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Abstract

In this paper, we study the bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass
action, which describes the psychological effects of the community on certain serious diseases when the number of infec-
tive is getting larger. By carrying out the bifurcation analysis of the model, we show that there exist some values of the
model parameters such that numerous kinds of bifurcation occur for the model, such as Hopf bifurcation, Bogdanov—
Takens bifurcation.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In the mathematical modeling of disease transmission, there is a classic model proposed by Kermack and McKend-
rick [8]in 1927. They divided the population being studied in time 7 into three classes labeled S(¢), 1(¢) and R(?), where
S(#) is the number of susceptible individuals, /(¢) is the number of infective individuals, and R(¢) is the number of
removed individuals at time ¢, respectively. And they assumed that a rate of contacts by an infective with a susceptible
is proportional to population size with constant of proportionality. It is clear that the assumption is too simple. Later
Capasso and Serio [2] introduced a saturated incidence rate g(/)S into the epidemic model after studying the cholera
epidemic spread in Bari in 1973, which describes the contact between infective individuals and susceptible individuals,
where

kI

g(1)2m7

kI measures the infection force of the disease and 1/(1 + o) measures the inhibition effect from the behavioral change of
the susceptible individuals when their number increases. g(/) tends to a saturation level when I gets large.
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The general incidence rate
kI's
1+ al?
was proposed by Liu et al. [13,14] and used by a number of authors, see, for example, [3,5,7,1], etc. For a specific non-
linear incident rate
kI*S
1+’
Ruan and Wang in [16] studied an epidemic model with this specific nonlinear incident rate and obtained lots of inter-
esting dynamical behaviors of the model such as a limit cycle, two limit cycles and homoclinic loop, etc. Note that these
functions g(/) of the incident rate g(1)S is monotone, which means that the contact rate between infective individuals
and susceptible individuals is bigger and bigger as the number of infective individuals is getting larger. However, it is
not true in reality. For example, in the recent outbreak of epidemic of severe acute respiratory syndrome (SARS) the
“psychological” effects on the general public (see [4,9]), aggressive measures and policies, such as border screening,
mask wearing, quarantine, isolation, etc. may tend to reduce the number of contacts per unit time as the number of
infective’s were getting relatively larger. To model this phenomenon, Xiao and Ruan in [18] considered a special non-
linear incident rate
kIS
1 +oal?’
where g(I) is non-monotone. When [ is small, g(/) is increasing. Because of small number of infective’s, people may
ignore the epidemic, which may lead to lots of effective contacts between the infective individuals and suspectable.
And when 1 is getting larger and larger, g(]) is decreasing since many protection measures could be taken by the sus-
ceptible individuals. In [18], Xiao and Ruan presented the global analysis of an epidemic model with the non-monotonic
incident rate and obtained either the number of infective individuals tends to zero as time evolves or the disease persists.
Hence, the model cannot undergo any bifurcations.
In this paper we consider a general non-monotonic incidence rate

kIS
1+ Bl + ol?
in an epidemic model, which is described by the following form:
ds kSI
By g B,
dt 1+ Bl + ol
d/ kSI
i e — 7 | I 1.1
a1 prar @ (L1)
dr
—=ul — (d+ )R
3~ M- d+oR,

where S(1), I(t) and R(t) denote the numbers of susceptible, infective, and recovered individuals at time z, respectively, b
is the recruitment rate of the population, d is the natural death rate of the population, k is the proportionality constant,
u is the natural recovery rate of the infective individuals, 0 is the rate at which recovered individuals lose immunity and
return to the susceptible class, o is a positive parameter, f§ is a parameter such that 1+ g1 + o/> > 0 for all 7 > 0, hence,
B> =2/

From the standpoint of biology, we are interested only in the dynamics of system (1.1) in the first octant of R*.
Before going to details of dynamics for (1.1), we first present the following lemma which is easily proved.

Lemma 1.1. The plane S + I+ R = b/d is an invariant manifold of system (1.1), which is attracting in the first octant of R>.

