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a b s t r a c t 

In this paper, we study the interplay between the epidemic spreading and the diffusion 

of awareness in multiplex networks. In the model, an infectious disease can spread in one 

network representing the paths of epidemic spreading (contact network), leading to the 

diffusion of awareness in the other network (information network), and then the diffusion 

of awareness will cause individuals to take social distances, which in turn affects the epi- 

demic spreading. As for the diffusion of awareness, we assume that, on the one hand, in- 

dividuals can be informed by other aware neighbors in information network, on the other 

hand, the susceptible individuals can be self-awareness induced by the infected neighbors 

in the contact networks (local information) or mass media (global information). Through 

Markov chain approach and numerical computations, we find that the density of infected 

individuals and the epidemic threshold can be affected by the structures of the two net- 

works and the effective transmission rate of the awareness. However, we prove that though 

the introduction of the self-awareness can lower the density of infection, which cannot in- 

crease the epidemic threshold no matter of the local information or global information. 

Our finding is remarkably different to many previous results on single-layer network: local 

information based behavioral response can alter the epidemic threshold. Furthermore, our 

results indicate that the nodes with more neighbors (hub nodes) in information networks 

are easier to be informed, as a result, their risk of infection in contact networks can be 

effectively reduced. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

1. Introduction 

The outbreaks of diseases can involve the diffusion of information in regard to the diseases, including the risk of infec-

tion, rumors, fears and so on, which can stimulate individuals to take spontaneous behavioral responses to protect them-

selves, thereby bring profound impacts on the spreading of disease [1–6] . For example, recent outbreaks of the H1N1 flu,

the bird flu, and the severe acute respiratory syndrome (SARS) have brought the reduction of going out and the plenty of

people wearing face masks. For this reason, there has been an increasing focus on the development of formal models aimed
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at investigating the interplay of epidemic spreading and information-based behavioral responses [7–10] . Such as, based on

the assumption that the probability of susceptible individual going to the alter state is proportional to the number of in-

fected neighbors, Sahneh et al., extended the SIS (Susceptible-Infected-Susceptible) model to a Susceptible-Alter-Infected- 

Susceptible (SAIS) model [11,12] , and they found that the way of behavioral response can enhance the epidemic threshold;

Meloni et al. studied a meta-population model that incorporates several scenarios of self-initiated behavioral changes into

the mobility patterns of individuals, and they found that such behavioral changes do not alter the epidemic threshold, but

may produce a negative impact on disease, i.e., the density of infection is increased [13] ; In Refs. [14–16] , authors investi-

gated the effects of the information-based behavioral responses on the epidemic dynamics by designing the transmission

rate as a function of the local infected density or the global infected density. 

Though the effects of information-based behavioral responses on the epidemic dynamics have been studied by many

authors, most of works assumed the spreadings of information and epidemic are in the same network. As we know, with

the development of technology, information can fast diffuse through many different channels, such as, the word of mouth,

news media, online social networks, and so on. In view of this, recent well-studied multiplex network theory has been

used to mimic the interplay of information or related awareness and the epidemic dynamics [17–20] . For instance, Sahneh

et al., have shown that the information dissemination spread in another network can help boost the resilience of the agents’

population against the spreading and found optimal information dissemination for different topologies [21] ; Wang et al.,

investigated the interplay of the epidemic dynamics and the information dynamics in multiplex network based on the SIR

(R-recovery) model, and focused on the two fundamental quantities underlying any spreading process: epidemic threshold

and the final epidemic prevalence [22] ; Granell et al., established an SIS-UAU model to investigate the competing effects

of the spreading of awareness and the epidemic dynamics in multiplex with the transmission rate of awareness as well as

the structure of information network [23] . More recently, they further generalized their model by reducing the probability

of infected individuals becoming awareness and including the effect of a mass broadcast of awareness (mass media) on the

epidemic dynamics [24] . 

In Refs. [23,24] , authors assumed that susceptible individuals can only be informed by other aware neighbors. In reality,

individuals may become aware (i.e., self-initiated awareness) when they find that their neighbors are infected. Inspired these

factors, in the current work, we study the interplay between the diffusion of awareness by incorporating the self-awareness

effects and the epidemic dynamics under the framework of multiplex network. In the model, an infectious disease first

spreads among population represented by the contact network, and then the outbreak of the disease stimulates some peo-

ple (infected or susceptible individuals) become aware of the risk of infection, and they take some protections to reduce the

probability of infection. Meanwhile, unaware individuals can be informed by other aware individuals through the informa-

tion network or become self-awareness induced by the infected neighbors in contact network or mass media. The finding

indicates that the additional self-initiated awareness mechanism can reduce the density of infection, however, which can

not alter the epidemic threshold. Moreover, we show that since the hub nodes in information networks are easier to be

informed, which can much lower their infection probability in contact networks. The results are verified by the Monte-Carlo

simulations and the microscopic Markov chain approach (MMCA). 

