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Background: Lactoferrin (Lf) is an 80 kDa iron-binding glycoprotein of the transferrin family. It is abundant in
milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune
function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator
activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is
made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions
of Lf with molecular and cellular components of both hosts and pathogens.
Scope of review: This review summarizes the activities of Lf, its regulation and potential applications.
Major conclusions: The extensive uses of Lf in the treatment of various infectious diseases in animals and
humans has been the driving force in Lf research however, a lot of work is required to obtain a better
understanding of its activity.

General significance: The large potential applications of Lf have led scientists to develop this nutraceutical
protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled
Molecular Mechanisms of Iron Transport and Disorders.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Lactoferrin (Lf), first reported almost 50 years ago [1–3], is a non-
hemic iron-binding protein. It is a member of the transferrin family,
alongwith serum transferrin, ovotransferrin, and melanotransferrin [4],
all of which function in iron transport, and inhibitors of carbonic
anhydrase, Saxyphillin, and Pacifastin are also members of this
superfamily. Lf is produced by mucosal epithelial cells in various
mammalian species including humans, cows, goats, horses, dogs, and
rodents, and it is also produced by fish [5]. This multifunctional
glycoprotein is found in mucosal secretions including tears, saliva,
vaginal fluids, semen [6], nasal and bronchial secretions, bile, gastroin-
testinal fluids, urine [7], milk and colostrum [8]. The most abundant
antimicrobial proteins include lysozyme, collectin [9,10] and lactoferrin.
Lf possesses a greater iron-binding affinity, and it is the only transferrin
with the ability to retain this metal over a wide range of pH values,
including resistance to proteolysis. The most striking physicochemical
feature of Lf is its very high affinity for iron. In both Lf and related
transferrins (Tfs), two Fe+3 ions are bound very tightly (K~1022 M) but
reversibly to LF, with two synergistically bound CO3

2− ions [11,12].
Because of its wide distribution in various tissues, Lf is a highly
multifunctional protein. Indeed, it is involved in many physiological
olecular Mechanisms of Iron

.

ll rights reserved.
functions, including regulation of iron absorption and immune re-
sponses; it also exhibits antioxidant activity and has both anticarcino-
genic and anti-inflammatory properties. However, its antimicrobial
properties are its most widely studied function [8,12–16]. The
antimicrobial activity of Lf is driven mostly by two mechanisms. The
first involves iron sequestration in sites of infection, which deprives
microorganisms of this nutrient and causes a bacteriostatic effect. The
second mechanism is the direct interaction of the Lf molecule with the
infectiousmicroorganism. In some cases, positively charged amino acids
in Lf can interactwith anionicmolecules on certain bacterial, viral, fungal
and parasite surfaces, causing cell lysis. The physiological capabilities of
Lf in host defense combinedwith currentpharmaceutical andnutritional
needshave led to the classification of Lf as anutraceutical protein, and for
several decades, investigators have looked for the most convenient way
to produce it. Three basic approaches are currently being used. First,
native Lf can be commercially purified from the milk and colostrum of
several mammals. Second, recombinant Lf (rLf) can be generated from
bacterial, fungal and viral expression systems. Third, transgenic plants
and animals have been generated with express rLF.

2. Characteristics of the Lf sequence

Thenucleotide sequenceof humanmilk Lf (hLf)wasfirst determined
byRay et al. in 1990 [18] and comparedwith the amino acid sequence of
human lactotransferrin determined previously [17]. Lf genes are highly
conserved among species, with an almost identical organization and an
mRNA of about 1900–2600 bp. A homology search in sequence
databases revealed nucleotide sequences for the Lfs of 13 species: 3

http://dx.doi.org/10.1016/j.bbagen.2011.06.018
mailto:qrascon@uach.mx
http://dx.doi.org/10.1016/j.bbagen.2011.06.018
http://www.sciencedirect.com/science/journal/03044165


227I.A. García-Montoya et al. / Biochimica et Biophysica Acta 1820 (2012) 226–236
primates, 7 even-toed ungulates, 1 pig, 1 cat, and 1 mouse. Pairwise
sequence identities ranged fromaminimumof ~78% to nearly 100%. The
main outliers in this groupwere Lfs fromprimates, inwhich human and
chimpanzee are quite similar (95–98%) when compared to orangutan
(79%). On the other hand, horse and camel; pig, cow, yak, water buffalo,
bull, and goat Lfs share 81 and 78% of sequence identity respectively
when compared to human Lf as outgroup. The sequence relationships
given above show that the Lfs form a highly conserved sequence family,
and also sequence identity between Lfs and other Tfs is relatively high at
60–65% [19]. A characteristic feature of Lfs is their highly basic character,
with a pI typically greater than 9; this property is typically predictable
from their sequence. Structurally, the feature that most readily
distinguishes Lfs from Tfs is the peptide linker between the two lobes,
thought to have evolved from an ancient duplication event [20], which
also contains several proline residues.
3. Molecular structure