This lemma implies that the limit set of system (1.1) in the first octant of R* locates on the plane S + I+ R = b/d.
Therefore, the dynamics of system (1.1) in the first octant of R* is equivalent to the following system:

drs kI b

—=— " (Z—I-R)-(d+wI

dr 1+[3[+oc12(d ) @+l

dR (1.2)

in the first quadrant Ri of R?. System (1.1) has the disease-free equilibrium and the endemic equilibria if and only if
system (1.2) has the equilibrium (0,0) and the positive equilibria, respectively. It is clear that system (1.1) always has a
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disease-free equilibrium E, = (b/d,0,0) for all values of parameters. To find the endemic equilibria, we investigate the
existence of the positive equilibria of system (1.2). For simplicity, we re-scale (1.2) by

k k
=——I, y=——R, t=(d+J)
drs YT ayst TTUEY)
Then we obtain
dx x
_:714_ _ _
dr 1+mx+nx2( X =y) = px,
(1.3)
Y e
d‘E_q Vs
where
_ p(d+9) . a(d + 0)° 4 bk Cd+p o
Tk 0 "T T AT aarey Pave 1T axs
It can been seen that 4, p, ¢, n are positive parameters, m > N— 0 — o /.

In this paper, we focus on studying the existence of non-hyperbohc pos1t1ve equilibria of (1.3) and their bifurcations.
To find the positive equilibria of system (1.3), we set

M(A—x—y) —px =0,

gx -y =0,
which yields

pnx® + (1+q+pm)x+p—A4=0. (1.4)
Note that

_ & tdu—bk _(d—d)(d—d>)
d(d+ 5) - d(d+ 5) s
where d, :@>0 dzzﬂ
Setting Ry = d,/d, we have p — 4 > 0 if and only if Ry< 1. Let
A= (1+q+pm)’ —4pn(p — A).

Then we obtain the following lemma.

p—

Lemma 1.2

(1) System (1.3) has a unique positive equilibrium E*(x*,y") if and only if one of the following conditions holds:

. L A m)+/ (Lrgtpm—dpn(p—4) _ » .
(i.1) Ry > 1; in this case, x* = a2t “;;ﬁp Ao d) = g,
(i.2) Ro=1and 1+ q+pm<0; in this case, x* = Hqﬂ’"' Ly = gxn.
(1.3) A4=0and 1+ q+ pm<0; in this case, x* = — ”g;‘"", ¥ = gx*

(i1) System (1.3) has two positive equilibria E|(xy,y) and Ex(x,,y,) if and only if A>0, Ry<1 and 1 + g+ pm <O0.

—(1+q+pm)—/ (1+q-+pm)? —4pn(p—A) _ . _ —(l4+gq+pm)+ (1+q-+pm)* —4pn(p—A) _
Zon > V1= gX1; X2 = 2n s V2 = gXo.

In this case, x| =

The Jacobian matrix of system (1.3) at equilibrium (x,y) is

x(nx? + 2ngx* + mgx* — 2ndx — Am — 1) —x
M, = (1 4 mx + nx2)° 1 + mx + nx?
q -1

Therefore, the determinant of the matrix M, is

x(1 +q+Am+2nAx—(l+q)nx)

det(M1) = (1 4 mx + nx2)°
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Its sign is determined by
S1 21+ g4 Am + 2ndx — (1 4 q)nx’.
And the trace of the matrix M is
—12x* + n(1 +2q — 2m)x> + (mq — 2nd — m*> — 2n)x> — (Am + 2m + 1)x — 1
(14 mx + nx2)*

tr(M,) =

)

the sign of which is determined by

Sy2& —?x* 4+ n(1 4 29 — 2m)x* + (mg — 2nd — m* — 2n)x* — (Am + 2m + D)x — 1.
Note that pnx? + (1 + ¢ + pm)x + p — A = 0. Then we have

pSi = 2ndp + (1 + q)(1 + g + mp)lx + Apm + (1 + q)(2p — 4),

'S, = (BiA + By)x + (BsA + By),
where

By = np(2 +3p + 2q + 4pq + mp?),

By = (1+q+mp)[(1 +q+mp)’ = 2np> + p(1 + 2 = 2m)(1 + g + mp) + p*(m* — mq)] + 2mnp",

By = —(1+q+mp)’ = p(1 +q +mp)(1 +2¢ — 2m) — p*(m* — mq) + 2np",

By = pl(1 +q +mp)* + p(1 + g+ mp)(1 +2¢ = 2m) — n(1 + 2p)4* + p*(m* — mq)].
From qualitative analysis, we obtain the following conclusion.

