
Vol.:(0123456789)1 3

3 Biotech (2020) 10:192 
https://doi.org/10.1007/s13205-020-02167-8

ORIGINAL ARTICLE

Pterostilbene induces Nrf2/HO‑1 and potentially regulates NF‑κB 
and JNK–Akt/mTOR signaling in ischemic brain injury in neonatal rats

Qinghuang Zeng1,2 · Wenchang Lian1,2 · Guizhi Wang1,2 · Manping Qiu1,2 · Lingmu Lin1,2 · Renhe Zeng1,2

Received: 26 June 2019 / Accepted: 15 March 2020 / Published online: 4 April 2020 
© King Abdulaziz City for Science and Technology 2020

Abstract
Hypoxic-ischemic (HI) brain injury has a high occurrence rate of 1–4 per 1000 live births and is the leading cause of neuro-
logical disabilities. Despite the improvement in neonatal care, the effectiveness of current therapeutic strategies is limited, 
and thus, additional therapies with better results are of much needed. Pterostilbene is a stilbenoid possessing numerous 
preventive and therapeutic properties. The current study aimed to assess whether pterostilbene exerted protective effects 
in neonatal rats against experimentally induced ischemic brain injury. Pterostilbene was administered via oral gavage from 
postnatal day 3 to day 8. Rat pups that were seven-day-old were exposed to hypoxic-ischemic insult via ligation of the com-
mon carotid artery and hypoxic environment exposure. Pterostilbene treatment reduced neuronal loss and infarct volume. 
Pterostilbene administration regulated the NF-κB pathway, and the levels of inflammatory mediators (Nitric oxide, TNF-
α, IL-1β, and IL-6) were reduced. HI-induced oxidative stress was significantly reduced by pterostilbene, as presented by 
decreased production of malondialdehyde and reactive oxygen species. Levels of glutathione were enhanced by pterostilbene. 
Pterostilbene regulated Nrf2/HO-1 and JNK expression and activated the PI3K/Akt-mTOR signals. These findings suggest 
that pterostilbene is a candidate compound for the treatment of neonatal HI.

Keywords  Heme oxygenase-1 · Ischemic brain injury · Mammalian target of rapamycin · Nuclear factor erythroid-2-related 
factor 2 · Pterostilbene

Introduction

Perinatal hypoxia–ischemia (HI), synonymous with hypoxic-
ischemic encephalopathy (HIE), is one of the major causes 
of perinatal cerebral injury leading to death and neurologic 
sequelae such as cerebral palsy, epilepsy, visual and hear-
ing impairments, motor disabilities, and learning deficits 
(Grow and Barks 2002; Ferriero 2004). HI occurs in 1–4 
per 1000 live births (Azzopardi 2014; Rocha-Ferreira and 
Hristova 2016) and is caused by partial or complete anoxia 
and decreased cerebral blood flow as a result of perinatal 
asphyxia (Shankaran et al. 2014). Various mechanisms, 
including excitotoxicity, cellular apoptosis, metabolic aci-
dosis, inflammatory, and immune responses, have been 

reported to be associated with HI-induced cerebral injury 
(Martin et al. 1998; Saito et al. 2005; Zhang et al. 2006; 
Wang et al. 2007).

Mitochondrial dysfunction, Ca2+ overload, and inflamma-
tory processes lead to the production of raised production 
of reactive oxygen species/reactive nitrogen species (ROS/
RNS) that contribute to oxidative stress, which consequently 
leads to ischemic cell death (Coyle and Puttfarcken 1993; 
Lewen et al. 2000). Nuclear factor erythroid 2-related factor 
2(Nrf2) is the prime factor of transcription, which involves 
the regulation of an extensive set of enzymes involved in 
antioxidant defense and detoxification (Ishii et al. 2000; Shih 
et al. 2003). Enzymes, NAD(P)H quinone oxidoreductase, 
heme oxygenase-1 (HO-1), and glutathione S-transferases 
(GSTs), regulated by Nrf2 constitute chief cellular defense 
mechanisms that work against ROS/RNS and also detoxify 
electrophiles and xenobiotics (Lee et al. 2003; Satoh et al. 
2006). HO-1 is a redox-sensitive and stress-induced enzyme 
that converts heme to biliverdin (Motterlini et al. 2002). The 
Nrf2 pathway also regulates inflammatory responses and is 
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associated with the process involved in relief from calcium 
overload (Wu et al. 2015).

PI3K-Akt-mTOR/JNK is one of the major signaling path-
ways that regulate several vital processes, such as cell sur-
vival, cell proliferation, and apoptosis (Nijboer et al. 2010; 
Liu et al. 2017). The pathway is known to be implicated in 
the pathogenesis of HI brain injury (Endo et al. 2006; Xu 
et al. 2015). PI3K/Akt signaling was reported to be involved 
in the protection against cerebral injury (Lu et al., 2011). Akt 
regulates—JNK, a mitogen-activated protein kinase that is 
associated with cell survival, apoptosis, and inflammatory 
responses (Zhao et al. 2006; Kamada et al. 2007). Activation 
of Akt signaling following transient cerebral ischemia has 
been reported to help the existence of neurons and inhibit 
neuronal cell loss (Noshita et al. 2001). The mammalian 
target of rapamycin (mTOR), a crucial downstream target of 
Akt, is implicated in promoting neuronal cell survival and 
axon regeneration (Park et al. 2008; Sun et al. 2011).

