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Abstract

IL-12, IL-23 and IFN-� form a loop and have been thought to play a crucial role against infectious viruses, which are the prototype
of “intracellular” pathogens. In the last 10 years, the generation of knock-out (KO) mice for genes that control IL-12/IL-23-dependent
IFN-�-dependent mediated immunity (STAT1, IFN-�R1, IFN�R2, IL-12p40 and IL-12R�1) and the identification of patients with spon-
taneous germline mutations in these genes has led to a re-examination of the role of these cytokines in anti-viral immunity. We here review
viral infections in mice and humans with genetic defects in the IL-12/IL-23-IFN-� axis. A comparison of the phenotypes observed in KO
mice and deficient patients suggests that the human IL-12/IL-23-IFN-� axis plays a redundant role in immunity to most viruses, whereas
its mouse counterparts play a more important role against several viruses.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Humans with absent (or diminished) response to or
impaired production of IFN-� caused by nonfunctional
or dysfunctional components of IFN-� and IL-12/IL-23
signaling [the binding or signaling chains of the IFN-�
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receptor (IFN-�R1 and IFN-�R2), the signal transducer
and activator of transcription (STAT1), the p40 subunit
of IL-12 and IL-23 (IL-12p40), the�1 subunit of the
IL-12 and IL-23 receptor (IL-12R�1)] are highly vul-
nerable to infections due to nontuberculous mycobacte-
ria (NTM) or vaccine-associated bacille Calmette-Guérin
(BCG), and to a lesser extent toSalmonella and a
few other intracellular bacteria[1–4]. In contrast, mice
whose genes encoding components of the IFN-� and
IL-12/IL-23 signaling pathways are knock-out (KO)
are vulnerable to infection by a broad spectrum of mi-
croorganisms, including intracellular bacteria and viruses
[5–9].

1359-6101/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cytogfr.2004.03.009
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Although viruses are the prototype of “intracellular” par-
asites, severe viral infection has been reported in only four
patients genetically deficient for IFN-� receptor[10–12].
The discrepancies between the clinical phenotypes of pa-
tients and of mice deficient for IFN-� and IL-12/IL-23
signaling pathway components prompted us to compare the
viral susceptibility/resistance of 140 patients with IFN-�R1
and IFN-�R2 [13–31], STAT1 [32], IL-12p40 [33–35] and
IL-12R�1 [4,36–41]mutations with the outcome of experi-
mental viral infection in mice deficient for IFN-�, IFN-�R1,
IL-12p40 or IL-12R�1, or treated with antibodies neutraliz-
ing IFN-� or IL-12 so as to provide a clearer picture of the
impact of the absence of IFN-� and IL-12/IL-23 signaling
on viral infection in humans and mice.

2. Natural and experimental virus infections in the
absence of IFN-�- and IL-12/IL-23-mediated immunity

Natural infections with “common”(arbitrarily defined as
20–98% of humans seropositive at 10 years) or “rare” (ar-
bitrarily defined as less than 10% seropositive at 10 years)
DNA and RNA viruses[42] were considered in patients defi-
cient for IFN-�- and IL-12/IL-23-mediated immunity. Their

Table 1
Common DNA virus infection in the absence of IFN-�- or IL-12/IL-23-mediated immunity in humans and mice

Virus family Humans Mice

Virus
speciesa

No. of
seropositivesb

Severe illness
(infections)c

Virus speciesd Apparently normale Abnormalf

Adenoviridae (ds) HAV No data No case reported HAV 12KO[43]

Herpesviridae (ds) HSV 4/16 (25%) One case[10] HSV GKO [55] GKO [44–49]; aG [52–54]
HCMV 14/23 (61%) Three cases[10,30] MCMV GKO [64] GKO [56–58]; aG

[54,59,60]; 12KO [61,62];
a12 [63]

VZV 16/20 (80%) Two cases[10,30] No infection
EBV 17/24 (71%) No case reported γ-MHV68 GKO, aG[65] GKO [66–68]; 12KO [69]
HHV6 2/2 (100%) No case reported No infection
HHV8 No data One Kaposi’s

sarcoma[12]
No infection

Poxviridae (ds) MCV No data No lesion reported No infection
Parvoviridae (ss) B19 2/3 (67%) No case reported No infection
Papovaviridae (ds) HPV 1/1 (100%) No lesion reported No infection

a HAV, human adenovirus; HSV, herpes simplex virus; HCMV, human cytomegalovirus; VZV, varicella zoster virus; EBV, Epstein-Barr virus; HHV6,
human herpes virus 6; HHV8, human herpes virus 8; MCV, molluscum contagiosum virus; B19, parvovirus B19; HPV, human papilloma virus.

