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Available online 13 April 2016 Smog disasters are becoming more and more frequent and may cause severe con-
Keywords: sequences on the environment and public healtt}, espec.ially in urb.an areas. Social media
Smog disaster as a real-time urban data source has become an increasingly effective channel to observe
Health hazard people's reactions on smog-related health hazard. It can be used to capture possible smog-
Social media related public health disasters in its early stage. We then propose a predictive analytic
Urban data approach that utilizes both social media and physical sensor data to forecast the next day
Forecasting smog-related health hazard. First, we model smog-related health hazards and smog

Data mining severity through mining raw microblogging text and network information diffusion data.

Second, we developed an artificial neural network (ANN)-based model to forecast smog-
related health hazard with the current health hazard and smog severity observations. We
evaluate the performance of the approach with other alternative machine learning
methods. To the best of our knowledge, we are the first to integrate social media and
physical sensor data for smog-related health hazard forecasting. The empirical findings
can help researchers to better understand the non-linear relationships between the cur-
rent smog observations and the next day health hazard. In addition, this forecasting
approach can provide decision support for smog-related health hazard management
through functions like early warning.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction in 1952 London [3]. Therefore, it is necessary to develop a
systematic approach to analyze, monitor and forecast smog-

Smog disasters are becoming more and more frequent and related health hazards in a timely manner.
may cause severe consequences on the environment and On the other hand, social media as a real-time urban
public health in China. For example, in January 2013, smog data source has become an increasingly important channel
had covered the capital of China, Beijing, for over 20 days. to observe events, trends and sentiment [4,5]. Negative

comments on smog or complaints about smog-related
health conditions from a small group of environment
sensitive individuals can diffuse really fast on social media
and cause much large scale of discussions and reactions.
Therefore, social media with its network effects can be
used to capture possible smog-related public health dis-
asters in its early stage and provide warnings.
" * Corresponding author. In the big data era, various technologies are developed to
E-mail address: huajunsir@zju.edu.cn (H. Chen). extract, process and analyze population-level social media

According to recent statistics [1], smog affects more than a
quarter of the land and over 600 million people in China.
According to Virginia Hughes [2], smog is a health hazard
that may adversely affect people's health. Sometimes it causes
extreme and immediate public health emergency, like the one
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data, but few with the purpose of forecasting. Previous
research [6] usually collected and analyzed such social media
data for monitoring the impacts of nature environment on
public health, but there is a lack of systematic approaches
for forecasting smog-related health hazards with social
media data.

Moreover, a variety of physical sensor platforms for
monitoring smog status, including air quality stations,
weather stations and earth observation satellites, are also
widely deployed across China for both big cities and small
towns [7], generating a huge amount of observational data
about smog severity.

As Fig. 1 shows, we propose a predictive analytics
approach that utilizes both social media and physical sensors
for smog-related health hazard forecasting. It contains two
major components: (1) modeling smog-related health
hazards and smog severity with raw microblogging text and
network information diffusion records and (2) forecasting the
next day smog-related health hazards using an artificial
neural network-based model.

To the best of our knowledge, our research is the first
study to systematically model and analyze real-world social
media and physical sensor data for smog-related health
hazard forecasting. Firstly, this study can help researchers to
better understand the non-linear relationships between cur-
rent smog observations and the next day health hazard, in
which physical sensors alone often fail to capture. Secondly,
the proposed predictive analytics framework aims to provide
decision support for smog-related health hazard management
through functions like early warning for the coming smog-
related public health emergency.

Moreover, we investigate the strengths of social media in
smog-related health hazard forecasting. It can contribute
more than physical sensors in forecasting the smog-related
health hazards when the smog disasters are severe.
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Meanwhile, data about social observations' diffusion in social
networks can further improve the forecasting accuracy.