Theorem 1.3

(i) The unique positive equilibrium E*(x*,y") of system (1.3) is a degenerate equilibrium if A= 0 and 1 + g+ pm <0,
where x* = —%, V= gx".

(ii) The unique positive equilibrium E*(x*,y") of system (1.3) is a center-type equilibrium if Ry > 1, S»(x") = 0, where

(gt pm) (gt pm) —dpnp—a)

X = 2m Yo =4qx .

(iii) System (1.3) has two positive equilibria E(x,,y,) and E>(x3,y5) if A>0, Ry<1 and 1+ g + pm <0. And further
when S>(x,) = 0, E(x1,y1) is a hyperbolic saddle, E>(x»,y,) is a center-type equilibrium, where

~(U g+ pm) — /(1 + g+ pm) — dpn(p — 4)

X, = 2pn y V1= qxy;
~(1 g+ pm) +\/(1+q -+ pm)’ — dpn(p — 4)
Xy = 2n y Vo = 4qx;.

We will show that there exist some parameters values such that (1.3) has a cusp of codimension 3, and other param-
eters values such that (1.3) has a multiple focus. Choosing the original parameters of the model as bifurcation param-
eters, we discuss what bifurcations system (1.3) can undergo.

This paper is organized as follows. In Section 2, we show that there exist some values of parameters such that the
model (1.3) has a unique positive equilibrium, which is a cusp of codimension 3. And there exists a set of values of
parameters such that the model undergoes Bogdanov-Takens bifurcation of codimension 2 when two parameters vary
in the small neighborhood of the set of parameter values. In Section 3, we show that there exist some values of param-
eters such that the model (1.3) has a positive equilibrium, which is a multiple focus of codimension 1 in two cases.
Choosing one parameter of the model as a bifurcation parameter, we discuss the Hopf bifurcation of the model.
The paper ends with a brief conclusion.

2. Bogdanov-Takens bifurcation

The purpose of this section is to study if there exist some values of model parameters such that model (1.3) under-
goes the Bogdanov-Takens bifurcation. From Theorem 1.3, we know that the unique equilibrium E*(x*,y") is degen-
erate if and only if (H1) 4 =0 and (H2) 1 + ¢+ pm <0. In order to guarantee the existence of Bogdanov-Takens
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bifurcation, we further assume that (H3) tr(M;(x")) = 0. Now we choose some values of parameters n, p, ¢, m and A
such that (H1)-(H3) hold. We first show that there exists the value of model parameters such that E*(x*, y*) is a cusp of
codimension 3. Taking m = —7, p =2 and ¢ = 5, we obtain that n =20, 4 = 8/5, x* = 1/10, y* = 1/2 by (H1)-(H3).

Lemma 2.1. When (m,p,q,n,A) = (-7,2,5,20,8/5), system (1.3) has a unique positive equilibrium (x*,y") = (1/10,1/2),

which is a cusp of codimension 3.

Proof. Translating the unique positive equilibrium (1/10,1/2) into the origin, we set X =x — 1/10, Y=y — 1/2, for
simplicity, rewriting X, Y as x, y, respectively, then (1.3) becomes

dr _ x+ 1/10 (1 —x—y) — 20+ 1/10),

dt 1 —7(x+1/10) 4+ 20(x + 1/10) @.1)
dy_ s

dr Y

Using Taylor expansion to (2.1), we obtain

dx
= — /5 — 16xp/5 + 8% — 56x%y/5 — 72x° + 304x°y/5 — 752x* + O((x, %)),
(2.2)

a:5x—y.