Accumulating evidence suggests that cerebral inflam-
mation, characterized by microglial activation, leukocyte 
infiltration, and raised levels of inflammatory mediators 
such as cytokines (Barone and Feuerstein 1999; del Zoppo 
et al. 2000), substantially contribute to HI brain injury (Ben-
jelloun et al. 1999). Nuclear factor-kappa beta (NF-κB) is 
well documented in the pathology of several conditions, 
traumatic and ischemic brain injury (Williams et al. 2006). 
NF-κB is a major transcription factor associated with gene 
expression that is involved in inflammatory responses (Gao 
et al. 2009), including interleukins (ILs)—IL-1α and IL-1β, 
tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-
2), and inducible nitric oxide synthase (iNOS) (Saliba and 
Henrot 2001; Karin et al. 2002). These inflammatory factors 
are considered the chief contributors to ischemic brain injury 
(Williams et al. 2006; Barakat et al. 2014). Thus, strategies 
targeting multiple molecular pathways are extensively useful 
for reducing HI-induced neuronal damage.

Recent studies are much focussed on the protective effects 
of natural compounds derived from plants in brain injury 
(Arteaga et al. 2015; Lv et al. 2015). A number of anti-
oxidant compounds such as curcumin, thioperamide, and 
ropinirole have been reported to potentially protect neurons 
from ROS-induced cell damage in animal models of HI 
injury (Iida et al. 1999; Badary et al. 2003; Jayaprakasha 
et al. 2006; Akhtar et al. 2008).

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is 
a stilbenoid detected mainly in blueberries and heartwood of 
Pterocarpus marsupium, and its structure is similar to that of 
resveratrol (Roupe et al. 2006; Lin et al. 2009). Pterostilbene 
possesses multiple health benefits as an antioxidant, lowers 
blood sugar levels, and exerts numerous bioactive effects 
like anti-inflammatory, cardioprotective, and anticarcino-
genic properties (Satheesh and Pari 2006; Remsberg et al. 
2008; Chakraborty et al. 2010; McCormack et al. 2012). 

Pterostilbene is more lipophilic than resveratrol due to the 
presence of two methoxy groups and thus exhibits higher 
bioavailability (80%) than resveratrol (20%) (McCormack 
and McFadden 2013). The aim of this study was to explore 
the effects of pterostilbene in perinatal HI-induced brain 
injury rodent model.

Materials and methods

Ethics approval

The Putian University Animal Ethics Committee approved 
(Ethical approval Number: TXY/20160703) all the study 
design and protocols of this study. The protocols were also 
carried out by the guidelines for the care and use of labora-
tory animals of the National Institutes of Health (NIH) (NIH 
publication no. 85-23, revised 1996) (Garber 2011).

Study design and hypoxia–ischemia induction

Timed-pregnant female rats (Sprague–Dawley) were pro-
cured from the Animal Laboratory of Shandong University 
(Jinan, China). The animals were held under controlled 
temperature at 22–23 ℃ with a 12:12-h light/dark cycle 
and 55–60% relative humidity. Sprague–Dawley rats were 
provided with unrestricted access to water and pelleted rat 
chow. The rats were monitored carefully for the time of 
delivery. Healthy male pups (n = 72) at postnatal day three 
were used for the study.

Hypoxia–ischemia was induced in rats on postnatal day 
7, as mentioned by Rice et al. (1981) with minor alterations. 
The P7 pups (weighing 52 ± 1 g) were exposed to isoflurane 
(3.5%) anesthesia (Sigma-Aldrich, St.Louis, MO, USA) in 
oxygen (1.5% isoflurane for maintenance), and the left com-
mon carotid artery (CCA) was isolated and ligated using 6–0 
surgical silk. To ensure that the blood flow through the ipsi-
lateral carotid circulation was cut off through the total period 
of study, the CCA was transfected between the ligatures. The 
surgery site was sutured, and the rat pups were permitted to 
recover from anesthesia for 2 h and were placed at 36 °C 
in a humidified chamber. HI was induced by perfusion of 
8% oxygen in nitrogen at 5 L/min for 135 min. The study 
animals were sent to their dams following hypoxic expo-
sure. Pterostilbene (Sigma-Aldrich, St. Louis, MO, USA) 
in saline and was doled via oral gavage at a dose of 12.5, 
25, or 50 mg/ kg b.wt starting P3 to P8 days. On the day of 
HI insult, pterostilbene was administered 1 h prior to insult. 
Control rats were not subjected to insult or given pterostil-
bene. The HI-control group was subjected to HI insult but 
not administered pterostilbene. A separate group of rat pups 
were given pterostilbene at 50 mg/kg dose for P3 to P8 days 
but were not subjected to HI.
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The rat pups were sacrificed at 24 h post-HI induction 
by cervical decapitation under isoflurane anesthesia. Brains 
were removed immediately after sacrifice and used for 
analysis.

Tissue preparation for histological analysis

The excised tissues of the brain were post-fixed in paraform-
aldehyde and embedded in paraffin after dehydration. Tissue 
sections (5 µm thickness, sliced coronally) were hematoxy-
lin and eosin (HE) stained and observed using a confocal 
microscope (magnification, 20 ×; Zeiss, LSM510; Zeiss AG, 
Oberkochen, Germany).