Lf is an 80 kDa glycosylated protein of ~700 amino acids, with a high
homology among species. It is comprised of a simple polypeptide chain
folded into two symmetrical lobes (the N-lobe and C-lobe), which are
highly homologous with one another (33–41% homology). The two
lobes are connected via a hinge region containing parts of an α-helix
between amino acids 333 and 343 in human Lf (hLf) [7], which confers
flexibility to the molecule [6,7,21]. The polypeptide chain includes
amino acids 1–332, comprising the N-lobe, and 344–703, comprising
the C-lobe, and it is made up of α-helix and β-pleated sheet structures
that create two domains within each lobe (domains I and II) [22]. Each
lobe can bind ametal atom in synergywith the carbonate ion (CO3

−2). Lf
is capable of binding Fe+2 or Fe+3 ions, but it has also been observed to
be bound to Cu+2, Zn+2 and Mn+2 ions [23]. Because of its ability to
reversibly bind Fe+3, Lf canexist freeof Fe+3 (apo-Lf) or associatedwith
Fe+3 (holo-Lf), and it has a different three-dimensional conformation
depending on whether or not it is bound to Fe+3[19].

Apo-Lf has an open conformation, while holo-Lf is a closedmolecule
with greater resistance to proteolysis [7]. Because of the common
structural framework among Lfs, it is possible to model their
conformations using crystallographic data from other Lf species
(Fig. 1a). The amino acids directly involved at the iron-binding site in
each lobe areAsp60, Tyr92, Tyr192 andHis253,whileArg121 is involved
in binding the CO3

−2 ion (Fig. 1b). Lf is a basic, positively charged protein
with a pI of 8.0–8.5. The primary structure of Lf shows the number and
position of Cys residues that allow the formation of intramolecular
N2
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Fig. 1. Predicted structure of lactoferrin. a) From EU812318 (bLF) sequence using PDB ID: 1BIY
binding pocket site of lactoferrin. Fe +3 (cream) CO3 (gray and red). Modeled using Protein M
disulfide bridges; Asn residues in the N- and C-terminal lobes provide
several potential N-glycosylation sites [25,26].

4. Antimicrobial activities of lactoferrin

Several functions have been attributed to Lf. It is considered to be a
key component of the innate host defense system because it can
respond to a variety of physiological and environmental changes [27].
The structural features of Lf provide additional functionalities beyond
the Fe+3 homeostasis function common to all transferrins. Specifically,
Lf exhibits strong antimicrobial activity against a broad spectrum of
bacteria (Gram+ and Gram−), fungi, yeasts, viruses [14] and parasites
[29], although it seems to promote the growth of beneficial bacteria like
Lactobacillus and Bifidobacteria [28]. It also exhibits anti-inflammatory
and anticarcinogenic activities [27] and has several enzymatic functions
[30]. Lf plays a key role in maintaining cellular iron levels in the body.
One of the first antimicrobial properties discovered for Lf was its role in
sequestering iron from bacterial pathogens. This was believed to be the
sole antimicrobial action of lactoferrin because apo-lactoferrin pos-
sessed antibacterial activity [31,32]. It was later demonstrated that
lactoferrin can also kill microorganisms through an iron-independent
mechanism [33] inwhich lactoferrin directly interactswith the bacterial
cell surface [31,34,35].

4.1. Antibacterial activity

The antibacterial activity of Lf has been documented in the past, both
in vitro and in vivo for Gram-positive and Gram-negative bacteria and
some acid-alcohol resistant bacteria. Table 1 shows the bacteria against
which Lf has shownan inhibitory effect and themechanismusedby Lf to
exert its effect. Particular attention should be given to bacteria listed in
Table 1 because some of these are known to be resistant to
antimicrobials, such as the strains of Staphylococcus aureus, Listeria
monocytogenes, methicillin-resistant Klebsiella pneumoniae and Myco-
bacterium tuberculosis, among others. Lf has also been proven effective
against strains ofHaemophillus influenzae and Streptococcus mutans that
were inhibited by an iron-independent interaction with the cell surface
[39,45].

The sequestration of iron away from bacterial pathogens inhibits
bacterial growth, limits the use of this nutrient by bacteria at the
infection site and downregulates the expression of their virulence
factors [60,65]. Lf's bactericidal function has been attributed to its
direct interaction with bacterial surfaces. In 1988, it was shown that Lf
damages the external membrane of Gram-negative bacteria through
TYR 92

TYR 192

Fe 3+

CO
3
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ARG121

(buffalo) as a template, showing two-lobe, four-domain polypeptide. b) Canonical iron-
odel Portal [24], and viewed using Chimera software (http://www.cgl.ucsf.edu/chimera/).
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Table 1
Bacteria against which Lf has a reported effect.