b Data from IL-12�1, IL-12p40, IFN�R1 and IFN-�R2 and STAT1 deficient patients; mean± S.D. age (years) of the patients in which the specific
seropositivity was evaluated: HSV 13+ 6, CMV 14+ 10, VZV 17+ 10, EBV 15+ 10, HHV6 18+ 21, B19 12+ 18, HPV 33.

c An abnormal immune defense refers to more severe infection or disease in patients with impaired IL-12- or IFN-�-mediated responses than in
healthy individuals.

d Species related to human-tropic virus; non-human, mouse-tropic virus species are indicated in italics;MCMV, murine cytomegalovirus;γ-MHV-68,
� murine herpes virus 68.

e An apparently normal immune defense refers to a comparable disease or in vitro response between mice with or without impaired IFN�- or IL-12-
and IL-23-mediated response.

f An abnormal immune defense refers to a more severe disease or in vitro immune response in mice with impaired IFN�- or IL-12- and IL-23-mediated
response; GKO: IFN-� and IFN-�R1KO mice; aG: anti-IFN� antibody-treated mice; 12KO: IL-12p40 and IL-12R�1 mice; a12: anti-IL-12 antibody-treated
mice. Infection routes: intranasal[43,61,67,68,69]; corneal[46,49–51,55]; intradermal[47,52]; intraperitoneal[43,45,53,54–64,66]. References for each
experimental infection are indicated. The genetic backgrounds were: IFN-�KO mice: Balb/C [46–49,57,65,66]; C57BL/6 [56]; 129/SV/E [50,51];
IFN-�R1KO mice: 129/SV/E[44,45,47–51,55–57,64,66–68]; anti-IFN� antibody-treated mice: Balb/C[52,53,59,60,65]; 129/SV/E[44]; CB17 SCID[54];
p40IL-12KO mice: Balb/C[43,61,62]; C57BL/6 [43,69]; anti-IL-12Ab-treated mice: nu/nu SCID[63].

clinical outcomes were compared with those observed after
administration of natural human tropic viruses permissive
in mice, or their murine-tropic counterparts, to mice KO for
the genes of several components of IL-12/IL-23 signaling
(IL-12p40, IL-12R�1 = 12KO) or IFN-� (IFN-�, IFN-�R1
= GKO), or treated with neutralizing mAb to IFN-� (aG)
or IL-12 (a12).

2.1. Common DNA viruses

Natural infection with human tropic DNA viruses was
considered in deficient patients (Table 1). No clinical man-
ifestations due to human adenovirus (HAV), human herpes
virus 6 (HHV6), parvovirus B19, molluscum contagiosum
virus (MCV) and human papilloma virus (HPV) infections
were reported (Table 1). Many deficient patients displayed
positive serology for varicella zoster virus (VZV) and herpes
simplex virus (HSV) and only one case of unusually severe
clinical form of HSV infection was reported in an IFN-�R2
deficient patient[10]. Although deficient patients developed
a benign form of varicella, two cases of severe clinical form
of VZV infections were reported[10,30]. Epstein Barr virus
(EBV) and human herpes virus 8 (HHV8) are associated
with lymphoma, nasopharyngeal carcinoma and Kaposi’s
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sarcoma. Positive serology for anti EBV Ig was reported
in 71% of deficient patients (Table 1). Although no clini-
cal cases of EBV infection and mononucleosis or Burkitt
lymphoma have been reported, one case of Kaposi’s sar-
coma occurred in an IFN-�R1 deficient patient[12], but no
serological data are available. Although deficient patients
displayed positive serology for cytomegalovirus (CMV),
clinical forms of infections due to CMV were reported in
three patients with IFN-�R1 deficiencies[10,30] (Table 1).
Thus infections with HHV8 and CMV are those for which
IFN-�, but not IL-12 and IL-23, plays an important role.

Experimental infection with natural murine (and hu-
man) tropic DNA viruses in mice with IFN-�- and
IL-12/IL-23-impaired immunity was also considered
(Table 1). Immune response was not compromised in the
lungs of adenovirus-infected 12KO mice[43]. HSV ex-
perimental infection has been extensively described as
pathogenic in both GKO[44–51] and anti-IFN-�-treated
mice [52–54], although viral replication of attenuated
form of HSV in GKO mice was not different from con-
genic controls[55]. Experimental infections with murine
cytomegalovirus (MCMV), a mouse-permissive (human
nontropic) DNA virus, exacerbated infection in GKO
[56–58], aG [54,59,60], 12KO [61,62] and a12[63] mice
(Table 1). However, IFN-� is important for resistance to
MCMV only, since GKO mice were protected by vacci-
nation with an attenuated MCMV mutant[64]. Wild-type,
GKO and aG cleared infectious virus from the lungs 15
days after�-herpesvirus 68 (�-HV68) infection, a specific
mouse tropic DNA virus which is a good model for study
of �-herpesvirus (HHV6 and EBV) pathogenesis[65].
However, GKO mice died weeks to months after�-HV68
infection from severe large-vessel arteritis[66] or devel-
oped multiorgan fibrosis[67,68]. Compared with wild-type,
�-HV68-infected 12KO mice displayed increased lytic and
latent virus, and decreased IFN-� production, but decreased
splenic leukocytosis[69] (Table 1).