2. Related work
2.1. Smog disaster and public health

On one hand, predictive analytics that are related to smog
disasters or other kinds of air pollutions usually investigates
the natural observations themselves without considering
their related health hazard. Here are some examples. Merz
et al. [8] conducted a time-series analysis of air monitoring
data for the downtown Los Angeles station to detect the air
pollution trends. Casado et al. [9] applied a series of geosta-
tistics and visualization procedures to analyze hourly ozone
measurements collected from 29 stations in the southeastern
United States, which clearly confirmed the diurnal pattern of
ozone fluctuations. Van et al. [10] investigated smog predic-
tion problem in perspective of computational steering tech-
niques which allow an optimal trade off between computa-
tion speed and prediction accuracy.

On the other hand, most studies that involve smog-related
public health problems usually analyzed the impacts of smog
on public health, but largely ignored real-time health hazard
monitoring and forecasting. They mainly used objective
indicators from physical sensors or statistics from hospitals.
Pope and Dockery [11] conducted an extensive review on the
research about health effects of particulate matter (PM) - the
most harmful component in smog. They focused on the short-
term and long-term PM exposure and its effects on mortality
and some diseases. Recently, Hughes et al. [2] compared
annual case numbers of chronic obstructive pulmonary dis-
ease (COPD) with smog trends in some cities to investigate
the health effects of smog in past years.
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Fig. 1. Predicting smog-related health hazard with social media and physical sensor data.
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Meanwhile, current studies investigating smog-related
public health often adopt small data sets with limited
population and time coverage. Motley et al. [12] measured
only 66 volunteers' health status to acquire public health
information during a smog disaster in Los Angeles. Chen
et al. [13] used hospital visits to analyze health hazard
trends under smog disasters, but the records only covered
one hospital in Beijing during one high-smog period.
Schwartz [14] investigated mortality caused by smog dis-
asters, but the research was based on data records from
some typical big smog disasters in some big cities.

2.2. Social media

Recently, social media including microblogging and social
network services provided us real-time and large scale data
sets related to public health. Lee et al. [6] and Culotta et al.
[15] studied public health issues concerning with flu and
cancer by analyzing Twitter messages. Paul et al. [16,17]
mined topics of various ailments, symptoms and treatments
from tweets with the Ailment Topic Aspect Model. Greene
et al. [18] investigated several disease-specific information
that was shared and exchanged on Facebook. Gardy et al. [19]
acquired epidemiologic and genomic data through a social
network for the research of tuberculosis.

Social media has also been applied to track the impacts of
natural disasters as it will provide detailed information for
situation awareness. Sakaki et al. [20,21] adopted Twitter data
to detect and monitor disaster events including earthquake
and typhoon in Japan with high probability and timeliness.
Kongthon et al. [22] obtained up-to-date information about
the disaster damage and the needs of the populace in 2011
Thai flood. Yin et al. [4] built an information system that
utilized Twitter messages to enhance situation awareness
during various crises and events, including natural disasters.

Although social media has been widely applied in inves-
tigating natural disasters and public health problems, there
are very few studies that use social media to investigate smog
disasters, not to mention smog-related health hazard. Mei
et al. [23] was one of the earliest studies for smog disaster
analysis with social media, but it aimed to infer the smog
severity in the cities where no air quality stations were
deployed, which was not related to smog-related health
hazard. Our previous work [24] utilized Chinese tweets on
Weibo to analyze the correlation between smog disasters and
public health statuses, but did not study smog-related health
hazard forecasting. Its prediction model simply approximated
the health hazard with physical observations, which aimed at
quantitatively analyzing the relationship and generating a
standard for rating smog disasters' health hazard. The work
presented in this paper actually extends our previous work
[24] from historical relationship analysis to real-time fore-
casting. Our another work [25] in progress aims at forecasting
smog disaster directly with different kinds of data including
social media data. It will reinforce our study for decision
making under smog disasters, but is quite different from the
health hazard forecasting topic presented in this paper.

2.3. Artificial neural network

Artificial neural networks (ANNs) are computational
models inspired by an animal's central nervous systems,
and have been widely used in predictive analytics
research. They are capable of learning complex non-linear
discriminant functions [26], and can help solve public
health problems like predicting active pulmonary tuber-
culosis [27] and Severe Acute Respiratory Syndromes
(SARS) epidemic [28]. In our ongoing study [25], which
applies different social observations and physical sensor
observations to smog disaster forecasting, ANNs with
single hidden layer or two hidden layers achieve a little
higher performance than random forest and support vec-
tor machine. In recent years, ANNs are further extended
with deep architectures. They have been proven to work
very well for many complex prediction problems with big
data in the fields like computer version, nature language
processing and so on [29]. These theoretical properties and
real world applications indicate that ANNs are able to
approximate the relationship between the smog disaster
and its health hazard.