Target Mode of action Reference

Gram-positive Bacillus stearothermophilus Iron sequestering [36,37]
Bacillus subtilis Iron-independent interaction with bacterial cell surface [38]
Klebsiella pneumoniae Iron-independent interaction with cell surface [39]
Listeria monocytogenes Altering bacteria virulence [40,41]
Staphylococcus aureus Iron sequestering [42,43]
Streptococcus mutans Iron-independent interaction with cell surface [44–46]
Streptococcus parasanguinis Altering bacterial growth [47]
Actinobacillus Proteolytic activity [48]
S. epidemidis Interaction with lipoteichoic acid on bacterial surface [48]
S. epidermidis Prevents biofilm formation—through iron sequestering [48]

Gram-negative Chlamydophila psittaci Interferes with cell adhesion [50]
Haemophillus influenzae Altering bacteria virulence—degrading IgA1 and Hap [39]
E. coli enteropathogenic (EPEC) Proteolytic activity of invasive mechanism [49]
E. coli enteropathogenic (EAEC) Inhibit adherence of diffusely adherent [51]
E. coli (DAEC) Inhibit aggregative proliferation [51]
Helicobacter felis Prevention of matrix interaction cell-host [52]
Helicobacter pylori Iron-independent mechanism of inhibition [53,54]
Legionella pneumophila Prevent intracellular proliferation [55]
Pseudomonas aeruginosa Prevents biofilm formation [56–58]
Shigella flexneri Disrupt bacterial type III secretion system [59]
Vibrio cholerae Iron-independent mechanism of inhibition [69]
Mycobacterium tuberculosis Augment cellular immunity [61,62]
Mycoplasma bovis Prevents biofilm formation [57]
Porphyromonas gingivalis Disrupt biofilm formation—cell membrane permeabilization [63]
Samonella enteritidis Interferes with polysaccharide cell content [64]
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an interaction with lipopolysaccharide (LPS) [66]. The positively
charged N-terminus of Lf prevents the interaction between LPS and
bacterial cations (Ca+2 and Mg+2) [67,68] and interferes with
aggregative proliferation in E. coli[52]. The interaction between Lf
and LPS or other surface proteins also potentiates the action of natural
antibacterials such as lysozyme, which is secreted from the mucosa at
elevated concentrations along with Lf [66]. It has also been
demonstrated that the N-terminal lobe of Lf possesses a serine
protease-like activity [39]. In H. influenzae, Lf is able to cleave proteins
in arginine-rich regions, and the protease active site is situated in the
N-terminal lobe, thus attenuating virulence and preventing coloniza-
tion [69]. In vitro and in vivo studies have shown that Lf has the ability
to prevent the attachment of certain bacteria to the host cell. The
attachment-inhibiting mechanisms are unknown, but it has been
suggested that Lf's oligomannoside glycans bind bacterial adhesins,
preventing their interaction with host cell receptors [48,63]. Biofilm
formation, which was proposed as a colonial organization adhesion
method for Pseudomonas aeruginosa, is a well-studied phenomenon in
patients suffering from cystic fibrosis. Through biofilm formation,
bacteria become highly resistant to host cell defense mechanisms and
antibiotic treatment [70–72]. It is well known that some bacterial
strains require high levels of iron to form biofilms. Thus, Lf's function
as an iron chelator has been hypothesized to effectively inhibit biofilm
formation through iron sequestration [73,74].

4.2. Antiviral activity

Lf possesses antiviral activity against a broad range of RNA and DNA
viruses that infect humans and animals [6]. Initial work suggested that
only envelopedviruseswere affectedby Lf, and that this activitywasdue
to several factors, including inhibition of virus–host interaction in the
herpes simplex virus (HSV) [75,76]; inhibition of intracellular virus
trafficking in the hepatitis B virus (HBV) [77–79] and human
cytomegalovirus (HCMV) [80,81]; or direct binding of lactoferrin to
the viral particle in the hepatitis C virus (HCV) [82,83], feline herpes
virus (FHV-1) [16], and hepatitis G virus (HGV) [84]. The human
immunodeficiency virus (HIV) remains a major medical challenge
because current treatments of the syndrome that it causes are not
completely effective. In vitro studies show that, among human plasma
and milk proteins, Lf exerts a strong activity against HIV. This effect is
due to inhibition of viral replication in the host cell [39,85,86]. Lf also
binds to three of the many co-receptors of HIV [87] and the DC-SIGN
receptor [88]. The interaction of Lf with surface nucleolin was shown to
block the attachment and entry of HIV particles into HeLa P4 cells [87].