Brain water content detection

Immediately after excision, the brain was weighed and noted 
as wet weighed. The brain was then kept at 105 °C for 24 h 
in an oven, and the dry weight was measured (Chen et al. 
2011). The brain water percentage was determined using 
the formula [(wet weight − dry weight)/wet weight] × 100%.

TTC staining

2,3,5-triphenyltetrazoliumchloride (TTC) (Sigma-Aldrich, 
St.Louis, MO, USA) staining was done to measure the 
infarction volume. The excised brains frozen at − 20 °C 
for 15–20 min were sliced into 2 mm thick sections. The 
sections were incubated for 30 min (37 °C) with TTC and 
were immersed overnight in 4% paraformaldehyde. Nor-
mal regions in the brain stained deep red with TTC, while 
the infarcted tissues remained unstained. The infarct area 
was detected using NIH Image J software (Version 1.61; 
National Institutes of Health, Bethesda, MD). The intensity 
of staining was measured in the right hemisphere (ipsilateral 
side) and at the contralateral side on the left hemisphere. 
The magnitude of tissue loss was calculated using the for-
mula ([C − I]/C) × 100, where C = mean of the contralateral 
area; I = mean value of the ipsilateral area. The results were 
expressed as percentage infarction/ipsilateral hemisphere.

TUNEL analysis

Terminal transferase-mediated dUTP nick end-labeling 
(TUNEL) staining was done to measure the extent of cel-
lular apoptosis following HI injury. The TUNEL assay kit 
(DeadEnd TM fluorometric TUNEL system kit) from Pro-
mega (Madison, WI, USA) was used according to the direc-
tions specified by the manufacturer. Positive TUNEL cells in 
the brain tissue sections were observed and examined using 
NIS-Elements BR imaging processing and analysis software 
(Nikon Corporation, Japan).

Determination of ROS, lipid peroxidation, 
and glutathione levels

Brain tissues were homogenized in ice-cold PBS and sub-
jected to centrifugation (3000 rpm; 15 min). The supernatant 
collected was used for the assay of ROS, lipid peroxidation, 
and glutathione levels. In the supernatant, the total protein 
content was detected by BCA method with protein assay 
kit from BioRad (Hercules, CA, USA). Malondialdehyde 
(MDA) and glutathione (GSH) contents in the brain tissues 
were detected using kits from Sigma-Aldrich, by following 
instructions given by the manufacturer.

The OxiSelect™ ROS/RNS assay kit (Cell Bio Labs Inc.) 
was used to determine ROS levels. A fluorogenic probe 
dichlorodihydrofluorescein DiOxyQ (DCFH-DiOxyQ), 
which is precise to free radicals—ROS/RNS, was used. 
DCFH-DiOxyQ is converted to DCFH, which is extremely 
reactive and which reacts with RNS and ROS in the sample 
and reacts to fluorescent DCF. The intensity of fluorescence 
reflects the amount of ROS/RNS in the sample. Using a Syn-
ergy™ 2 Multi-function Microplate Reader, the fluorescence 
was measured (480 nm excitation and 530 nm emission).

Determination of levels of cytokines

Serum was separated from whole blood samples and used 
for analysis. The TNF-α, IL-1β, and IL-6 serum concentra-
tions were determined using ELISA kits according to the kit 
protocol (Biolegend).

Determination of serum nitric oxide levels

Levels of serum nitric oxide (NO) were determined using a NO 
assay kit (Abcam). Accumulation of nitrite reflecting NO levels 
was determined based on the reaction involving enzyme nitrate 
reductase, which converts nitrate to nitrite. Griess reagent (1% 
sulfanilamide, 2.5% phosphoric acid and 0.1% N-(1-naphthyl) 
ethylenediamine dihydrochloride) converts the nitrite formed 
to a deep purple azo compound. The amount of the chromo-
phore formed precisely indicates the levels of nitric oxide. The 
absorbance of the purple compound was read at 540 nm in a 
96-well microplate reader (Spectra MAX 340PC, Molecular 
Devices). The amount of NO in the samples was calculated 
using standard sodium nitrite at 0–150 µM concentration.

Real‑time PCR (RT‑PCR)

A complete set of RNA from samples of the brain tissue 
(cortical) was isolated according to instructions specified 
by the manufacturer using the RNeasy Mini Kit (Qiagen, 
Valencia, CA, USA). Isolated RNA 5 μg was used for the 
synthesis of the first strand of cDNA employing random 
primers using the Superscript First-Strand Synthesis System 
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for RT-PCR from Invitrogen (Carlsbad, CA, USA). PCR was 
executed using SYBR Green PCR Master Mix from Applied 
Biosystems (Foster City, CA, USA). The following primers 
were used for amplification as follows:

IL-1β forward-CAC​CTC​TCA​AGC​AGA​GCA​CAG, 
reverse-GGG​TTC​CAT​GGT​GAA​GTC​AAC; IL-6 forward-
TCC​TAC​CCC​AAC​TTC​CAA​TGCTC, reverse- and TTG​
GAT​GGT​CTT​GGT​CCT​TAGCC; iNOS forwardGTG​CTA​
ATG​CGG​AAG​GTC​ATG reverse-GCT​TCC​GAC​TTT​
CCT​GTC​TCA​GTA; TNF-α forward-AAA​TGG​GCT​CCC​
TCT​CAT​CAG​TTC​, reverse-TCT​GCT​TGG​TGG​TTT​GCT​
ACGAC; GAPDH forward-CCA​GCC​TCG​TCT​CAT​AGA​
CA, reverse-GTA​ACC​AGG​CGT​CCG​ATA​CG, respectively.