There have been some state-of-the-art algorithms, such as
back propagation (BP) [30], to train multiple layers ANNs for
various regression problems. The recently proposed learning
algorithm named extreme learning machine (ELM) [31] can
train a single hidden layer feed-forward ANN at a high speed
with high generalization performance. It can universally
approximate any continuous target function and effectively
solve many real-world regression problems, such as sales
forecasting in fashion retailing [32]. According to some
experiments [31], the single hidden layer ANN trained by ELM
can achieve higher testing accuracy than some typical
methods like support vector machine on many regression and
classification benchmarks.

However, there is a lack of research which utilized pre-
diction methods, such as ANNSs, to fuse both social media data
and physical sensor data for the forecasting of smog-related
health hazard. This is mainly due to the lack of (1) systematic
approaches for collecting, modeling and analyzing such
information and (2) efficient prediction framework which can
combine features from both social media and physical
Sensors.

3. A predictive analytics research framework
3.1. Overview
This research work addresses two challenges:

(1) Smog-related health hazard and smog severity mod-
eling with social media.

(2) Smog-related health hazard forecasting using social
media and physical sensor data.

We propose a predictive analytics framework, as shown
in Fig. 2. It has three main parts. First, smog-related health
hazard and smog severity are measured using raw social
observations and social network diffusion data. Second, a
health hazard prediction model is built using records of
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Fig. 2. The proposed predictive analytics framework for smog-related health hazard forecasting.

public health index, smog severity index, social network
diffusion factor and physical observation, and is further
utilized to forecast smog-related health hazards. Third, the
forecasted and measured smog-related health hazards are
applied to support decision making in smog-related health
hazard management including real-time monitoring and
emergency warning.

3.2. Smog-related health hazard and smog severity
measurement

In our study, smog-related health hazards and smog
severity are modeled as two indexes using social media
information.

Definition 1. Public Health Index (PHI) is the sum of total
relative frequencies of smog-related health hazard phrases
in the current tweets. D-PHI is an enhanced public health
index that includes consideration of diffusion in social
networks.

Definition 2. Smog Severity Index (SSI) is the weighted
sum of total relative frequencies of smog severity phrases
in the current tweets. D-SSI is an enhanced smog severity
index that includes consideration of diffusion in social
networks.

Calculation of the two indexes includes five steps. First,
both smog-related health hazard phrases and smog severity
phrases are extracted. Smog-related health hazard phrases are
those that are commonly used in Weibo (a Chinese social
media site that is similar to Twitter) to complain about health
problems that may be caused by smog disasters. According to
some smog-related medical studies, smog disasters usually
cause nose, eyes and throat irritation as well as heart and
respiratory diseases in the short term [2,13]. We collect 200
Chinese phrases that are commonly used to complain about
these health problems. Table 1(a) presents their English
counterparts — some may represent multiple Chinese phrases
with the same meaning.

Smog severity phrases are those that are commonly used
in tweets to describe the current condition of a smog disaster.
Based on the study of smog-related tweets, we collect 160
common Chinese phrases and define a severity order for each
of them, as shown in Table 1(b).

Second, raw tweets with tags of time and location are
gathered from Weibo. We partition a city into small grids, and
then collect the current tweets of each grid area continuously.
In detail, the program calls some APIs that enable us to
acquire raw tweets (not forwarded) posted in a specified

circular area defined by one position and one radius. The
program ensures that the grid area is totally covered by the
circular area.