Fig. 2 illustrates structural in situ models of the C- and N-lobes.
Interestingly, two large fragments of bLf, the C-lobe (aa 345–689) and
the N-lobe (aa 1–280), have been shown to inhibit HSV infection [89].
The N-lobe the peptides 222–230 (ADRDQYELL) and 264–269
(EDLIWK) were also able to inhibit HSV-1 infection when chemically
synthesized, albeit only when they were assayed together [89].
Additionally, smaller antibacterial peptides such as bLficin interfere
with HSV-1 cell-to-cell movement [77].

Human respiratory syncytial virus (RSV) is inhibited by Lf at
concentrations ten times lower than those found in human milk. Lf
also acts against non-enveloped viruses such as adenoviruses and
enteroviruses [90]. Several mechanisms of action have been proposed
for the antiviral activity of Lf. One of the most widely accepted
hypotheses is that Lf binds to and blocks glycosaminoglycan viral
receptors, especially heparan sulfate (HS). The binding of Lf and HS
prevents the first contact between virus and host cell, thus preventing
infection [6]. The antiviral effect of Lf has also been observed in viruses
that infect animals, such as the Friend virus complex, which causes
erythroleukemia in rodents [92], the feline calcivirus [93], and the
feline immunodeficiency virus [16]. It appears that Lf exhibits its
antiviral activity at an early phase of the infection process
[16,75,78,83,84,91,94–97]. Several viral pathogens have been shown
to use the host cell surface as herpes simplex virus, as an attachment
receptor during the infection process [98,99]. Results, also suggest
that the GRRRRS sequence at the amino terminus of human lactoferrin
acts synergistically with an RKVR sequence at positions 28–31 to form
the predominate functional GAG-binding site of human lactoferrin
[100].

4.3. Antifungal activity

Candida can colonize mucosal surfaces in individuals, and it is
considered to be analogous to a commensal organism that can also
become an opportunistic pathogen. Kirkpatrick et al. conducted the first
studies with Candida spp. in 1971 and attributed the antifungal effect of
Lf to its ability to sequester Fe+3 [101,102]. Both hLf and bLf, as well as
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Fig. 2. Predicted structure of antiviral-active peptides using PDB ID: 1FCK as template. a) From N-lobe 1–280 aa. b) From C-lobe 345–689 aa. Modeled using DeepView software [24],
and viewed using Chimera software (http://www.cgl.ucsf.edu/chimera/).
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the bLf-derived peptide lactoferricin, have well-documented in vitro
activity towardhumanpathogenic fungi, especiallyCandida albicans and
several other Candida species. Lf also has antifungal activity [103,104],
and it was observed that Lf could kill both C. albicans and C. krusei by
altering the permeability of the cell surface, as it does in bacteria
[105,106].

Bovine Lf has been shown to be highly fungicidal for C. tropicalis and
C. krusei and somewhat fungicidal for C. albicans and C. guilliermondii,
while C. glabrata is almost resistant to Lf [107]. Lf exhibited activity
against Cryptococcus neoformans and C. albicans via cytoplasmic and
mitochondrial membrane permeabilization [108]. Although Lf's anti-
fungal mechanism of action is through cell surface interaction rather
than iron deprivation [109], several reports demonstrated its ability to
cause cell wall damage [107,110,111]. In addition to direct interaction
with thepathogen, Fe+3 sequestration is another importantmechanism
for fungicidal activity. In 2007, Zarember et al. showed that Fe+3

sequestration by neutrophil apo-Lf is important for host defense against
Aspergillus fumigatus[112]. Additionally, the in vitro antifungal activity of
two peptides (hLF(1–11 aa), bLf N1-domain)) derived from human
lactoferrin (hLF) were compared, and dose-dependent antifungal
activity was observed [113,114]. Lf shows an interesting antifungal
effect on body tineas caused by Trichophyton mentagrophytes, against
which it acts indirectly, facilitating clinical improvement of skin lesions
after the peak of the symptoms. Treatment of guinea pigs with bLf
reduces fungal infectionon the skinof the back and limbs in tinea corpus
and tinea pedis, respectively [115]. It has also been demonstrated that Lf
can mediate its antifungal activity through the stimulation of host cell
immune mechanisms both in vitro and in vivo[102].

4.4. Antiparasitic activity

A clear understanding of the antimicrobial activities of Lf has been
difficult to achieve because the mechanisms of action of Lf and the
ecological niches of microbes often differ from one organism to
another. The molecular mechanisms of Lf antiparasitic activity are
even more complex.

Antiparasitic activities of Lf usually involve interference with iron
acquisition. This activity has also been shown using peptides derived
from the full molecule [116,117]. There is also evidence supporting
the occurrence of a similar mechanism during amoebiasis, which is
one of the leading causes of diarrhea in children under 5 years of age
and is caused by Entamoeba histolytica[118].