The layout of the paper is as follows: we introduce the model in Section 2 . The simulation results and theoretical anal-

ysis are presented in Section 3 . Finally, Conclusions and discussions are presented in Section 4 . The results for the global

information-based self-initiated awareness are given in Appendix A . 

2. Model 

In this work, we generalize the model of Ref. [23,24] . In that model, a multiplex network includes two layers, one is

physical layer representing the spreading of epidemic (contact network), and the other is information layer on where the

diffusion of the awareness evolves (information network). All nodes represent the same individuals in both layers, but the

connectivity is different in each of them. In the contact layer, a Susceptible - Infected - Susceptible (SIS) model is used

to mimic the epidemic dynamics. That is to say, a susceptible node can be infected by one infected neighbor with certain

probability, and the infected node can return to susceptible state with probability μ. On the information layer, the dynamical

process of awareness is assumed to be similar to the SIS model, that is, an unaware node (U) can be informed by an aware

neighbor (A) with probability λ, and the aware node can loss awareness and back to unaware state with probability δ. The

interplay of the two processes is modelled as follows: once an individual is infected, s/he will certainly become aware,

that is, the probability is σ = 100% . In addition, to distinguish the protective behaviors between the aware individuals and

unaware individuals, let β and βA = γβ (here 0 ≤ γ < 1. If γ = 0 , the aware individuals are completely immune to the

infection.) be the probabilities of unaware and aware susceptible nodes to get infected, respectively. 

From the description of the model, one can find that, on the one hand, the authors assumed that the infected individuals

will automatically become aware and are willing to inform the disease information. As we know, in many cases, infected

individuals are unwilling to tell others since they can be discriminated or isolated by others once others know they are

infected by one certain disease. For example, if one person is infected by AIDS or hepatitis B, who may be alienated by

his friends. So we assume that infected individuals becoming aware with probability 0 ≤ σ ≤ 1. On the other hand, in the

model, individuals can only be informed by their neighbors through the information network, that is to say, one individual

has no chance to become aware once their neighbors are unaware. However, individuals can become self-awareness once

their friends are infected or they are informed by the mass media, and the probability of becoming awareness increases
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Fig. 1. Model description for the UAU-SIS dynamic. An individual can be in four different states: SU, SA, IU, and IA. The top (bottom) layer is the epidemic 

process for the aware (unaware) individuals, respectively. SU (SA) can be infected by an infectious neighbor in contact layer with a probability β ( βA = γ β). 

IU and IA recovers to SU and SA, respectively, with the same probability μ; The left (right) flow is the awareness process for the susceptible (infected) 

individuals, respectively. SU can go to SA with a probability λ of being informed by an aware neighbor through information network, or induced by the 

infected neighbors in contact network with a probability κ . SA recovers to SU with a probability δ. IU can go to IA by informed the aware neighbors in 

information layer with a probability λ, or self-awareness with a probability σ , which is not related to the neighbor’s states. SA and IA can become unaware 

and return to SU and IU with the same probability δ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the number of infected people [12] . Thus, in our model, we assume that, for a susceptible individual, besides being

informed by the aware neighbors in the information network, which can also self-awareness when contacting one infected

neighbors in contact network, the probability is represented by parameter κ . Note that, for the original model in Ref. [23] ,

awareness cannot break out if the probability σ = 0 , so the roles of awareness cannot be played, however, in our model,

the awareness can diffuse among population even though σ = 0 since susceptible individuals can become aware by their

self-initiated responses. 

According to this scheme, an individual can be in four different states: susceptible and unaware(SU), susceptible and

aware(SA), infected and unaware(IU), infected and aware(IA). The flow diagram of the model is given in Fig. 1 . 