Third, daily relative frequency rf of each phrase is cal-
culated:

1f(p)=af(p,Tc) x idf (p, Tn)
deT, f ’d
ofp, Tey = =277

1
idf(p, Tn) = IOgWa @

where Ty and T¢ represent historical and current tweet
sets respectively, p represents a phrase, d represents a
tweet, f(p, d) represents the frequency of phrase p in tweet
d, af (p, Tc) represents the average frequency of phrase p in
the current tweet set T, idf (p, Ty) represents the inversed
document frequency of the tweets with phrase p in the
historical tweet set Ty. The logarithm function is to scale
up the fraction of rare tweets. The above algorithm is
derived from the typical tf-idf algorithm [33]. The differ-
ence lies in the replacement of the largest word frequency
in current tweet set with the size of current tweet set,
which aims at eliminating the influence of other heat
phrases on Weibo.

Fourth, PHI and SSI are calculated with the relative
frequencies of all the phrases:

PHI=Y", p 1f(p)
SSI=3, p,7f(p) x order(p),

where P; stands for the set of smog-related health hazard
phrases shown in Table 1(a), P, stands for the set of smog
severity phrases shown in Table 1(b) and order(p) stands
for a phrase's severity order. The calculation of SSI is
weighted, because most Chinese tweets about smog itself
come from experts such as the local environment agency
or people who have a good knowledge of smog disaster.
Usually, they use a fixed word set to describe the severity,
and subjective severity level that the words' reflect is
unified. In contrast, the health status tweets are mostly
posted by common people. The severity level of one
description word may vary from people to people. Using
severity words for weighting may not reflect the peoples’
subjective idea about severity, which is what we really
want in this study.

Fifth, social network diffusion is considered to calculate D-
PHI and D-SSI. On Weibo, any of people's actions, including
retweet and like, indicates an agreement to the original tweet.
Therefore, one record of such action is regarded as a dupli-
cated raw tweet, based on which we calculate the network

(2)
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Table 1
The phrases used in Weibo about smog-related health hazard and smog
severity.

(a) Smog-related health hazard phrases

Type Phrases

Nose Sneeze, runny nose, stuffy nose, nose disease, nose itches,
nose irritation

Eye Eye disease, eye pain, eye itching, dry eyes, eye irritation

Throat Throat is dry, throat disease, tonsillar disease, cough

Respiratory Have phlegm, pulmonary disease, asthma, bronchial
disease, breathing difficulty, respiratory disease

Heart Irregular heart rhythms, heart disease, heart hearts, high
blood pressure
Others Wear a mask

(b) Smog severity phrases
Order Phrases

1 Have a little smog, a little bad air quality, air is slightly pol-
luted, a little dusty sky

2 Have smog, bad air quality, air is polluted, dusty sky, high AQI,
high PM, 5

3 Have a severe smog, smog outbreak, air is severely polluted,

extremely bad air quality, very dusty sky, extremely high AQI,
extremely high PM; s

-1 There is no smog, air quality is good, sky is clear, the smog has
gone

-2 Air quality is very good, sky is very clear

diffusion-based average frequency:

Zd € Tc(f(pa d) X (g(d)+l))
Tel+>gcr 8@

where g(d) represents a tweet's total number of retweet and
like. Once daf is calculated, we use it to replace the average
frequency af in Formula 1 to calculate the relative frequency
rf, and further compute the value of D-PHI and D-SSI
according to Formula (2).

daf(p,Tc) = 3)

3.3. Smog-related health hazard forecasting

As Fig. 3 shows, we develop an ANN-based prediction
model to forecast the next day smog-related health hazard
(PHI record) with the inputs including the current and the
past air quality observations, meteorology observations
and social observations.

3.3.1. Features

The inputs of the prediction model contain four kinds of
features. The first kind of features (F,) is extracted from air
quality observations, including both air pollution concentra-
tions (CO, NO,, SO,, O3, PM;5 and PMyg) and air quality
index (AQI) which comprehensively evaluates the air quality.
The second kind of features (F,) is extracted from records of
various meteorological elements, including humidity, cloud
value, pressure, temperature and wind speed, all of which
have been proven to affect smog disasters greatly. For exam-
ple, high wind speed and low cloud value usually make smog
pollution to decrease in the next day. The third kind of fea-
tures (F;) comes from records of smog severity index (SSI) and
social network diffusion incorporated smog severity index (D-
SSI), both of them represent people's opinions and

observations on the current and future smog disasters. The
fourth kind of features (F;) uses the current and recent PHI
and D-PHI records, which enables the model to take the auto-
correlation factor of the time-series data into consideration.