Apo-Lf is the milk protein with the greatest amoebicidal effect
against E. hystolitica in vitro because it can bind to lipids on the
trophozoite's membrane, causing membrane disruption and damage
to the parasite [119,120]. Lf appears to act as a specific iron donor and
could be expected to enhance infection by other parasites such as
Tritrichomonas foetus[121]. It was reported that bLF bound to
components of T. brucei, and that bLF hydrolysate disrupted the
sites responsible for binding to parasite proteins, causing Fe+3

deprivation [122]. Other in vitro studies show that serum transferrin
as well as human and bovine Lf can bind the intracellular parasite
Toxoplasma gondii, which causes toxoplasmosis and affects both
humans and animals. However, Lf cannot prevent the parasite from
entering the host. The mechanism of action in this case is inhibition of
the intracellular growth of T. gondii in the host cells [123]. In animal
models, a lactoferricin reduced infectivity of T. gondii and Eimeria
stiedai sporozoites [124]. The effect of Lf on the hemoparasites Babesis
caballi and Babesia equi depends onwhether or not Lf is bound to Fe+3

[125]. B. caballiwas found to be significantly suppressed by apo-Lf but
was not inhibited by the other types of Lf, whereas none of the Lf types
had an inhibitory effect against B. equi[126]. Lf also demonstrates
additive or synergistic activity with clinically used antiparasitic
compounds [116,118,119].

5. Immunomodulatory and anti-inflammatory activity

Lf displays immunological properties that influence both innate and
acquired immunities [127]. Its relationship with the immune system is
evident from the fact that people with congenital or acquired Lf
deficiency have recurring infections [128]. Oral administration of bLf
seems to influence mucosal and systemic immune responses in mice
[129]. Lf can modulate both specific and non-specific expression of
antimicrobial proteins, pattern recognition receptors and lymphocyte
movement related proteins [130]. The role that Lf plays in regulating
innate immune responses confirms its importance as a first line host
defensemechanism against invading pathogens,modulating both acute
and chronic inflammation [131–134]. Most intriguing is the ability of Lf
to inducemediators from innate immunecells that subsequently impact
adaptive immune cell function. Lf's positive charge allows it to bind to
negatively charged molecules on the surface of various cells of the
immune system [135], and it has been suggested that this association
can trigger signaling pathways that lead to cellular responses such as
activation, differentiation and proliferation. Lf can be transported into
the nucleus, where it can bind DNA [86,136] and activate different
signaling pathways [7].

In addition to inducing systemic immunity, Lf can promote skin
immunity and inhibit allergic responses. It activates the immune system
against skin allergens, causingdose-dependent inhibition of Langerhans
cell migration and the accumulation of dendritic cells in lymph nodes
[6]. Leukocytes exposed to Lf modulate their cytokine production;
proinflammatory cytokines, TNF-α, IL-6, and IL-1β can bemodulated by
Lf to increase [137–139] or decrease [131,139–141]. Production of these
factors is dependent upon the type of signal recognized by the immune
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system. At the cellular level, Lf increases the number of natural killer
(NK) and adaptative (T strain CD4+ and CD8+) cells [142], boosts the
recruitment of polymorphonuclear cells (PMNs) in the blood [143],
induces phagocytosis [144], and canmodulate themyelopoietic process
[145]. It iswell documented that IL-12plays an important role in driving
development of helper T-cell type 1 immunity [146,147]. Therefore, the
role of Lf in the regulation of proinflamatory cytokines and IL-12 clearly
demonstrates communication between innate and adaptative immune
responses.

6. Anticarcinogenic activity

The anti-tumor properties of Lf were discovered about a decade ago
and have been confirmed by numerous laboratory studies which have
shown that bovine lactoferrin (bLf) significantly reduces chemically
induced tumorigenesiswhenadministered orally to rodents [148]. Since
then, human clinical studies are showing that ingestion of LF can have a
beneficial effect against progression of cancer [150]. bLf possesses
antimetastatic effects and inhibits the growth of transplanted tumors
[149,151]. Similar to its role in inflammation, Lf has the ability to
modulate the production of cytokines in cancer. Lf can induce apoptosis
and arrest tumor growth in vitro; it can also block the transition fromG1
to S in the cell cycle ofmalignant cells [7,152]. Additionally, treatment of
tumors inmicewith recombinant human Lf (rhLf) inhibits their growth,
increases the levels of anticarcinogenic cytokines such as IL-18, and
activates NK cells and CD8+ T lymphocytes [153,154]. Interestingly, bLf
and hLf exert opposite effects on angiogenesis. Whereas orally
administrated bLf inhibits angiogenesis in rats [155,156] and tumor-
induced angiogenesis inmice [154], hLf exerts a specific pro-angiogenic
effect [157]. Recently, colorectal cancer was inhibited by bLf in animal
models, and human Lf reduced the risk of colon carcinogenesis as
demonstrated by a clinical trial [158]. Increasing evidence suggests that
inhibition of the Akt signaling pathway might be a promising strategy
for cancer treatment [159]. In breast cancer, Lf is able to limit the growth
of tumor cells, and addition of exogenous Lf to the culture media of
breast cancer cell lines (MDA-MB-231) induced cell cycle arrest at the
G1/S transition [160]. Additionally, Lf induced growth arrest and nuclear
accumulation of Smad-2 inHeLa cells [161]. The ability of bovine Lfcin to
induce apoptosis in THP-1 human monocytic leukemic cells has also
been demonstrated [162]. Although the results achieved by several
researchers point to a clear anti-tumor role for Lf, the mechanisms by
which it exerts these effects are not fully understood. Thus, furtherwork
on this subject is required.