Let X=1x, Y=x — /5, and rename X, Y as x, y. Then (2.2) is transformed into
% =y —8x% + 16xy — 128" + 56x7y — 448x* — 304x’y + O((x,»)"),
dy

i —8x? + 16xy — 128 + 56x%y — 448x* — 304’y + O((x,»)).

In order to obtain the canonical normal forms, we set X = x — 8x> + 200x%/3 — 500x*, Y= y— 8x2, and rewriting
X, Y as x, y, respectively. Then (2.3) becomes
g =Y

d
d—: = —8x? — 128x% — 200xy — 4480x* /3 — 3400x°y + O((x,»)’),

From theorem in [19], the equilibrium (0, 0) of (2.4) is a cusp of codimension 3, which implies the conclusion. [

(2.3)

From Lemma 2.1, we can see when model parameters (m, p, ¢, n, A) vary in the small neighborhood of (-7,2, 5,20, 8/5),
system (1.3) may undergo the cusp bifurcation of codimension 3 and some complicated dynamics will occur. However,
this analysis of the cusp bifurcation of codimension 3 is too complicated to be done. We have to discuss if there exist
model parameters such that system (1.3) can undergo the cusp bifurcation of codimension 2.

Taking m = —4, p=2, ¢ =3, from (H1) and (H3) we have 4 = 5/3, n= 6. In this case, system (1.3) has a unique
positive equilibrium (1/6,1/2). It is easy to check that the equilibrium is a cusp of codimension 2.

In the following we will find the universal unfolding of E(1/6,1/2) by choosing parameters p and ¢ as bifurcation
parameters in a small neighborhood of (p, 4,q,m,n) = (2,5/3,3,—4,6). Let

p:2+21, q:3+)uz

And rewriting 1 as ¢, then (1.3) becomes

dx x
afl_4x+6x2(5/3_x_y)_px7 55
a:qx_ya

where |1;] < | and |, < 1.
If 2, =0, 4, =0, then (1/6,1/2) is a cusp of codimension 2 for (2.5). Let X=x — 1/6, Y=y — 1/2. By the Taylor
expansion, we have (for simplicity, we still use x, y as X, Y, respectively)

% =—2/6+ (1 = 2)x —p/3+6x* —10/3xy + wi(x,, 1),

(2.6)
d
S =la/6+ (34 i)x —,

where A = (41, 42), wi(x,y,4) is a smooth function of x, y and 4 at least of order three in x and y.
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Set X=x, Y=—11/6+ (1 +24,/3)x — /3, and rewriting X, Y as x, y, respectively, we get
dx

T + (=4 — 2041 /3)x" + 10xy 4+ w(x, y, 4),

d ,
d_); =ay+ax +24y/3 + arx® + asxy + wi(x,p, 4),

where wy(x,y, 1), ws(x,y,4) is a smooth function of x, y and 4 at least of order three in x and y, and
ap :—(311 +)Lz)/187 a) = (2}1 —/Lz)/3, a = —4—28/11/3—40/1?/9, a3 = 10+20)1/3
By setting X = x — 5x%, Y=y + (—4 — 20/,/3)x*> + wa(x,¥,4), and rename X, Y as x, y, respectively, we have

% =y
a (2.8)
d_)t} = ay +a1x + 24y/3 + bix* 4 byxy 4+ wa(x, ¥, A),

where wy(x,y,2) is a smooth function of x, y and 4 at least of order three in x and y, and
by =—-4— (102, +54)/3, by =2-204/3.

Obviously, b1b, # 0 if |41 and |4, are vary small. Thus we set X = x + Z”T‘l, Y =y and rename X, Y as x, y, respec-
tively, then we obtain

%_y

dr (2.9)
dy b 4 b ,

G- @tert 1x° + boxy + ws(x,y, ),

where ws(x,y,2) is a smooth function of x, y and 4 at least of order three in x and y, and
ey = (4b1a0 — a%)/4b1, ey = (4[)1/11 — 3a1b2)/6b1.