With all these features, we need to conduct feature
selection. On one hand, we should filter out some unim-
portant kinds of observations such as some specific air pol-
lutants and meteorology elements, as they may be not very
predictive for the next day PHI or may be quite correlated
with some other inputs. For example, we find that O3 does
not improve the prediction much when it is inputted with the
other air pollutions. On the other hand, we should find out
important records in time line for each observation. For
example, we find that only the current records instead of all
the recent records are important for wind speed and wind
direction. In contrary, for D-PHI and PHI, both the current
records and the records in the past 6 h are useful. In selecting
features, a view independent subset searching method is
adopted. It does not search all the subsets of the whole fea-
ture set (F, +Fn, +Fs+Fy), but finds out proper features from
each kind of features individually, which reduce the com-
plexity from 2/Fel +1Eml +1Fsl+IFul ¢ plFal 4 plFml | 9IFsl 4 oIFul |t js
reasonable because in our application one kind of features
represents one independent view to observe the forecasting
target, which means two features from different views will
not be highly correlated. Meanwhile, we further decrease the
search spacing through testing records of each observation in
time line from the current to the past. If we find the record at
time t —i is not important, the records before that time point
will also be regarded as unimportant.

3.3.2. Model

The ANN-based prediction model is built with a method
that searches for the optimum feed-forward ANN structure. It
contains three components: parameters adjusting, training
and testing. We use both ELM algorithm [31] and BP algo-
rithm [30] for training, and adopt a typical cross-validation
strategy which partitions the whole sample set into m com-
plementary subsets in testing.

We present the model building procedure with the case
of ELM which only uses one hidden node layer. First, initial
activation function G, hidden node number L and regular
parameter c are set. Second, input weights a; and bias b; of
each hidden node are randomly generated. Namely, the
input x e RY are mapped into a random feature space in
each hidden node:

hi(x) = G(a;, b;, x). 4

Third, output weights g of all the hidden nodes are cal-
culated through regular linear solution. Namely, the algo-
rithm minimizes the following objection function with
small residual error and output weight norm.

LLEM=%H/5H+§HT—HM, (5)
where |l - || denotes the Frobenius norm, H is hidden layer
output matrix:

h(xq) hi(xq) - hi(xq)
H= : = : : :

h(xn) hi(xn) -+ hi(Xn)
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and T is training data target matrix:

t] t tim
T=|:|=]: :
th tn1 tNm

where N is the number of training samples and m is the
output dimension. Fourth, the trained model is tested. Fifth,
another setting of parameters G, L and c is adopted and goes
to the second step, or the program stops if all the parameter
settings have been traversed. The ANN that achieves the
highest testing accuracy is adopted. The optimum hidden
node number L is found by incrementally searching with a
stopping condition when the testing accuracy begins to
decrease. The case for BP algorithm is quite similar with an
additional parameter — number of hidden node layers, but
without regular parameter c.

Hidden Layers
Air Quality | Inputs Model
Observations Tnput Layer
P
Meteorology ‘ ________
Observations Featullfe (put Layer
Selection A n
SSI, D-SSI | | : '
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N [ Select Model
PHI, D-PHI Parameters
Records | ° 2. Learn Model
3. Test Model

Fig. 3. The model and its inputs for smog-related health hazard
forecasting.
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4. Evaluation results

In evaluation, we analyze the advantages of incorpor-
ating both social media features and physical sensor fea-
tures, display the improvement brought by utilizing net-
work information diffusion and compare the forecasting
accuracies of ANNs and other regression methods. We also
present some forecasting results for Beijing and Shanghai
when they are attacked by big smog disasters.