2.2. Common RNA viruses

Natural infection with human tropic RNA viruses was
considered in deficient patients (Table 2). Most individu-
als are immunized against the majority of these viruses.
In deficient patients, no clinical manifestations of infection
by influenza virus (IV), mumps, measles, coronavirus, en-
terovirus, reovirus, hepatitis A virus (HAV), rotavirus or
rubella virus were reported (Table 2). Positive serology for
IV, enterovirus, reovirus and rotavirus (Table 2and[70]) was
reported. No positive serology for rubella virus and HAV
was reported (Table 2). By contrast, although positive serol-
ogy for parainfluenza virus (PIV) and respiratory syncytial
virus (RSV) have been reported in deficient patients[70],
clinical manifestations of PIV and RSV infections were re-
ported in only one child with completeIFNGR1 deficiency
[10]. While IL-12 and IL-23 do not play a role in infec-
tion by common RNA viruses in humans, more patients are

needed to confirm that IFN-� plays a role in PIV and RSV
infection in humans.

Experimental infection with natural mouse (and human)
tropic RNA viruses was also considered (Table 2). GKO
mice [71–74]as well as anti-IFN-� and IL-12 mAb-treated
mice [75,76] are resistant to IV infection (Table 2). Simi-
larly, GKO mice were resistant to inoculation of rotavirus
[77,78]. After coxackievirus B3 infection, IFN-�R1KO
mice displayed exacerbated virus replication[79], whereas
IFN-�KO and IL-12KO mice were resistant[79,80]. Af-
ter RSV infection, GKO mice as well as anti-IFN-� and
anti-IL-12 Ab-treated mice displayed more extensive in-
flammation of the airways than control mice[81–84], even if
no worsening of pulmonary histopathology was observed in
12KO mice[82,83]. By contrast, both GKO and anti-IFN-�
Ab-treated mice became highly susceptible to experimental
measles-induced encephalitis[85–87]. GKO mice displayed
no difference with wild-type after infection with myocarditis
reovirus 8B, a mouse-permissive (human nontropic) virus
[56] (Table 2). Moreover, autoimmune insulitis and diabetes
induced by reovirus infection in mice is reduced and not ex-
acerbated by anti-IFN-� and anti-IL-12 antibodies[88,89].

Experimental infection with murine-specific tropic RNA
viruses was also evaluated in mice with impaired IFN-�-
and IL-12/IL-23-mediated immunity (Table 2). After mouse
Sendai virus (SV) infection, murine PIV1, IL-12KO, GKO
and anti-IFN-� mAb-treated mice display little or no differ-
ence with wild-type mice[90,91] and IL-12R�1KO mice
are protected against viral-induced mortality[92].Compared
to control mice, both GKO[93–100] and anti-IFN-�
mAb-treated mice[101], but not 12KO mice[95], are
more susceptible to murine hepatitis virus (MHV) infec-
tion, a model for the study of coronavirus infection. In
MHV-infected mice the absence of IFN-� diminishes de-
myelination mediated by CD8 T cells[102] and enhances
that mediated by CD4 T cells[103]. Interestingly, gran-
ulomatous peritonitis and pleuritis occur in GKO mice
naturally infected with MHV[100]. Resistant GKO mice
display severe encephalomyelitis with extensive primary de-
myelination and virus persistence following infection with
Theiler’s murine encephalomyelitis virus (TV)[104,105].
Administration of neutralizing Ab to IFN-�, but not to
IL-12, increased TV-induced demyelination in susceptible
mice and completely abrogated resistance in resistant mice
[106–108].

2.3. Rare DNA and RNA viruses

Among the rare natural human tropic viruses, only
those (or their murine counterparts) tested in mice were
considered. Since no infections by vaccinia virus (VV),
encephalomyocarditis virus (EMCV), vescicular stomatitis
virus (VSV), Semliki Forest virus (SFV), Sindbis virus
(SV), equine arteritis virus (EAV), yellow fever (YF),
West Nile virus (WNV) and lymphocytic choriomeningitis
virus (LCMV) were reported, the vulnerability of deficient
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Table 2
Common RNA virus infection in the absence of IFN-�- or IL-12- and IL-23-mediated immunity in humans and mice

Virus family Humans Mice

Virus speciesa No. of
seropositiveb

Severe illness
(infections)c

Virus speciesd Apparenly normale Abnormalf

Orthomyxoviridae (ss) IV 1/1 (100%) No case reported IV GKO[71–74]; aG
[75]; a12 [76]