Now we make the final change of variables by X = b%x/bl, Y = fbgy/bf, 1= —byt/b,. And rewriting X, Y, 7 as x, y,
t, respectively. We get

% =Y
g’ s (2.10)
d_); =1 + 1) +x2 —xy +we(x,y,4),

where wg(x,y,2) is a smooth function of x, y and 4 at least of order three in x and y, and

T = eobg/b?, Ty = —elbz/bl.

Let
u ou
o A
S
01 0y

And after simple calculation we can obtain that
det(J)],_y = —13/1728 # 0.
Thus, by the Bogdanov and Takens bifurcation theorems, we obtain the following conclusion in a small neighborhood
of (41,42) = (0,0).
Theorem 2.2

(i) System (2.5) undergoes a saddle-node bifurcation, and the saddle-node bifurcation curve is SN = {(11,7,) :
T =0,7) # 0} = {(J1, 4a) : 720 + 2425 + 4827 + 622175 + 773 = 0}.

(i1) System (2.5) undergoes a Hopf bifurcation, and there exist some values of A, and A, such that system (2.5) has a
unique stable limit cycle.
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Fig. 2.1. The phase portrait of system (2.5) when 4; = 0.05, 1, = —0.21.

(iii) System (2.5) undergoes a Homoclinic bifurcation, and there exist some other values of 1, and 1, such that system
(2.5) has a unique stable homoclinic loop.

For example, taking 1; = 0.05, 1, = —0.21, system (2.5) has two positive equilibria E£; and E5, and a stable limit cycle
(SLC) (see Fig. 2.1), where E; is a saddle and E, is an unstable focus.
3. Hopf bifurcation

In this section, we will study the Hopf bifurcation of system (1.3) for some values of model parameters in two cases:
(1) Ro>1;(2) 4>0, Ry<1land 1 + ¢+ pm<0.

3.1. In the case that Ry > 1

From Theorem 1.3, we know that when Ry > 1, there is always an unique positive equilibrium (x*,y*) of (1.3), and
(x*,y") is a center when S,(x™) =0, where

(gt pm)+ /(1 g+ pm)® — dpn(p — 4) o
X' = pn >0, y =gx".

Now, we set
m=-3, n=10, p=9, ¢g=47,

and substitute them into tr(M;(x*)) = 0, thus, we get the equation
51674112 — 125262724 + 12211924° — 663424° + 18054* = 0,

which has two real roots 4 = 12 and 4 = 3738/361. Obviously,
m=-3, n=10, p=9, ¢q=47, A=12,

and

m=-3, n=10, p=9, ¢q=47, A=3738/36l.
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The two sets of parameter values satisfy the conditions
r(M(x) =0, Ry>1, —2vn<m,

respectively. We first discuss the local property of the unique positive equilibrium (x*,»*) when (m,n,p,q,A) =
(—3,10,9,47,12). In this case, we have x* = 1/10, y* = 47/10. We consider

dx x

ot 12 —x —v) —

R T T AL R St U (3.1)
Yy '
dti X y

Lemma 3.1. (1/10,47/10) is a stable weak focus of multiple one for system (3.1).

Proof. In order to translate (x*,y) to the origin, we set X =x — 1/10, Y =y — 47/10. And we rename X, Y as x, y,
respectively. Then (3.1) becomes

dr (x+1/10) o
dr 13+ 1/10) + 10(x + 1/10)’ (72/10 —x = y) = 9(x + 1/10), .
% =47x —y.

Now, we only need to prove that the origin is a stable weak focus of multiple one of (3.2). Using Taylor expansion for
(3.2), then we have

dx 145 25, \ ]
P 2 125840
G- Y Y x + O(fx,y1), 63
Q:47x—y.
dr

Making the change of variables u = x, v = —\%x—i—ﬁy, r:@t, and rewriting 7 as ¢, we obtain
du 45 , 45 25, 2025 .
- TR T 16 g T O, (3.4)
dv 15V78 30 , 2578 , 2025 , ] '
@ 2—6uv+ﬁu +3Tu U+Wu + O(Ju, v]").