3. Main results 

3.1. Theoretical analysis 

Denoting a ij and b ij be the adjacency matrices that support the SIS and UAU processes, respectively. The probability

of i in one of four states at time t is denoted by p SU 
i 

(t) , p SA 
i 

(t) , p IU 
i 

(t) and p IA 
i 
(t) respectively. Assuming the probability

of susceptible (infect) node i not being informed by any neighbors is θ i ( t ) ( r i ( t )), and the probability of unaware (aware)

susceptible node i not being infected is q U 
i 
(t) ( q A 

i 
(t) ). They are described as [23] : 

θi (t) = 

∏ 

j 

(1 − b ji p 
A 
j (t) λ)(1 − a ji p 

I 
j (t) κ) , (1)

r i (t) = 

∏ 

j 

(1 − b ji p 
A 
j (t) λ) , (2)

q U i (t) = 

∏ 

j 

(1 − a ji p 
I 
j (t) β) , (3)

q A i (t) = 

∏ 

j 

(1 − a ji p 
I 
j (t) βA ) , (4)

where p A 
j 
(t) = p SA 

j 
(t) + p IA 

j 
(t ) and p I 

j 
(t ) = p IU 

j 
(t) + p IA 

j 
(t) (Note: to simplify the model, we do not distinguish the infectivity

of IA and IU, meanwhile, the diffusion capabilities of awareness for SA and IA are also the same). 
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Fig. 2. Transition probability trees for the states of UAU-SIS dynamics in the multiplex for per time step. The denotations of θ i , r i , q 
U 
i 

and q A 
i 

are given in 

Eqs. (1) –(4) . Other parameters have the same denotations as in Fig. 1 . 

 

 

 

For each possible state at time t , which may give rise to four possible states at time t + 1 with certain probability, the

transition probability trees for node i are illustrated in Fig. 2 . According to the scheme in Fig. 2 , one can easily write the

Markov Chain Approach (MMCA) equations [25,26] for each state, for example, along the top branch of the four trees, one

can read the probability p SU 
i 

(t + 1) of SU at t + 1 as: 

p SU 
i (t + 1) = p IA i (t) δμ + p IU i (t ) γi (t ) μ + p SA 

i (t ) δq U i (t ) + p SU 
i (t ) θi (t ) q U i (t ) . (5) 

Similarly, the other three MMCA equations can be written as: 

p SA 
i (t + 1) = p IA i (t)(1 − δ) μ + p IU i (t)(1 − r i (t)) μ

+ p SA 
i (t)(1 − δ) q A i (t) + p SU 

i (t)(1 − θi (t)) q A i (t) , (6) 

p IU i (t + 1) = (1 − σ ) 
{ 

p IA i (t) δ(1 − μ) + p IU i (t ) r i (t )(1 − μ) 

+ p SA 
i (t) δ(1 − q U i (t)) + p SU 

i (t) θi (t)(1 − q U i (t)) 
} 

, (7) 

p IA i (t + 1) = σ
{ 

p IA i (t) δ(1 − μ) + p IU i (t) r i (t)(1 − μ) + p SA 
i (t) δ(1 − q U i (t)) 

+ p SU 
i (t) θi (t)(1 − q U i (t)) 

} 

+ p IA i (t)(1 − δ)(1 − μ) 
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+ p IU i (t)(1 − r i (t))(1 − μ) + p SA 
i (t)(1 − δ)(1 − q A i (t)) 

+ p SU 
i (t)(1 − θi (t))(1 − q A i (t)) , (8)

where p SU 
i 

(t) + p SA 
i 

(t) + p IU 
i 

(t) + p IA 
i 
(t) ≡ 1 . When the system goes to the stationary state, we have p SU 

i 
(t + 1) = p SU 

i 
(t) = p SU

i 
for SU state and equivalently for the SU, SA and IU states. 

Since the epidemic threshold determines whether the epidemic can outbreak or die out, it is vital to analyze the effects

of the different parameters on the epidemic threshold βc . Near the threshold, the probability of nodes being infected is very

low, i.e., p I 
i 
= ε i � 1 . Consequently, q A 

i 
≈ 1 − βA 

∑ 

j (a ji ε j ) and q U 
i 

≈ 1 − β
∑ 

j (a ji ε j ) . Further approximate q A 
i 

≈ 1 and q U 
i 

≈ 1

by assuming p I 
i 
= ε i → 0 , and then substitute both of them into Eqs. (5) and (6) , we obtain 

p SU 
i = p SA 

i δ + p SU 
i θi (9)

p SA 
i = p SA 

i (1 − δ) + p SU 
i (1 − θi ) (10)

Combing Eqs. (8–10 ), then a simple formula is obtained: 

με i = (p SU 
i β + p SA 

i βA ) 
∑ 

(a ji ε j ) , (11)

with βA = γβ, p U 
i 

= p SU 
i 

+ p IU 
i 

≈ p SU 
i 

, p A 
i 

= p SA 
i 

+ p IA 
i 

≈ p SA 
i 

and ε i = p IU 
j 
(t) + p IA 

j 
(t) � 1 , then Eq. (11) can be rewritten as: 

∑ 

[(1 − (1 − γ ) p A i ) a ji −
μ

β
δ ji ] ε j = 0 , (12)

here δ ji = 1 if i = j; otherwise, δi j = 0 . 