GAPDH has been used as an internal control to evaluate 
test gene expression.

Western blotting

In ice-cold RIPA cell-lysis buffer (Santa Cruz Biotechnol-
ogy, Inc., TX, USA), brain tissues were homogenized, and 
whole-cell lysates were centrifuged at 14,000×g for 30 min 
at 4 °C. Also, for determination of NF-κB (p65) expression 
in the nuclear and cytosol fractions, the homogenate of equal 
volumes from the different groups was separated into nuclear 
fractions using NE-PER nuclear and cytoplasmic extraction 
reagent kit (Pierce Biotechnology, Rockford, IL, USA). The 
total protein content in the supernatant and in nuclear and 
cytosol fractions was determined (BCA protein assay kit, 
Thermo Fischer Scientific). Equal amounts (30 µg) of pro-
tein samples from different experimental groups (for NF-κB 
(p65) from both the fractions/ group; Nrf2 in the nuclear frac-
tion and HO-1 in the cytosolic fraction) were separated elec-
trophoretically on SDS-PAGE (8–12%). The protein bands 
were blot transferred onto a nitrocellulose membrane (0.2 μm, 
Sigma-Aldrich, St. Louis, MO, USA) after separation. The 

membranes were blocked for any endogenous peroxidase 
activity with 5% non-fat blocking grade milk (Bio-Rad, 
Hercules, CA, USA) following which the membranes were 
incubated overnight at 4 °C with primary antibodies against—
Nrf2, HO-1, TNF-α, NF-κB p65, IκBα, IKKβ, IKKα, p-IκBα, 
p-IKKβ, p-IKKα, β-actin (1:1000, Santa Cruz Biotechnology, 
USA), JNK, c-JUN, p-JNK, p-cJUN, mTOR, p-mTOR, Akt 
and p-AKT (1:1000, Cell Signaling Technology, USA). The 
membranes were washed well with TBST and then incubated 
for 1 h at room temperature with secondary antibodies com-
bined with HRP (1:2000, Santa Cruz Biotechnology, USA). 
Positive bands were then visualized and analyzed by chemilu-
minescence method (Millipore, USA) and using a ChemiDoc 
XRS imaging system (Bio-Rad, USA). Test protein’s expres-
sion was standardized with that of β-actin expression, which 
was used as an internal control.

Statistical study

The results of the analysis were statistically analyzed using 
SPSS software (version 21.0) (SPSS Inc., Chicago, IL, 
USA). One-way analysis of variance (ANOVA) and Dun-
can’s Multiple Range Test (DMRT) was performed for com-
paring data from multiple groups. Values were identified as 
statistically significant at P < 0.05.

Results

Pterostilbene improved the histology and reduced 
neuronal cell loss in the brain tissues of pups 
subjected to HI

The brain tissues of the HI-induced animals were assessed 
for histological changes. HE staining of the brain sections 

Fig. 1   Pterostilbene decreased 
neuronal apoptosis. Values 
are represented as mean ± SD, 
n = 6; P < 0.05 as determined by 
one-way ANOVA followed by 
DMRT analysis. *P < 0.05 vs. 
control; #P < 0.05 vs. HI control; 
a–e mean values from different 
experimental groups that differ 
from each other at P < 0.05
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revealed marked neuronal degeneration with larger areas of 
neuronal loss (Fig. 1). The neurons of the cerebral cortex 
were shrunken with pyknotic nuclei. Neuronal cell density 
was markedly reduced.

Further, observations of the TUNEL assay presented a 
significant (P < 0.05) increase in TUNEL positive cell counts 
indicating raised neuronal loss following HI. Pterostilbene 

administration considerably improved the architecture of 
damaged brain tissues and decreased TUNEL positive cells 
dose-dependently. A 50 mg dose of pterostilbene-treated HI-
induced animals presented brain tissues with near-normal 
architecture. Also, pterostilbene alone (50 mg) did not cause 
any changes in the tissue morphology and was more compa-
rable to the healthy control animals.

Fig. 2   Pterostilbene reduced 
brain edema and infarct volume 
following HI injury a Brain 
water content, b infarct volume 
and c TTC staining of the 
infract. Values are represented 
as mean ± SD, n = 6; P < 0.05 
as determined by one-way 
ANOVA followed by DMRT 
analysis. *P < 0.05 vs. control; 
#P < 0.05 vs. HI control; a–e 
mean values from different 
experimental groups that differ 
from each other at P < 0.05
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Fig. 3   Pterostilbene reduced 
oxidative stress following HI 
injury. Pterostilbene reduced 
a ROS generation, b MDA 
levels and c regulated GSH 
levels. Values are represented 
as mean ± SD, n = 6; P < 0.05 
as determined by one-way 
ANOVA followed by DMRT 
analysis. *P < 0.05 vs. control; 
#P < 0.05 vs. HI control; a–e 
represents mean values from 
different experimental groups 
that differ from each other at 
P < 0.05
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Pterostilbene significantly reduced brain edema

Brain edema was assessed following HI induction (Fig. 2a). 
HI-induced animals presented with increased brain water 
content as compared to healthy control pups. The brain water 
content in the HI control animals was 89.80 ± 4.02%. Pter-
ostilbene caused a significant reduction in the water content 
in a dose-dependent manner. 50 mg pterostilbene treated 
HI-induced rats presented with 69.20 ± 3.10% water content, 
indicating an effective reduction in brain edema.