Thus, we can get the first Liapounov constant W, = —46925v/781/16224 < 0. Therefore the origin is a stable weak
focus of order one for (3.4). The conclusion follows. [

In the following, we choose A as a bifurcation parameter. Let

A:12+€1.
Then we may write (3.1) as follows

dx X

—=——(12 —x—y)—9

G T —ax sl (2Ta Yo =9 3.5
Y_ 4 |
— =4Tx —y.

dr Y

The positive equilibrium of system (3.5) is £* (77+ v 615%40” anl 6V0169+40('> and the linearizing matrix of (3.5) at E* is
Ay Ay
47 —1)’

=627 -90c, +51VI69 $40, 21 -3V169 + 40
LT 88456 — 4160 +40¢; © ° 4(88 + 5e; — 4160 + 40¢;) |

Therefore, the characteristic equation of which is

where

Pr(l=A)i—A —474,=0
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and

—(715495¢; — 55+/169 + 40¢ ) :I:l\/ 931190 — 7225¢2 4 78110+/169 + 40€; — €, (227645 — 9325\/169+4061)
2(88 + 5¢; —4+/169 +40¢)
Obviously, (i) Rei(e)|(e; =0)=0, Imi(e;)|(ey =0) = @ #0; (i) (Rei(er)) (e =0)=—15/104 # 0; (iii) from

Lemma 3.1, we have W, <0.
Therefore, by Hopf bifurcation theory, we obtain the following result.

Theorem 3.2. There exists a gy > 0, and a function €| = €,(x,) defined on 0 < x| — % < a1, which satisfies €, (%) =0. And
when €, = €;(x,) <0, system (3.5) has a unique stable limit cycle which passes through (x,,47/10).

Next we consider system (1.3) when (m,n,p,q,A) = (—3,10,9,47,3738/361):

dx X

E:m(”%/%]_x_y)_gx’ (3.6)
b =4Tx —y.

de

In this case system (1.3) has a unique positive equilibrium (x*,y*), where x* = 1/19, y* = 47/19. By the similar argu-
ments for the case (m,n,p,q,A) =(-3,10,9,47,12), we obtain that the first Liapounov constant of (1/19,47/19) is
W, = —42973761291/242408+/181806 < 0. Therefore, we get

Lemma 3.3. (1/19,47/19) is a stable weak focus of order one for system (3.6).
In the following, we still choose 4 as a bifurcation parameter. Let
A =3738/361 + ¢,.

Then we can write (3.6) as follows:

dx X
S 1 Ly _) —
PR T (3738/361 + €, —x —y) — 9x, )
A y.
dr
The positive equilibrium of system (3.7) is E* ( D3ty 317114:)%14440(2 Gl v 131;4%14440“) and the linearizing matrix of (3.7)
at E" is
A A
47 —1)’
where
_ 172887 + 32490¢, — 969+/37249 + 14440¢, v 57(—133 + /37249 + 14440¢,)
1= 2=

—28798 — 1805¢, + 761/37249 + 14440¢,

Therefore, the characteristic equation is

4(—28798 — 1805¢; + 76+/37249 + 14440¢;)

P4 (1—A)A—A —4T4, =0
and 1 = Re(4) & iIm(4), where
201685+ 34295¢, — 1045+/37249 + 14440¢,

Re() = ,
—57596 —3610€, + 1524/37249 + 14440¢,
) \/—68310792104 94156922563 + 361572128+/37240 + 14440¢, + 1805¢,(—13263757 + 33041 37249+1444062)
Im

—57596 —3610¢, + 152+/37249 + 14440¢,

Obviously, (i) Re(4)|(e; =0) =0, Im(2)|(e; = 0) = —y /35 # 0; (ii) (Re(4))'|(e2 = 0) = LT 5 0; (iii) from Lemma
3.3, we have W, <0.
Therefore, by the Hopf bifurcation theory, we obtain
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Theorem 3.4. There exists a 6,> 0, and a function €, = e;(x,) defined on 0 < x; — 11—9 < 02, which satisfies 62(11—9) =0.
And when e, = e5(x1) > 0, system (3.7) has a unique stable limit cycle which passes through (x,,47/19).