Defining matrix H with elements: 

h ji = (1 − (1 − γ ) p A i ) a ji , (13)

Eq. (12) can be read as 

Hε = 

μ

β
ε , (14)

where ε = (ε 1 , ε 2 , . . . , ε N ) 
T with T be the vector transportation. 

The non-trivial solutions of Eq. (14) are eigenvectors of H , whose eigenvalues are equal to μ/ β . Therefore, the onset of

the epidemics is given by the largest eigenvalue of H , i.e., 
∧ 

max (H) , 

βc = 

μ∧ 

max (H) 
. (15)

From Eqs. (13) and (15) , one can see that the epidemic threshold depends on the structure of contact network ( a ij ),

the parameter γ and the density of awareness ρA . The value of ρA is further determined by the structure of information

network, the transmission rate λ and the recovery rate δ. 

3.2. Numerical simulations 

To verify our theoretical results, as in Ref. [23] , we first build a configuration network with degree distribution P (k ) ∼
k −2 . 5 and network size N = 20 0 0 as the contact network, and for the information network, which is generated by adding

800 extra random links in the contact network. a ij and b ij represent the adjacency matrices of the contact network and the

information network, respectively. All simulation results are obtained by averaging 20 realizations. 

We first compare the results from MMCA with Monte–Carlo simulation in Fig. 3 to check the effectiveness of our analysis

based on MMCA, from Fig. 3 , one can observe that the results based on the two approaches are in good agreement. So in

the next figures, our main results are obtained from MMCA. 

Then we investigate the effects of the two main parameters of the model—κ and σ on the epidemic threshold and the

density of infected individuals. Here, we will present the results for γ = 0 , meaning that βA = 0 and q A = 0 . Obviously,

once the value of γ is increased, the epidemic threshold is decreased and the density of infected individuals in enhanced

correspondingly. 

Fig. 4 plots the density of infection [ ρ I , see Fig. 4 (a)] and aware individuals [ ρA , see Fig. 4 (b)] as a function of β for

different values of κ , respectively. Observing the figure, one can see that though the larger value of κ can cause more

individuals become aware and reduce the density of infection. However, one can find that the increasing of λ has no influ-

ence on the epidemic threshold. The result is remarkably different from many previous results which claim that the local

information-based behavioral response in the single-layer network can alter the epidemic threshold. For instance, Wu et al.,

[14] compared the roles of the three forms of information-based awareness, i.e., local, global, and contact awareness, in the

epidemic threshold, and concluded that global awareness cannot alter the epidemic threshold while both local awareness

can enhance the epidemic threshold. Sahneh et al., [11,12] and us also illustrated that the local information based behavioral

responses can effectively increase the epidemic threshold, no matter of SIS model or SIR model [16] . 
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Fig. 3. Comparison of MMCA(solid line) with Monte–Carlo simulation(dotted line) for λ = 0 . 15 , γ = 0 , δ = 0 . 6 and μ = 0 . 4 . The fraction of infected (a) 

and aware (b) nodes as a function of the infectivity parameter β for two different conditions of the parameters κ and σ . 

Fig. 4. Fraction of infected (a) and aware (b) nodes as a function of the infectivity parameter β for different values of the parameter κ . Here λ = 0 . 15 , 

γ = 0 , δ = 0 . 6 , μ = 0 . 4 and σ = 0 . 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to understand this nontrivial result? Since the UAU awareness dynamic is the same to the SIS epidemic process.