Pterostilbene reduced brain infarction

The brain tissues were stained with TTC stain to assess 
the magnitude of infarction after HI. These observations 
indicated severe brain infarction in HI-induced animals 
(Fig. 2b, c). HI resulted in significantly (P < 0.05) increased 
the volume of infarction (60.2 ± 2.92%). Administration 
of pterostilbene at 12.5, 25.0 and 50.0 mg/kg to the pups 
brought a significant (P < 0.05) decrease in infarct volume 

(44.10 ± 2.23%, 30.25 ± 4.10% and 9.16 ± 1.08%, respec-
tively) vs. HI control animals.

Pterostilbene decreased ROS levels following HI

Oxidative stress is well documented in HI brain injury. The 
results of the study showed significant (P < 0.05) increase 
in ROS production at 24 h following HI (Fig. 3a). ROS 
generation increased to 206.10 ± 11.5% in HI control ani-
mals vs. 15.18 ± 3.76% normal control. However, ROS gen-
eration decreased to 160.91 ± 9.25%, 113.20 ± 7.10% and 
45.81 ± 6.75% after treatment with pterostilbene at 12.5, 50, 
and 50 mg, illustrating the antioxidant potential of pteros-
tilbene. Furthermore, the levels of ROS in the pterostilbene 
alone treated group were noticeably lower than the normal 
control group. Along with ROS levels, MDA content was 
detected to be significant (P < 0.05) in the HI control group 
compared to the normal control (Fig. 3b). Furthermore, 
elevated GSH levels (47.5 ± 1.95 nM/mg protein) seen in 
HI-induced pups vs. 31.76 ± 1.50 nM/mg protein in normal 

Fig. 4   Pterostilbene regulates the antioxidant regulators. a Repre-
sentative immunoblot, b relative protein expressions. Values are 
represented as mean ± SD, n = 6; P < 0.05 as determined by one-way 
ANOVA followed by DMRT analysis. *P < 0.05 vs. control; #P < 0.05 
vs. HI control; a–e represents mean values from different experi-

mental groups that differ from each other at P < 0.05. L1-Control; 
L2-Hypoxic Ischemic Control; L3-HI + Pterostilbene (12.5  mg/kg); 
L4-HI + Pterostilbene (25 mg/kg); L5-HI + Pterostilbene (50 mg/kg); 
L6-Pterostilbene (50 mg/kg)
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control (Fig. 3c) could be a defense measure to neutralize 
the overproduction of ROS. Pterostilbene treatment caused a 
significant (P < 0.05) decrease in MDA in a dose-dependent 
manner. Pterostilbene (50 mg) exerted the highest protective 
effects at 12.5 and 25 mg doses. MDA content reduced from 
18.5 ± 0.96 nM/mg protein to 1.01 ± 0.54 nM/mg protein on 
the administration of 50 mg pterostilbene. GSH content also 
noticed to be raised strikingly in pterostilbene supplementa-
tion at all three doses. Furthermore, administration of pter-
ostilbene alone at 50 mg caused a noticeable increase in 
GSH levels vs. the normal control. Pterostilbene is reported 
to possess potent antioxidant capacity more efficiently than 
resveratrol (Tsai et al. 2017). Thus, the antioxidant proper-
ties of pterostilbene could have caused the improvement in 
the antioxidant status by reducing MDA and ROS levels.

Pterostilbene promoted the expression of Nrf2 
and HO‑1

After 24 h of HI induction, Nrf2 and HO-1 expression 
were evaluated using western blot analysis. The observed 
data indicated that systemic administration of pterostil-
bene caused a substantial (P < 0.05) upregulation of Nrf2 
and HO-1 expression (Fig. 4a, b). The expression of Nrf2 
increased to 140 ± 5.12% vs. the normal control. HO-1 
expression increased to 168.92% upon treatment with 
50 mg of pterostilbene vs. 137.7% in HI control pups. The 
enhanced nuclear expression of Nrf2 along with elevated 
HO-1 in the cytosol suggests that pterostilbene up-regulated 
the Nrf2 signaling pathway.