The bifurcation diagram of system (3.5) and (3.7) is in Fig. 3.1. The bifurcation diagram shows that the unique posi-
tive equilibrium (x*, ) is unstable when 3738/361 < 4 < 12 and is stable when A4 <3738/361 or 4 > 12. Thus Hopf
bifurcations occur and there exists a stable limit cycle when 3738/361 < 4 < 12, which are the conclusions in Theorems
3.2 and 3.4. As an example, setting 4 = 11, we obtain the phase portrait of system (3.5) or (3.7) (see Fig. 3.2).

10 T T T T T
8 r 4
6 4
Y ..000000000..°:'
o0 ® T
4 r . L ///’// .o' T
° -
. - [
. - °®
K T o®®
s -7 °®
>/(; .00.'...
2 ®ecoee® 4
0 1 1 1 1 1
10 10.5 11 11.5 12 12.5 13

0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 3.2. A stable limit cycle of (3.5) when m = -3, n=10, A =11, ¢g=47, p=09.
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3.2. In the case that A >0, Ry<1 and 1 + g+ pm <0

From Theorem 1.3, we also know that when 4 >0, Ry <1 and 1 + ¢ + pm <0, system (1.3) has two positive equi-
libria Ey(xy,y1) and Ex(x3,)»), and Ei(xy,y;) is a saddle. Furthermore, E»(x;,)>) is a center when S»(x,) = 0. The set of
number

m=-5 n=18, p=7, q=11, A=6
satisfy that
trM(x) =0, p>A4, -2/n<m<0.

Now we discuss the local property of the unique positive equilibrium E(x»,),) when (m,n,p,q,A) = (—5,18,7,11,6). In
this case, we have x, = 1/9, y, = 11/9. We consider

dx x

@ T e 0T TN (38)
Q—lle '
dr »

By the similar argument as above, we obtain that the first Liapounov constant of system (3.8) about (1/9,11/9) is
W, = 6831\/%1#400 > 0. Therefore, we get

Lemma 3.5. (1/9,11/9) is a unstable weak focus of multiple one of system (3.8).
In the following, we choose A4 as a bifurcation parameter. Let

A=6+54.

Then we may write (3.8) as follows:

dx X

@ T Srage 0ty =Ty (39)
Qzllx—y.

dr

The second positive equilibrium of system (3.9) is E; and the linearizing matrix of (3.9) at E,

1S
A A
1 1)

where

(z3+\/25+5045 253+11\/25+5045>
52 252

_7(=19+426 + V25 +5045) = 7(23 4 v/25 + 5045)
103 —210++v25+5045 = 12(—103 — 216 + /25 + 5040)

Therefore, the characteristic equation is

Bl

Pr(l—A)i—A, —4T4, =0
and /4 = Re(4) £ 1Im(4), where

Re(J) = —90 + 9455 + 18v/25 + 5045
©6(—103 — 216 + /25 + 5040)
\/ —67076157 — 635(—13723 + 547y/25 + 5043) + 24(1075 + 2186+/25 + 5049)
Im(1) = .
6(—103 — 215 + /25 + 5049)

Obviously, (i) Re(4)|(6 =0) =0, Im(4)|(6 =0) = f\/% # 0; (ii) (Re(4))'|(6 = 0) = — £ % 0; (iii) from Lemma 3.5,
we have W, > 0. Thus, by the Hopf bifurcation theory, we obtain the following conclusion.

Theorem 3.6. There exists a o3> 0, and a function 5 = §(x7) defined on 0 < X7 — 1 < 63, which satisfies §(3) = 0. And
when 6 = 6(x7) > 0 system (3.9) has a unique unstable limit cycle which passes through (x7,11/9).
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Fig. 3.3. The bifurcation diagram of (3.9) by parameter § and the y-coordinate of the limit cycle.
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Fig. 3.4. A unstable limit cycle when m = -5, n =18, 4 =6.008702, ¢ =11, p=17.