7. Enzymatic activity

Lf has the ability to function as an enzyme in some catalytic
reactions. A remarkable similarity of certain motifs between Lf and
GLY1
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a b

Fig. 3. Location of field and aqueous solvated structure comparison of the human and bovin
solvated b) hLfcin and c) bLfcin. Viewed using Chimera software (http://www.cgl.ucsf.edu/
ribonuclease A has been observed [163]. Lf has DNA binding
properties [164] and can act in transcriptional activation of specific
DNA sequences [165] or as a mediator of signal transduction [166]. Lf
has the highest levels of amylase and ATPase activities of all the milk
proteins [167]; however, these are not its only enzymatic activities.
Indeed, Lf exhibits a wide variety of activities, which can be attributed
to variations in the nature of its protein characteristics; Lf hasmultiple
isoforms, degrees of glycosylation, variations in tertiary structure
(holo- or apo-Lf) and degrees of oligomerization [168,169]. The
discovery of Lf's enzymatic properties has helped to elucidate itsmany
physiological functions.

8. Bioactive peptides derived from lactoferrin

Lactoferrin was first isolated by Groves in 1960 and was recognized
as a “red protein frommilk” [2]. Moderate proteolysis led to a release of
two Lf fragments, namely the N- and C-terminal lobes. Enzymatic
treatment of bLf with pepsin produced a lowmolecular weight peptide
with antibacterial properties against a large number of Gram-positive
and Gram-negative bacteria, in addition to fungi. Bellamy et al.[170]
identified a region of amino acids at the N-terminus that retains its
biological activity when separated from the full molecule; this was
termed lactoferricin (Lfc-B) and was shown to exhibit greater
antimicrobial activity than Lf. The activity that is exerted by this region
corresponds to residues 17–41 of bLf [171]. The region also includes
two Cys residues linked by a disulfide bridge that contains many
hydrophobic and positively charged residues.

The tertiary structure of Lfcin is markedly different when
compared to its homologous region of intact Lf (Fig. 3a). An in situ
model of hLfcin (Fig. 3a) and a solvated version (Fig. 3b) show
structural differences at their N- and C-termini (Fig. 3a, b). A single
β-sheet strand replaces the long α-helix observed in the Lf structure;
such a structure may be better suited to recognize bacterial
membrane topology [172]. Additionally, the bLfcin peptide contains
an alpha-helix (Fig. 3a–c). This region retains high homology among
other species of mammals and corresponds to amino acids 12–48 [17].

It was found that minimal variations in the amino acid sequence
change the antimicrobial activity of the peptide. For example, Lfampin
268–284 and Lfampin 265–284, chemically synthesized fragments from
the N-terminal sequence of bLf, differ in only three amino acids
(265Asp-Leu267-Ile268) but exhibit different strengths of antimicrobial
activity [171]. Proteolysis of iron-free Lf could release Lf-derived active
peptides in biological fluid [172].

9. Lactoferrin gene regulation

Lf has been identified in several tissues in both humans and
animals. The Lf gene has been found at the chromosome level in a set
ALA17

ARG31

ALA49

c

e lactoferricin. a) Domain of in situ hLfcin (residues 17–41; PDB ID: 1BLF) and, aqueous
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of different species; in humans it was found on chromosome 3, while
in mice it was found on chromosome 9 [173], and its size ranged from
23 to 35 kb. Lf genes have extensive homology among species, with an
identical organization in cows, pigs and mice (17 exons, 15 encoding
Lf) [174,175]. The amount of Lf synthesized in the mammary gland is
controlled by prolactin [176]. Its mRNA levels vary by tissue,
suggesting tissue- or cell-specific regulation [177,178]. The Lf full
coding regions of 60 different species were analyzed, and it was found
that the length of the gene varies from species to species (from 2055
to 2190 residues) due to deletions, insertions and mutations in the
stop codon [179]. Lf is expressed both constitutively and inducibly. It
is constitutively expressed on mucosal surfaces, while in some tissues
it is induced by external agents.