When the epidemic has not broken out, the density of awareness in information network (i.e., ρA ) is only determined by the

transmission rate of awareness, λ, recovery rate δ and the structure of information network, but is not related to the value

of κ . Namely, near or below the epidemic threshold point, increasing the value of κ only means that the initial number of

the aware individuals is increased, which cannot affect the density of aware individuals at stationary state. In this case, the

value of p A 
i 

is independent of the value of κ or σ , which gives rise to the same value of ρA [see Fig. 4 (b)]. Thus, according

to Eqs. (13) and (15) , the epidemic threshold βc is invariable owing to the same value of ρA . It is worth noting that, for

the case of single-layer network, the local information-based behavioral response directly reduce the transmission rate of

epidemic, leading to the change of the epidemic threshold. For our model, the self-awareness behavior first diffuses through

the information network, and then play roles in the epidemic dynamics through the contact network. Thus, the effect of the

awareness behavior on the transmission rate is indirect . 

The density of infected individuals and aware nodes as functions of β for different values of parameter σ are also shown

in Fig. 5 (a) and Fig. 5 (b), respectively. One can see that, similar to Fig. 4 , varying the value of σ has no effect on the

epidemic threshold. However, differ to the above case, from Fig. 5 (a) we find that the value of σ also has negligible effect
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Fig. 5. Fraction of infected (a) and aware (b) nodes as a function of the infectivity parameter β for different values of the parameter σ . Here λ = 0 . 15 , 

γ = 0 , δ = 0 . 6 , μ = 0 . 4 and κ = 0 . 05 . 

Fig. 6. The fraction ρ I of infected individuals in the stationary state. Full phase diagram λ − β for the same multiplex described before. Where γ = 0 , 

λ = 0 . 15 , δ = 0 . 6 and μ = 0 . 4 . (a): κ = 0 , σ = 1 ; (b): κ = 0 , σ = 0 . 2 ; (c): κ = 0 . 2 , σ = 0 . 2 ; (d): κ = 0 . 2 , σ = 1 . 
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Fig. 7. For different values of λ and κ , (a) the density of infection ρ I 
k 
, and (b) the density of awareness ρA 

k 
as the function of degree k . Here, β = 0 . 2 , 

γ = 0 , σ = 0 . 0 , δ = 0 . 2 and μ = 0 . 4 . 

Fig. 8. The values of ρ I 
k 

and ρA 
k 

as the function of degree k . Here the contact network is a regular random network with k = 8 and switching probability 

p = 0 . 1 , and the information network is the configuration network with P(k ) ∼ k −2 . 5 . The parameters: λ = κ = σ = 0 . 1 , δ = 0 . 2 , γ = 0 , β = 0 . 3 and μ = 0 . 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the density of infection, even in the extreme cases where infected unaware individuals remain unaware of its sickness

( σ = 0 ) or certainly become aware of it ( σ = 1 ). The result in Fig. 5 is in accord with the Fig. 3 in Ref. [24] . 

In order to systematically study the effects of κ and σ on the ρ I , we further explore the full phase diagram ( λ − β) in

Fig. 6 . Overall, we can see that ρ I is not influenced by λ when β is smaller than the epidemic threshold, since epidemic

will die out by itself. Once β overpasses the epidemic threshold, ρ I decreases with λ for different values of κ or σ . More

specifically, by comparing Fig. 6 (a) with Fig. 6 (b) (or comparing Fig. 6 (c) with Fig. 6 (d)), we can see that ρ I is not remarkably

influenced by the value of σ . Likewise, by comparing the Fig. 6 (a) with Fig. 6 (d) (or comparing Fig. 6 (b) with Fig. 6 (c)), ρ I 

decreases with κ , especially for the large value of β . 

Finally, the density of infection for different degree k (labeled ρ I 
k 
) and the density of awareness for different degree k

(labeled ρA 
k 

) are plotted in Fig. 7 . From Fig. 7 (a), one can observe that, when λ = 0 . 0 and κ = 0 . 0 (in this case, the awareness

cannot diffuse in information network), the value of ρ I 
k 

is very large and increases to a stable value finally. However, when

λ is increased, the information can better diffuse in information network (see Fig. 7 (b)), as a result, the value of ρ I 
k 

is totally

reduced. Moreover, Fig. 7 (b) suggests that larger value of λ causes that the hub nodes in information networks have higher

probability of being informed (i.e., larger value of ρA 
k 

), which gives rise to the value of ρ I 
k 

is not very large even for large

degree k (see Fig. 7 (a)). 