Pterostilbene downregulated NF‑κB signaling 
cascade

After 24 h of HI induction, enhanced expression of NF-κB 
(p65) with considerably (P < 0.05) decreased cytosolic levels 
of NF-κB (p65) were observed. The observations indicated 
stimulation of the NF-κB pathway. Further raised expres-
sion of TNF-α and the regulatory kinases—IKKα, p-IKKα, 
IKKβ, p-IKKβ, IκBα, and p-IκBα following HI insult were 
observed (Fig. 5a–c). Pterostilbene suggestively suppressed 
NF-κB p65 (nuclear fraction) expression compared to HI 
control. A 50 mg dose of pterostilbene reduced NF-κB p65 

expression in the nuclear fraction from 175.15 to 102.3%. 
Also, pterostilbene significantly (P < 0.05) decreased the 
levels of p-IKKα, p-IKKβ and p-IκBα compared to the HI 
control group. The expression of total IKKα, IKKβ, and 
IκBα was brought down to near normal values, indicating 
down-regulation. Furthermore, the increase in the levels of 
serum NO along with enhanced iNOS mRNA levels (Fig. 6a, 
b) observed following HI induction were significantly down-
regulated in pterostilbene administration. The enhanced 
mRNA and serum levels of IL-1β, IL-, and TNF-α (Fig. 6c, 
d) in HI were found to be decreased in pups that were admin-
istered with pterostilbene. These observations suggest the 
anti-inflammatory effects of pterostilbene. Previous in vitro 
studies with pterostilbene have shown that pterostilbene 
inhibits NF-κB signaling and suppresses the production of 
inflammatory cytokines (Pan et al. 2008; Hou et al. 2015).

Pterostilbene regulated PI3K/mTOR/JNK signaling

The PI3K/Akt/mTOR axis is well documented in cerebral 
HI injury. Immunoblotting analysis was performed to evalu-
ate the expression of PI3K, Akt, and mTOR following HI. 
The expression of PI3K decreased to 70.10% 24 h following 
HI vs. normal control (Fig. 7a–c). The levels of p-Akt and 
p-mTOR expression decreased to 53.15% and 60.7% respec-
tively, indicating down-regulation of the pathway. Pterostil-
bene improved the expression of PI3K along with the phos-
phorylated forms of Akt and mTOR in a dose-dependent 
manner. 50 mg pterostilbene improved the expressions of 
p-Akt to 87.30% and p-mTOR levels to 92.08%.

Further, the phosphorylation intensities of JNK and 
c-JUN were also analyzed following HI. The results revealed 
significantly increased both p-JNK and p-c-JUN expression 
levels in HI control animals vs. normal control (Fig. 7a, 
d). Interestingly, down-regulated p-c-Jun and p-JNK levels 
were observed after the pterostilbene administration. p-JNK 
expression was reduced to 105.73% from 179.75% and p-c-
JUN levels decreased to 112.16% from 192.05% following 
systemic supplementation of 50 mg pterostilbene. These 
observations suggest that pterostilbene inhibited JNK/c-
JUN signaling.

Discussion

Neonatal hypoxic-ischemic (HI) brain injury is an important 
cause of death and also morbidity in neonates and infants. 
Survivors of HI experience long-term neurological impair-
ments such as cognitive, sensorimotor deficits, epilepsy, 
and cerebral palsy (Bryce et al. 2005; Cooper 2011). The 
pathology of HI is complex and involves many factors such 
as neuronal apoptosis, excitotoxicity, aberrant inflammatory 

Fig. 5   Pterostilbene regulates NF-κB signaling following HI. a Rep-
resentative immunoblot, b, c relative protein expressions. Values are 
represented as mean ± SD, n = 6; P < 0.05 as determined by one-way 
ANOVA followed by DMRT analysis. *P < 0.05 vs. control; #P < 0.05 
vs. HI control; a–e represents mean values from different experi-
mental groups that differ from each other at P < 0.05. L1-Control; 
L2-Hypoxic Ischemic Control; L3-HI + Pterostilbene (12.5  mg/Kg); 
L4-HI + Pterostilbene (25 mg/kg); L5-HI + Pterostilbene (50 mg/Kg); 
L6-Pterostilbene (50 mg/kg)

◂
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Fig. 6   Pterostilbene reduced 
the levels of inflammatory 
cytokines. a mRNA expres-
sion levels—representative 
gel image, b–d serum levels 
of inflammatory media-
tors—IL-1β, IL-6, TNF-α, and 
NO. Values are represented 
as mean ± SD, n = 6; P < 0.05 
as determined by one-way 
ANOVA followed by DMRT 
analysis. *P < 0.05 vs. control; 
#P < 0.05 vs. HI control; 
a–e represents mean values 
from different experimental 
groups that differ from each 
other at P < 0.05. L1-Control; 
L2-Hypoxic Ischemic Control; 
L3-HI + Pterostilbene (12.5 mg/
Kg); L4-HI + Pterostilbene 
(25 mg/Kg); L5-HI + Pterostil-
bene (50 mg/Kg); L6-Pterostil-
bene (50 mg/Kg)
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Fig. 7   Pterostilbene up-regu-
lated Akt activation following 
HI. a Representative immunob-
lot, b, c Relative expressions of 
proteins. Values are represented 
as mean ± SD, n = 6; P < 0.05 
as determined by one-way 
ANOVA followed by DMRT 
analysis. *P < 0.05 vs. control; 
#P < 0.05 vs. HI control; 
a–e represents mean values 
from different experimental 
groups that differ from each 
other at P < 0.05. L1-Control; 
L2-Hypoxic Ischemic Control; 
L3-HI + Pterostilbene (12.5 mg/
Kg); L4-HI + Pterostilbene 
(25 mg/Kg); L5-HI + Pterostil-
bene (50 mg/Kg); L6-Pterostil-
bene (50 mg/Kg)
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responses, and oxidative stress (Ferriero and Bonifacio 
2014; Moskowitz et al. 2010). Currently, available thera-
pies have limited effects, thus making identification of newer 
strategies inevitable.