Fig. 3.3 show the bifurcation diagram of system (3.9). When 6 < 0, the positive equilibrium E(x,,),) is unstable
focus; when 6 > 0, the stability of the equilibrium E»(x»,y,) is changed and a Hopf bifurcation occur. Hence, when
J > 0 the positive equilibrium E5(x»,)») is a stable focus and there exists a unstable limit cycle. As an example, setting
0 = 0.008702, we obtain the phase portrait of system (3.9) (see Fig. 3.4).

4. Conclusion

Epidemic mathematical models have become important tools to study the transmission dynamics of infectious dis-
eases in host populations. There have been lots of works on the stability of endemic equilibrium for some epidemic
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models (cf. [10-12] and references therein). In this paper, we have studied the bifurcation behaviors of the SIR epidemic
model with the general non-monotone and nonlinear incidence rate kIS/(1 + BI + a/?). From the analysis, we have
found that there exist some values of the model such that the model can undergo a series of bifurcations, such as sad-
dle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. When a stable limit cycle surrounds the
endemic equilibrium, it means that the number of the infective tends to a periodic function and the disease will exhibit
frequently regular oscillation. Hence, the disease become periodic outbreak as time evolves. On the other hand, there
exist some parameters values such that the model has two endemic equilibria (one is a saddle and the other is center-
type equilibrium) and a stable homoclinic loop. Thus, the disease will persist.

Acknowledgments

This work was supported by the National Natural Science Foundations of China (No. 10231020) and Program for
New Century Excellent Talents in Universities of China.

References

[1] Alexander ME, Moghadas SM. Periodicity in an epidemic model with a generalized non-linear incidence. Math Biosci
2004;189:75-96.
[2] Capasso V, Serio G. A generalization of the Kermack—Mckendrick deterministic epidemic model. Math Biosci 1978;42:43-61.
[3] Derrick WR, van den Driessche P. A disease transmission model in a nonconstant population. J Math Biol 1993;31:495-512.
[4] Gumel AB et al. Modelling strategies for controlling SARS outbreaks. Proc R Soc Lond B 2004;271:2223-32.
[5] Hethcote HW. The mathematics of infectious disease. STAM Rev 2000;42:599-653.
[7] Hethcote HW, van den Driessche P. Some epidemiological models with nonlinear incidence. J Math Biol 1991;29:271-87.
[8] Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond 1927;115:700-21.
[9] Leung GM et al. The impact of community psychological response on outbreak control for severe acute respiratory syndrome in
Hong Kong. J Epidemiol Community Health 2003;57:857-63.
[10] Li G-H, Jin Z. Global stability of an SEI epidemic model. Chaos, Solitons & Fractals 2004;21:925-31.
[11] Li G-H, Jin Z. Global stability of an SEI epidemic model with general contact. Chaos, Solitons & Fractals 2005;23:997-1004.
[12] Li G-H, Jin Z. Global stability of a SEI epidemic model with infectious force in latent, infected and immune period. Chaos,
Solitons & Fractals 2005;25:1177-84.
[13] Liu WM, Hethcote HW, Levin SA. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol
1987;25:359-80.
[14] Liu WM, Levin SA, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math
Biol 1986;23:187-204.
[16] Ruan S, Wang W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J Different Equat 2003;188:135-63.
[18] Xiao D-M, Ruan S-G. Global analysis of an epidemic model with a nonlinear incidence rate. Preprint 2005.
[19] Zhang Z-F, Ding T-R, Huang W-Z, Dong Z-X. Qualitative theory of differential equations. Translations of mathematical
monographs, vol. 101. Providence: Amer Math Soc; 1992.



	Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action
	Introduction
	Bogdanov-Takens bifurcation
	Hopf bifurcation
	In the case that R0 gt 1
	In the case that  Delta  gt 0, R0 lt 1 and 1+q+pm lt 0

	Conclusion
	Acknowledgments
	References