The Lf promoter contains an estrogen responsive element [REF], and
is consequently positively regulated by estrogen. The chicken oval-
bumin upstream promoter transcription factor (COUP-TF) binding
elementoverlaps the EREof the lactoferrin gene [180]. COUP-TF binds to
this element and competitively inhibits binding of the estrogen receptor
to the lactoferrin ERE, thereby inhibiting transcription of the lactoferrin
gene. Another negative regulator of LF gene transcription is repressor of
estrogen receptor activity (REA). The absence of REA increases the
expression of estrogen-induced Lf by up to 100-fold [181].

Lf can also be induced by compounds other than estrogens, such as
retinoic acid, which stimulates gene expression in embryonic cells
[182]. Lf expression is upregulated by estrogen with a magnitude of
response that is cell-type-specific, and it is also upregulated by
retinoic acids. Transcription factors such as Ets, PU.1, C/EBP, CDP, and
KLF5 also modulate Lf gene expression, mainly in myeloid cells [183].
Lf expression is also modulated by oxidative stress, in response to
infection, or during the early steps of embryogenesis [184].
10. Clinical applications of lactoferrin

Lf canbe isolated fromcow'smilkby variouspurificationmethods, or
it can be expressed by recombinantmethods [51,71,185]. Because of the
multiple functions of Lf, it has been used for clinical trials and industrial
applications. One of the first applications of Lf was in infant formula.
Currently it is added to immune system-enhancing nutraceuticals,
cosmetics, pet care supplements, drinks, fermented milks, chewing
gums, and toothpaste. The ability of Lf to prevent nososcomial infection
in infantswas tested [186] and the results showed lower infection levels.
Several studies showed that infants fed with infant formulas had less
intestinal iron absorption than breastfed infants [187,188]. It was
proposed that Lf also promotes the proliferation of lactic acid bacteria in
the bowel, such as Bifidobacterium and Lactobacillus, which protect the
host from harmful bacteria [186,189].

The activity of Lf and its bioactive peptides has been documen-
ted both in vitro and in vivo against a wide variety of pathogens.
Clinical trials demonstrated the efficiency of Lf for use in treating
infections and inflammatory diseases. For example, Lf was tested as
a second treatment against H. pylori in patients with recurring
infections. The patients supplemented with bLf showed a greater
recovery from infection [190]. Lf also exhibits synergistic activity
with antifungal agents, thus reducing the minimum inhibitory
concentrations of these agents against C. albicans and C. glabrata
[101,191]. As with antibacterials, Lf exhibits synergy with antiviral
drugs in the treatment of hepatitis C, cytomegalovirus and HIV
[6,79,192]. Lf delays the hypersensitivity response and limits the
pathology caused by M. tuberculosis by increasing IL-12 and IL10
expression [193]. A clinical trial was conducted which demonstrat-
ed that ingestion of bLF could reduce the risk of colon cancer in
humans [157]. Lf also offers applications in food preservation and
safety because it can decrease bacterial counts in pork meat
[194,195], retard lipid oxidation [196] and limit the growth of
microbes.
Lf can also be used as a molecular marker; detection of urinary Lf
via electrochemical immunosensors aids in the diagnosis of urinary
tract infections [197]. Increased levels of Lf serve as a clinical marker
of inflammatory Severe Acute Respiratory Syndrome or septicemia
[198].

11. Production of native and recombinant lactoferrin

The development of commercial production strategies for the
production of recombinant Lf as a safe, effective drug and nutraceutical
protein is one of the major goals in both research and industry.
Purification of Lf depends on the intrinsic properties and features of the
molecule, such as its net positive charge, its ability to bind Fe+3 and its
glycosylation state [6,199,200]. However, the need for larger amounts of
Lf has led to the development of strategies to obtain a recombinant form
of the protein (rLf).

In global biotechnology, there are now three major competing
approaches for the production of rLf: production in transgenic animal
milk, production in microscopic fungi, and production in plants. To
date, several rLf expression systems have been developed (Table 2)
that utilize both prokaryotic and eukaryotic organisms. The first
expression systems utilized Bay Hamster Kidney Cells to express
human lactoferrin [221].

The transformation of the filamentous fungi Aspergillus awamory
allowed for the expression of both hLf andmurine Lf (mLf) [215,216]. As
shown inTable 2, expression systemsweredeveloped inyeasts, bacteria,
insects and plants, which have produced human recombinant Lf (rhLf)
[205,207,212,217–219,230–242], caprine Lf (cLF) [208], bovine Lf (bLf)
[201,203,206,214], equine Lf (eLf) [211], porcine Lf (pLF) [209,220], yak
Lf [210], and Kumin Lf [204], as well as Lf peptides, including Lfc
[202,203,206,214], which reached expression levels of 0.1 mg/L in a
plant model [231] and 1200mg/L in P. pastoris[212]. Use of viral vectors
has allowed for the expression of Lf by insect infection, either in cell
culture or directly in the organism,where the expression of both hLf and
pLf has been successful. This practice has resulted in the production of
transgenic Spodoptera frugiperda and Bombyx mori, which express
205 μgof pLfper infectedpupa [220] andup to65 mg/L in larvae [218]. Lf
has also been expressed in higher eukaryotic organisms, including both
plants and animals. Using microinjection and direct infection with viral
vectors in the mammary gland, transgenic animals have been created
that produce milk containing recombinant Lf. These animals include
goats [223,224], mice [225,226], rabbits [227] and cows [228,229].
Levels of up to 2 g/L have been achieved in transgenic goat milk.