4.1. Data and experiments

We use physical sensor data and social media data in
8 cities (Beijing, Shanghai, Shijiazhuang, Tianjin, Nanjing,
Hangzhou, Guangzhou and Wuhan) for experiments. Both
data cover more than one year from May 2013 to November
2014. The former contains about 592 million hourly records
about air quality and weather, while the latter contains about
315 million tweets with their retweet and like records.
Meanwhile, the tweet number exceeds 10,000 for most days
in both Beijing and Shanghai.

In evaluation, the records observed in the current and
previous days are used as inputs. The next daily day PHI
record which quantifies the smog-related health hazard is
forecasted and compared against the observed records. We
use PHI instead of D-PHI because information diffusion on the
social network will non-uniformly magnify the observation
thus making the index less objective and harder to forecast.
For social media features, PHI/D-PHI and SSI/D-SSI records are
calculated daily and the records of the current and past days
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Fig. 4. Normalized daily PHI, D-PHI, SSI, D-SSI, AQI and PM, 5 records in Shanghai and Beijing.
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are used, while for physical sensor features, the records are
observed hourly and the records before 24 o'clock are used.
Days without enough tweets, which are caused by Weibo API
limitations and network failures in data collecting, are dis-
carded to ensure that PHI/D-PHI and SSI/D-SSI records are
calculated based on a high population. Finally, 3240 samples
are generated according to the data processing described in
the paper. They are partitioned into a training set and a
testing set with a cutting time.

Through the model building method described in Section
3.3.2, we get optimized ANN structures for different evalua-
tions with different features. For ELM, which is a training
algorithm for single hidden layer ANN, the optimized hidden
node number ranges from 35 to 45, while for BP, the opti-
mized ANN structure contains 2 hidden layers with 12-15
nodes in each layer. We evaluate the effect of using more
hidden node layers, but find that it does not improve the
generalization performance as our sample set is not very
large. Meanwhile, two classic SVM regression methods, nu-
SVR and epsilon-SVR provided by LIBSVM [34], as well as
random forest regression method provided by sklearn, are
also applied for comparison. Each experiment is conducted
with multiple pairs of training and testing sample sets (par-
titioned with different cutting times) and each test is repeated
multiple times. The average of the results is finally adopted for
evaluation.

4.2. Correlations between the features and the next day PHI

We conduct some data analysis to evaluate the correla-
tions between our features and the forecasting target - the
next day PHL It includes two parts: visual comparisons and
statistical tests. Fig. 4 displays the records of PHI and some of
the considered features during two big smog disasters in
Shanghai and Beijing. In the figure, the trends of SSI, D-SSI
and D-PHI are relatively consistent with that of PHI, and the
latest PM, 5 record is usually consistent with the next day PHI
records. The latest AQI record may either be consistent with
the current day PHI or the next day PHI. Meanwhile, we
calculate the correlation coefficients between the next day
PHI and the current day SSI, D-SSI, D-PHI, PM, s and AQI with
the data in all 8 cities (3240 samples). The coefficients are
0.434, 0.452, 0.481, 0.387 and 0.399, and their corresponding

Table 2
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p values are all less than 0.042 in two-sided confidence
testing. The above analysis indicates that SSI, D-SSI, D-PHI, AQI
and PM, 5 are quite correlative with PHI, and are indicators to
forecast the next day PHL

The results in our previous study [35] can further
confirm the above conclusion about the correlation.
According to [35], both meteorology elements like wind
speed and air pollutants like O3 highly correlate with PM; 5
and are important short-term factors of smog disasters.
They can indirectly influence the next day smog-related
health hazard. Briefly, the next day PHI is correlated with
our social media and physical sensor features, and it is
reasonable to utilize them for smog-related health hazard
forecasting.

4.3. Comparison between social media and physical sensor
features

First, we compare the testing accuracies of the health
hazard prediction model using different kinds of features.
As shown in Table 2, the model using both physical sensor
and social media features (P+S) has much lower root-
mean-square error (RMSE) than that using either physical
sensor features (P) or social media features (S). On average,
the RMSE of P+S is about 20% lower than P and about 25%
lower than S when single hidden layer ANNs and ELM are
adopted for training. The comparison result is similar
when multiple hidden layers ANNs and BP are adopted.

