidently more vigorous. Fig. 6(b) shows that the
percentage of changed airlines is usually smaller than 20% and the majority of changes is mainly induced by aOO and dOO.
But for the second half year of 2007 and the first year of 2008, when many airports were added and removed, aON and dOR
contribute the majority of changes.

4. The traffic of CAN

This section investigates evolution of traffic on CAN.
As shown in Fig. 7, the traffic (including cargoes and passengers) has evident seasonal fluctuations as in the United

States. If the seasonal fluctuations are averaged out, one finds that the traffic of CAN increases exponentially. We can also
observe similar growth (Fig. 8) of the average traffic per-link and per-node. It is found that the average traffic of CAN has
increased about 200% during the 17 years. It is worth noting that there exists a sudden drop of passenger traffic in year
2003 (see Figs. 7(b), 8(a) and (b)). This was mainly caused by the outbreak of Severe Acute Respiratory Syndrome (SARS).
However, the cargo traffic was not affected by SARS (see Figs. 7(a), 8(c) and (d)).
Fig. 9 displays the cumulative distribution of node strength s, namely the throughput of each airport including passengers

(spassenger, see Fig. 9(a)) and cargoes (scargo, see Fig. 9(b)). The distributions are quite broad: 5 orders of magnitude for
passengers and 7 for cargoes. The correlations of k and s are also presented. Fig. 9(c) shows the dependence of spassenger on
k, and Fig. 9(d) shows the dependence of scargo on k in year 2008. One can find that there exists a clear non-linear behavior
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Fig. 7. (Color online) Evolution of total traffic on CAN: (a) cargoes; (b) passengers.
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Fig. 8. (Color online) Evolution of total traffic on CAN: (a) passengers per-link; (b) passengers per-node; (c) cargoes per-link; (d) cargoes per-node.

denoting a strong correlation between strength and topology: spassenger ∝ k1.58 and scargo ∝ k2.20. We also examined the data
from year 2002 to 2007 and the results are similar.
Fig. 10 shows the correlations of cargo traffic and passenger traffic from year 2001 to 2008. One can find a strong linear

correlation between cargo traffic and passenger traffic for both the total traffic of CAN and the traffic of a single airport/city.
However, the ratios of cargo traffic and passenger traffic are quite different. As shown in Fig. 10(a), the slope is 0.045 for the
total traffic of CAN. Formunicipalities Beijing (Fig. 10(b)) and Shanghai (Fig. 10(c)), the slopes are obviously smaller. Because
Beijing and Shanghai are the most important central cities of politics, economy and culture in China, they are aggregating
centers and distributing centers for over 51% of Chinese goods flow (only 27% of Chinese passenger flow). For tourism cities
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Fig. 9. (Color online) (a) spassenger: the passenger throughput of each airport, (b) scargo: the cargo throughput of each airport in years 1992, 1996, 2000, 2004
and 2008; (c) the correlation between k and spassenger , (d) the correlation between k and scargo in year 2008.

Chengdu (Fig. 10(d)) and Kunming (Fig. 10(e)), the slopes are obviously larger, indicating that the passenger traffic is more
active in these two cities.

5. Conclusion

In summary, we investigate the evolution of Chinese airport network (CAN), including the topology, the traffic and the
interplay between them. We relate the evolution of CAN to the development of the Chinese economy. The traffic on CAN
(passengers and cargoes) grew almost linearly with Chinese GDP: 1 million RMB of GDP can support about 7 passengers
and 153 kg cargoes. We also found that there exists a dynamic switching process inside the network, i.e., from the year
2002 to 2009, although themain topological indicators of CANwere quite stationary, there were airports and airlines added
and/or removed.
Moreover, the traffic flow (including passengers and cargoes) on CAN is studied. The traffic grew at an exponential

rate with seasonal fluctuations, and the traffic throughput of an airport has a power-law correlation with its degree:
spassenger ∝ k1.58 and scargo ∝ k2.20. Our comparative studies also show that cargo traffic and passenger traffic are positively
related, but with different ratios for different kinds of cities.We also found that the outbreak of global epidemic diseases can
greatly affect passenger traffic. For example, during the epidemic spreading period of Severe Acute Respiratory Syndrome
(SARS, 2003), the passenger traffic decreased sharply while the cargo traffic was not affected.
Our work can provide some insights in understanding the evolution of the airport network as affected by some social

factors such as the development of economy and the outbreak of disease.
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Fig. 10. (Color online) The correlations of cargo traffic and passenger traffic from year 1991 to 2008 for: (a) the whole country, (b) Beijing, (c) Shanghai,
(d) Chengdu and (e) Kunming.
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