In Fig. 7 , since the information network is constructed by adding 800 edges based on the contact network, thus, if a

node is a hub node in one layer which means it is also a hub nodes in the other layer. In this situation, as shown in Fig. 8 ,

even these hub nodes have more chances to be informed, they still have larger probability of being infected, thus, the effect
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Fig. 9. The density of infected individuals as a function of β for different values of m . Here λ = 0 . 3 , σ = 0 . 5 δ = 0 . 6 , μ = 0 . 4 and κ = 0 . 0 . (a): γ = 1 ; (b): 

γ = 0 . 5 ; (c): γ = 0 . 25 ; (d): γ = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the information network cannot be well presented. In the next, we first construct a regular random network with degree

k = 8 for each node, which is constructed by random link rewiring from a regular network such that the degree of each

node remains unchanged. In particular, a pair of edges, A − B and C − D, are randomly selected. They are then rewired to

generate new link pairs A − D and B − C. Multiple edges connecting the same pair of nodes are prohibited. The process

continues for pE steps, where E is the number of edges in the network and p characterizes the randomness of the network.

The information network is a configuration network with degree distribution P (k ) ∼ k −2 . 5 . Fig. 8 reports the values of ρ I 
k 

and

ρA 
k 

as a function of degree k (Note: here the node’s degree refers to the information network rather the contact network,

since each node has the same degree in contact network). In this figure, we can clearly find that the nodes with larger

degree in information network have larger value of ρA 
k 
, leading to smaller value of ρ I 

k 
. That is to say, if a node has more

neighbors in information network, who can reduce the risk of infection in contact network. 

4. Conclusions and discussions 

Recognizing that, on the one hand, outbreak of an epidemic through a physical-contact network can trigger the spread-

ing of information awareness through other different channels, such as on-line social networks, mass media; on the other

hand, an individual can not only be informed by other aware neighbors but also can become self-awareness once some

friends in contact network are infected. By introducing the self-awareness mechanism for susceptible individuals, we have

investigated interplay between the spreading of epidemic and the diffusion of awareness based on the framework of the

multiplex networks. We mainly studied the two parameters κ and σ characterizing the self-awareness probability of sus-

ceptible individuals and infected individuals, respectively. Analysis based on the Markov chain approach as well as the ex-

tensive computations reveal that the density of infection can be reduced once the two parameters are increased, however,

we found that the impact of self-awareness behavior for susceptible individuals on inhibiting the spreading of epidemic is
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significantly better than the self-awareness of the infected individuals, since self-awareness from susceptible individuals can

directly reduce their probabilities of being infected. Meanwhile, we found that the self-awareness behavior cannot alter the

epidemic threshold no matter of the local or global information, which are in stark contrast with the results obtained from

the single-layer networks. In addition, our findings have shown that the introduction of information layer may cause some

individuals has more chances to be informed, which can greatly reduce their risks of infection. 

The challenges of studying the intricate interplay between social and biological contagions in human populations are

generating interesting science. In this work, we consider the effects of the self-awareness behavior based on the multiplex

networks on the density of infection and the epidemic threshold, our result implies that the conclusions obtained from

single-layer networks may need to be re-examined and some new phenomena can emerge when the models are extended

to multiplex networks. 
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Appendix A. Global information-based awareness 

In recent work, Granell et al., considered the effect of the mass media on the epidemic process and awareness diffusion

[24] . In the model, each individual becomes aware with probability m by assuming that they are informed by a broadcast

or mass media. Thus, it can be regarded as a global information-based awareness. One questionable point is that the prob-

ability of being awareness m is irrelevant to the density of infection. As a result, even the epidemic is almost eliminated,

individuals still have the fix probability of being aware. In reality, becoming awareness often means that individuals need to

take some protective measures, such as, washing hands, wearing masks or reducing outgoings. These measures indicate cer-

tain inconveniences or some cost [27,28] . Thus, a more realistic situation is that the probability of being awareness should

be related to the density of infection. To mimic this case, here we assume the probability of awareness from global informa-

tion is given as: mI ( t ) with I ( t ) is the density of infection at time t , which indicates that the probability of being awareness

adaptively varies with the density of infection. 

For this case, we only need to slightly change the local model described in Section 3.1 . We only need to change γ i ( t ) and

θ i ( t ) as follows: 

γi (t) = 

∏ 

j 

(1 − b ji p 
A 
j (t) λ)(1 − mp I (t)) , (16) 

θi (t) = 

∏ 

j 

(1 − b ji p 
A 
j (t) λ)(1 − a ji p 

I 
j (t) κ)(1 − mp I (t)) (17)

Similarly to the above analysis, we can get that the epidemic threshold is still determined by Eq. (15) , i.e. , the epidemic

threshold is also independent of the value of m , which is different from the result in Ref. [24] . The result is verified by

Fig. 9 for different values of γ . 
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