Second, we investigate the advantages of physical
sensor features and social media features, which helps
explain why their integration can predict more accurately.
All the tested samples are classified into four categories
according to smog severity which is evaluated by AQI here.
Average RMSEs and relative errors are recalculated for
each category, as shown in Figs. 5 and 6.

From the figures, we can find out that for the days that are
not seriously polluted (AQI < 200), physical sensor features
can achieve lower RMSE and relative error than social media
features, while for the days that are severely polluted
(AQI > 300), social media features perform better. This result
is consistent with our common sense, as people post much
more tweets in those severely polluted days, which provide
more positive samples. Actually, according to the statistics,

Testing accuracies (RMSEs) of the health hazard prediction model using different training methods and features. ELM-ANN and BP-ANN represent one
hidden layer ANNs with ELM and multiple hidden layers ANNs with BP. P and S represent physical sensor features and social media features, while the

prefix D- means considering network diffusion simultaneously.

City ELM-ANN BP-ANN nu-SVR epsilon-SVR Random Forest

P S PS PDS P S PS PDS P S PS PDS P S PS PDS P S PS PDS
Beijing 085 .096 .065 .065 .086 .093 .065 .068 .074 .099 .069 .068 .086 .100 .080 .074 .095 .099 .078 .077
Tianjin .091 .107 .075 .070 .089 .05 .077 .072 .081 .110 .078 .075 .085 .110 .081 .073 .092 .09 .082 .079
Shijiazhuang .091 .105 .072 081 .089 .103 .064 .084 .093 .112 .081 .086 .084 .113 .078 .094 .088 .110 .077 .075
Shanghai 092 .096 .068 .063 .091 .098 .069 .060 .089 .07 .078 .071 .081 .108 .075 .078 .089 .099 .070 066
Hangzhou 102 117 087 .074 102 118 105 .075 122 120 .08 .078 .119 .118 .112 .080 .105 .103 .092 .081
Nanjing 104 .086 .077 063 .103 .086 .081 .074 .094 .087 .085 .075 .097 .084 .083 .079 .092 .095 .079 .073
Wuhan 101 125 .084 E 100 122 .085 .076 .02 .21 .086 .077 .104 125 .088 .077 .099 .119 .083 .079
Guangzhou .099 .096 .088 .079 .096 .100 .087 .079 .118 .125 .02 .087 .112 125 .06 .080 .101 .105 .087 .080
Average 096 103 077 071 .095 .103 .079 .073 .097 .110 .086 .077 .096 .110 .088 .079 .095 .104 .081 .076

Underline means the best PDS item in each line, and bold font means the best PS item in each line.
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Fig. 5. RMSEs under different AQI ranges with physical sensor features (P) and social media features (S/DS).
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Fig. 6. Relative errors under different AQI ranges with physical sensor features (P) and social media features (S/DS).

people posted 14.5% more tweets about smog disasters or
smog-related health hazard in days when AQI exceeds 200
than in days when AQI is less than 200. Additionally, we can
also find that social network diffusion can further improve the
accuracy of social media features for polluted days. It will be
discussed in details in the next subsection.

4.4. Network diffusion factor

In our predictive analytics framework, social network dif-
fusion is considered to further improve prediction accuracy.
As shown in Table 2, the RMSEs with the diffusion factor
considered (P+DS) are smaller than those without the

diffusion factor considered (P+S) for most cities. Actually, the
decrement of average RMSE brought by the diffusion factor
ranges from 7.6% to 10.5% when different training approaches
are adopted.

Figs. 5 and 6 help explain why social network diffusion can
improve prediction accuracy. First, the RMSEs of DS are less
than those of S in the AQI ranges of 0-50, 200-300 and
> 300, and the relative errors of DS are less than those of S in
all the four AQI ranges. Second, in both figures, when com-
pared with P, DS outperforms P in two AQI ranges (200-300
and > 300), while S outperforms P in only one AQI range
(> 300). This may be because considering retweets and likes
enlarges the signal of severe pollution and health hazard, thus
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reducing the noise in learning the nonlinear relationships.
Especially, the number of retweets and likes to smog-related
tweets becomes larger in extreme weather days when it is
either severely polluted or has good air quality. It is confirmed
by our statistical analysis to the retweet and like records.
When compared with the + when AQI ranges from 50 to
200, the days when AQI exceeds 300 have 38% more highly
retweeted or liked tweets (more than 40 retweets or likes),
and the days when AQI is less than 50 have 12% more highly
retweeted or liked tweets.