The present study aimed to assess the effects of systemic 
supplementation of pterostilbene in a rodent model of neo-
natal HI brain injury. It is known that HI brain injury causes 
significant neuronal loss. Thus, reducing neuronal cell loss 
and stimulating neuronal cell survival is pivotal for the 
prevention of incidence of long-term neurological deficits 
(Nijboer et al. 2010). The study results indicated that admin-
istration of pterostilbene significantly improved brain tissue 
architecture and prevented neuronal loss. Brain edema was 
also considerably reduced. TTC staining is widely employed 
to assess neuronal damage and subsequent neurological 
impairment (Liszczak et al. 1984; Bederson et al. 1986). 
Pterostilbene significantly reduced the infarct area as deter-
mined by TTC staining.

Oxidative stress is known to be a major contributor to 
ischemic brain injury (Warner et al. 2004). Oxidative stress 
is shown to result in mitochondrial dysfunction and the gen-
eration of more ROS (Ferriero 2001; Revuelta et al. 2015). 
The increased levels of free radicals generated following 
HI lead to oxidative stress which causes neuronal damage 
(Burchell et al. 2013). Low levels of antioxidant defences, 
along with high metabolic rate and abundant lipids, make 
brain cells highly sensitive to lipid peroxidation and oxida-
tive damage (Chang et al. 2011; Perrone et al. 2015). Com-
pounds with antioxidant activities have been found to exert 
beneficial effects against ROS-induced neuronal damage in 
HI (Jayaprakasha et al. 2006; Huang et al. 2014). Rutin-
encapsulated chitosan nanoparticles that were targeted to the 
brain were found to effectively reduce cerebral infarct size 
and neuronal loss (Ahmad et al. 2016).

The study data demonstrated that pterostilbene treatment 
efficiently decreased ROS production and levels of MDA in 
pups following HI injury. Nrf2 and HO-1 protein expres-
sion were found to be significantly (p < 0.05) raised 24 h 
following HI injury, along with increased (p < 0.05) levels 
of GSH observed following HI, indicating the stimulation 
of innate defense mechanisms under oxidative stress. Nrf2, 
a major transcription factor, is a chief regulator of innate 
antioxidative responses in the brain (Shah et al. 2007; Var-
gas et al. 2008). Nrf2 also regulates inflammatory responses 
and protects cells from calcium overloading (Rzepecka et al. 
2015). In the absence of stress and under typical physiologi-
cal conditions, Nrf2 that is in the cytoplasm remains bound 
to Keap1 protein (Li et al. 2014) while oxidative stress con-
dition stimulates the phosphorylation of Nrf2. The phos-
phorylated Nrf2 separates from Keap1 and moves to the 
nucleus, thereby regulating its downstream target genes 
(Yang et al. 2015). HO-1, alongside phase II detoxification 
enzymes, exerts antioxidant effects against ROS-induced 

oxidative stress. In neuronal cells, the transcription of HO-1 
is stimulated by Nrf2. Increased HO-1 and Nrf2 expression 
as noticed following HI, is indicative of activated Nrf2 sign-
aling. These observations 24 h after induction of HI injury 
reflect the innate defense mechanism against HI-induced 
oxidative stress. Elevated HO-1 expression significantly 
reduces cell membrane damage and prevents neuronal cell 
death (Li et al. 2014). Also elevated HO-1 levels decrease 
ROS production (Wu et al. 2015). Pterostilbene adminis-
tration was also observed to significantly increased Nrf2 
and HO-1 expression at all tested doses. The increased 
Nrf2 and HO-1expressions was found to be in line with 
decreased ROS and MDA levels. The results illustrate that 
the pterostilbene-mediated decrease in ROS levels could be 
due to its direct antioxidant effects or an increase in Nrf2 /
HO-1 signaling. These observations indicate the efficacy of 
pterostilbene.

The inflammatory process has been recognized as one 
of the significant contributors to neonatal (Benjelloun et al. 
1999; Cuartero et al. 2013). NF-κB is a pivotal transcrip-
tion factor that controls and regulates the expression of pro-
teins of the inflammatory process, including iNOS, Cox-2, 
TNF-α, IL-6, IL-1α, and IL-1β (Saliba and Henrot 2001). 
The effects of pterostilbene administration on NF-κB acti-
vation and signaling following HI were evaluated where 
serum levels of IL-1β, IL-6, and TNF-α were determined. 
RT-PCR analysis revealed markedly elevated mRNA levels 
of iNOS, TNF-α, IL-1β, and IL-6 following HI brain injury. 
The mRNA levels were enhanced in line with serum levels 
of TNF-α, IL-1β, and IL-6. The serum NO levels were also 
raised, as reflected by raised mRNA levels of iNOS. NO is 
well documented as a crucial player in immune and inflam-
matory responses (Lv et al. 2015). Under regular physiologi-
cal conditions, NF-κB (consisting of subunits p50 and p65) 
remains localized in the cytoplasm in its inactive state bound 
to inhibitory proteins—IκBs. Upon stimulation, IκB, gets 
phosphorylated and activated by the IkB kinase (IKK) com-
plex, and is rapidly degraded (Scheidereit 2006; Hansberger 
et al. 2007). The IKK complex comprises kinases, IKKα and 
β (Yamamoto and Gaynor 2004; Hayden and Ghosh 2008). 
This phosphorylation causes the dissociation of the NF-
kBp65 subunit from IκBα, an inhibitory protein. NF-kBp65 
then translocates to the nucleus and initiates transcription of 
the target genes including- TNF-α, IL-1β, and IL-6 (Hayden 
and Ghosh 2008). Upregulated NF-kBp65 expression in the 
nuclear fraction following HI injury indicates activation of 
NF-κB signaling. Prior investigations have also revealed 
the activation of NF-κB signaling in HI brain injury (Ste-
phenson et al. 2000; Nurmi et al. 2004). The significantly 
elevated mRNA levels of TNF-α, IL-1β and IL-6 and the 
levels in the serum also indicate marked activation of NF-kB 
signaling. Pterostilbene administration leads to significant 
down-regulation in the phosphorylation of IκBα, IKKα, 
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and IKK-β. This suppression by pterostilbene could have 
contributed to the inhibition of NF-kB activation as also 
indicated by reduced nuclear levels of NF-κBp65. Studies 
have shown that suppression of NF-κB signaling could be 
protective against HI-induced neuronal injury (Verma 2004; 
Wang et al. 2009). Pterostilbene-mediated reduced levels of 
cytokines and NO levels further revealed anti-inflammatory 
efficacy.