Molecular farming, which involves the utilization of plants as
bioreactors, is well depicted as a tool for the production of valuable
therapeutic and industrial proteins. This process is advantageous
because of the lack of contamination from human or animal
pathogens and endotoxins in the final product. Furthermore, higher
plants are able to synthesize proteins with the proper folding,
glycosylation and functional activity, and plant cells can direct the
protein of interest to environments that reduce its degradation. hLf
was expressed in plant expression models (Table 2) and bLf was only
expressed in tobacco plants [235]. However, none of these nuclear
transformation methods are able to promote the accumulation of a
large amount of rLf. Therefore, new promoters or regulatory elements
as well as other transformation methods should be tested to increase
accumulation and stability of recombinant proteins. The expression of
Lf in plant models could significantly improve crop quality by
increasing its resistance to some diseases; additionally, it provides a
source for high quality Lf protein.

12. Concluding remarks

Lf is a multifunctional protein that takes part in a large number
of important physiological processes. The beneficial effect of Lf in
the treatment of various infectious diseases caused by bacteria,
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Table 2
Expression of recombinant Lf by various transgenic organisms.

Expression system Lf origen Expression level Year/reference

Bacteria
E. coli bLfc 10 mg/L 2007 [201]

Lfc 60 mg/L 2006 [202]
bLfc 2 mg/L 2006 [203]
Kumin Lf 17 mg/L 2010 [204]

Lactobacillus casei hLf 10.6 mg/mL 2010 [205]
Rhodococcus erythropolis bLf C-lobe 3.6 mg/mL 2006 [206]
Yeast
Pichia pastoris hLf 115 mg/L 2004 [207]

cLf 2 mg/L 2007 [208]
pLf 12 mg/L 2002 [209]
Yak Lf 40 mg/L 2006 [210]
eLf 40 mg/L 2002 [211]
hLf 1200 mg/L 2008 [212]

Pichia methanolica pLf NR 2007 [213]
bLfc 90 mg/L 2007 [214]

Fungi
Aspergillus awamori hLf 2 g/L 1995 [215]
Aspergillus oryzae hLf 25 mg/L 1992 [216]
Insects
Spodoptera frugiperda hLf 9.5 mg/L 1998 [217]
Bombyx mori hLf 65 mg/L 2005 [218]

hLf 13.5 μg/1–2×105 cells 2006 [219]
pLf 205 μg/pupa 2005 [220]

Cell lines
Baby hamster kidney (BHK) hLf 20 mg/L 1991 [221]
Cell culture
(human embryo kidney)

hLf 16 mg/L 2009 [222]

Mammals
Goat hLf 0.756 mg/L 2008 [223]

hLf 2 g/L 2007 [224]
Mice hLf 2.5 mg/mL 1997 [225]

hLf 2.5 mg–200 μg/mL
milk

1997 [226]

Rabbit hLf 2.3 mg/mL milk 2008 [227]
Bovine hLf 1 g/L milk 2002 [228]

hLf 2.9 mg/mL 2006 [229]
Plants
Nicotiana benthamiana hLf N-lobe 0.6% soluble protein 2004 [230]
Nicotiana tabacum hLf NR 1994 [231]

hLf 0.1–0.8% soluble
protein

1998 [232]

hLf 4.3% soluble protein 2003 [233]
bLf NR 2011 [234]

Rice hLf 1.6 mg/g seed 2004 [235]
hLf 0.5% total biomass 2005 [236]
hLf 2–4% soluble protein 2003 [237]
hLf 0.1% soluble protein 2010 [238]

Potato hLf 0.1% soluble protein 2000 [239]
Sweet potato
(Ipomoea batata)

hLf 3.2 μg/mg total protein 2006 [240]

Panax ginseng hLf 3.0% soluble protein 2003 [241]
Tomato (Lycopersicon
esculentum)

hLf NR 2002 [242]

Maize hLf NR 2001 [243]
Alfalfa (Medicago sativa) hLf NR 2005 [244]
Barley hLf NR 2011 [245]

(h= human, b= bovine, c = caprine, p= porcine, e = equine, Lfc= lactoferricin, NR=
not reported).
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fungi, protozoa, and viruses in animals and humans is described
above; nevertheless, much research and many experiments still
need to be performed to obtain a better understanding of its
activity. The usefulness of Lf has led scientists to develop this
health-enhancing nutraceutical protein for use in food and
pharmaceutical applications.
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