4.5. Comparison between ANNs and other methods

The accuracies of the health hazard prediction models
using ANNs, nu-SVR, epsilon-SVR and random forest, are
shown in Table 2. We can find that two ANNs' methods
outperform the SVM regression methods and the random
forest regression method in forecasting the next day PHI,
and the single hidden layer ANNs trained by ELM achieve
slightly higher prediction accuracy than the multiple hid-
den layers ANNs trained by BP.

In detail, when only physical sensor features or social
sensor features are inputted (P columns and S columns in
Table 2), ANNs (ELM-ANN and BP-ANN) achieve very
similar performance as the other three methods, especially
the random forest regression method. However, when
both kinds of features are jointly inputted (P+S columns
in Table 2), ELM-ANN outperforms nu-SVR and epsilon-
SVR for all eight cities, and outperforms Random Forest for
six cities. The average RMSE is about 10.5% smaller than
that of nu-SVR, 12.5% smaller than that of epsilon-SVR and
5.2% smaller than that of Random Forest. Meanwhile,
when the network diffusion is considered (P+DS columns
in Table 2), we can get similar comparison results. On the
other hand, we can find that another ANN model trained
by BP achieves similar accuracy as that trained by ELM,

A
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which confirms that ANNs are suitable to in our applica-
tion of forecasting smog-related health hazard.

4.6. Real world case studies

According to the above evaluation, our forecasting
approach with single hidden layer ANNs, ELM algorithm
and both types of features achieves the highest forecasting
accuracy. We adopt such settings for the evaluation of our
approach in real world cases. In this part, the forecasting
performance during two big smog disasters in Beijing and
Shanghai are presented. The forecasted PHI records and
the measured PHI records during the two big smog dis-
asters are shown in Fig. 7. The trends of the forecasted PHI
(P+S) is basically consistent with that of the measured
value (Target), and the consistency becomes even higher
when the network diffusion is considered (P+DS). The
results indicate that this method can indeed work for real-
world situations.

5. Conclusion and future work

In this study, we propose a predictive analytics frame-
work for smog-related health hazard forecasting using
information from both social media and physical sensors,
which is helpful for smog analysis but not investigated. In
this framework, we first propose a new method for
smog-related health hazard measurement based on indi-
viduals' smog and health related comments, as well as
their diffusions on social media. Next, we develop a pre-
diction model that utilizes ANNs to learn the non-linear
relationships between the current physical and social
smog observations and the next day smog-related health
hazard.
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Fig. 7. Results of smog-related health hazard (PHI) forecasting for Beijing and Shanghai.
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The evaluation results indicate that the performance of
ANN together with both social media and physical sensor
features is the best among all candidates that we used in
the experiments. We also find that social media features
provide more predictive information than physical sensor
features under the situations when the smog disaster is
severe. Moreover, such benefit from social media data will
be enlarged if we further consider information diffusion on
social network.

The study also contains some limitations which should
be studied on in the future work. One major limitation lies
in using social media data for health hazard observations
as each of its steps may bring in some errors. For example,
we use keywords to find health-related or smog-related
tweets, but actually people may use the same keywords in
different contexts to mean different things. The percentage
of correct tweets after filtering by a keyword mostly ran-
ges from 85% to 95% [24]. We can find some other public
health information such as hospital visit records as
supplements.

Meanwhile, the adaptivity of the approach for real world
circumstances will also be considered in our future work. On
one hand, some visual analytics [36] functions will be added
into our on going demo system. Through presenting some
similar historical circumstances or forecasting results by dif-
ferent features, the system can provide more information for
flexible decision making. On the other hand, a new prediction
model that utilizes the data from consistent historical cir-
cumstances by understanding the underlying semantic of the
data is being investigated.
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