PI3K-Akt-mTOR/JNK signaling has also been described 
to be associated with neuronal death following HI injury 
and stroke (Kamada et al. 2007; Xu et al. 2015). Akt, a main 
downstream target of the PI3K pathway is a crucial pro-
tein involved in multiple pathways in cellular homeostasis. 
Akt promotes cell survival and inhibits cellular apoptosis 
through its downstream molecules. As one of the vital down-
stream target molecules for Akt, mTOR plays a central role 
in cell survival and differentiation (Park et al. 2008). Acti-
vation of the PI3K/Akt pathway is known to induce neo-
vascularization that aids in the reduction of infarct volume 
following ischemia (Zhang and Ren et al. 2010). Here, a 
marked decrease in the expression of PI3K, Akt, p-Akt, and 
p-mTOR was observed indicating downregulation of Akt 
activation following HI-induced brain injury. These obser-
vations suggest that neuronal death could be related to the 
down-regulation of PI3K/Akt signal.

Interestingly, the expression levels of JNK, another tar-
get protein of Akt was observed to be enhanced. Elevated 
expression of p-JNK indicates activation of JNK. Activated 
JNK then phosphorylates c-Jun, a nuclear substrate. c-Jun 
increases activator protein-1 transcription activity eventually 
leading to transcription of genes associated with apoptosis. 
JNK also regulates non-nuclear substrates such as Bcl-2 
family proteins (Guan et al. 2005, 2008). Studies have also 
reported activation of JNK signaling, enhanced p–c-Jun 
levels and downregulated PI3K/Akt/mTOR signaling path-
ways in HI injury (Nakajima et al. 2004; Aubert et al. 2006). 
Significantly (P < 0.05) elevated PI3K, p-Akt and p-mTOR 
expression along with downregulated p-JNK and p-c-JUN 
levels on pterostilbene supplementation illustrate the neu-
roprotective effects of pterostilbene. Huang et al. (2014) 
demonstrated that Rhyncophylline exerted neuroprotective 
effects via activation of the PI3K/Akt pathway following 
HI-induced brain injury. The results of our study suggest 
that pterostilbene possibly exerts neuroprotective effects by 
regulating the PI3K/Akt/mTOR pathway. The higher bio-
availability and lipophilic nature of pterostilbene could also 
contribute to the neuroprotective efficiency (McCormack 
and McFadden 2012; Chen et al. 2017).

These observations suggest that pterostilbene could be 
employed in the treatment of HI. However, more studies 
have to be conducted in terms of standardisation of dosage 
for treatment and other effects if any. Nevertheless, pterostil-
bene has been shown to possess several bioactive properties 

including anti-inflammatory and anti-cancer effects (McCor-
mack and McFadden 2012; Ma et al. 2019). Structural meth-
oxylation at the 3 and 5 positions renders pterostilbene more 
lipophilic which aids in efficient intestinal absorption. This 
contributes to a higher potential for biological uptake (Lin 
et al. 2009; Kapetanovic et al. 2011). Furthermore, pteros-
tilbene was found to possess metabolic stability and thus 
a better pharmacokinetic profile (Wang and Sang 2018). 
Also, pterostilbene has been found to have negligible side 
effects and is classified as low risk. Human clinical trials 
have shown that pterostilbene is safe for use at doses of up 
to 250 mg/day (Ruiz et al. 2009; Richie et al. 2013). The 
safety margin and higher bioavailability and metabolic sta-
bility make pterostilbene a potent candidate that could be 
further investigated in HI therapy.

Conclusion

The study demonstrated that pterostilbene reduced neuronal 
cell death, brain edema, improved brain architecture, and 
exerted anti-oxidant effects by reducing ROS and regulating 
Nrf2 and HO-1 signals. Furthermore, pterostilbene regulated 
NF-κB signaling and the PI3K/Akt/mTOR-JNK pathway. 
These observations propose pterostilbene as a potential 
therapeutic compound that could be explored further in the 
treatment of neonatal HI brain injury.
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