Paramyxoviridae (ss) PIV Positive
serology[70]

One case Sendai virus GKO [90,91]; 12KO
[90,92]; ag [91]

Mumps virus 1/1 (100%) No case reported No infection
Measles virus 1/1 (100%) No case reported Measles virus GKO[85,86]; aG [87]
RSV 1/1 (100%) One case RSV 12KO[82,83] GKO [81–83]; aG

[81]; a12 [84]

Coronaviridae (ss) HCV No data No case reportedMHV 12KO [95] GKO [93–100]; aG [101]

Picornaviridae (ss) Enterovirus 10/10 (100%) No case reportedTheilers’s virus a12 [106] GKO [104,105];
aG [107,108]

Coxackievirus B3 GKO[80]; 12KO
[79]

GKO [79]

RV Positive
serology[70]

No case reported No infection

HAV 0/1 (0%) No case reported No infection

Reoviridae (ds) Rotavirus Positive
serology[70]

No case reported Rotavirus GKO[77,78]

Reovirus GKO [56]; aG
[88]; a12 [89]

Togaviridae (ss) Rubella 0/1 (0%) No case reported No infection

a IV, influenza virus; PIV, parainfluenza virus; RSV, respiratory syncytial virus; HCV, human coronavirus; RV, reovirus; HAV, hepatitis A virus. These
RNA viruses are considered ubiquitous since >98% of individuals are seropositive at 10 years. Most individuals are immunized for Mumps, Measles,
RSV, HCV, Poliovirus, Enterovirus, RV, HAV, Rotavirus, Reovirus, Rubella.

b Data from IL-12�1, IL-12p40, IFN�R1, IFN-�R2 and STAT1 deficient patients; mean± S.D. age (years) of the patients in which the specific
seropositivity was evaluated: IV, Mumps virus, Measles virus and RSV: 33, Enterovirus 19± 11, HAV 22, Rubella 1.

c An abnormal immune defense refers to more severe infection or disease in patients with impaired IFN-�- or IL-12/IL-23-mediated responses than
in healthy individuals.

d Species related to human-tropic virus; non-human, mouse-tropic virus species are indicated in italics; MHV, murine hepatitis virus.
e An apparently normal immune defense refers to a comparable disease or in vitro response between mice with or without impaired IFN�- or

IL-12/IL-23-mediated responses.
f An abnormal immune defense refers to a more severe disease or in vitro immune response in mice with impaired IFN�- or IL-12/IL-23-mediated

response; GKO: IFN-� and IFN-�R1KO mice; aG: anti-IFN� antibody-treated mice; 12KO: IL-12p40 and IL-12R�1 mice; a12: anti-IL-12
antibody-treated mice. Infection routes: intraperitoneal[56,73,77,88,93,95–98,101], intranasal[71,72,75,81–83,90,91,94], intratracheal[74,83,92], intrac-
erebral[84–86,99,104–112], oral [72,73]. References for each of the experimental infection are indicated. Genetic backgrounds were: IFN-�KO mice Balb/c
[79]: IFN-�KO mice: Balb/C[74,81,82,90,93,94]; C57BL/6 [71,72,77,78,87,96,98–100]; human CD46TG X IFN-�KO mice: C57BL/6[86]; IFN-�R1KO
mice: 129/SV/E[56,73,78,82,93,95,105]; C57BL/6 [97]; anti-IFN� antibody-treated mice: Balb/C[75,81,84,106]; SJL/J [106]; C57BL/6/10NSJ[107];
A/J [100]; DBA-1 [88]; p40IL-12KO mice: Balb/C[82,90]; 129/SV/EV[83]; IL-12R�1KO mice: Balb/c[79]; C57BL/6 [92]; anti-IL-12 antibody-treated
mice: Balb/C[76]; SJL/J[105]; DBA-1 [89]; C57BL/6 [84].

patients to these viruses remains unknown (Table 3). The
same unknown status was assigned for human immunod-
eficiency virus (HIV) infection since neither clinical cases
nor seropositivity for HIV Ag were reported in deficient
patients, even though increased susceptibility to HIV repli-
cation of T cells from two IFN-�R1 and one IL-12R�1
deficient patient was observed in vitro (Table 3and[109]).

Experimental infection of natural rare mouse (and hu-
man) tropic viruses was also considered (Table 3). Although
some VV strains express a gene coding for IFN-�R bind-
ing chain which might play a role in virus virulence[110],
IFN-�KO and anti-IFN-� Ab-treated mice succumbed to in-
fection with VV [111,112]. In IFN-�KO mice VV clearance
was not severely affected, but it was impaired after infection

with an attenuated form of VV[113]. GKO mice become
more susceptible to WNV infection[114] and can no longer
be protected by IL-12 from lethal EMCV infection[115]
(Table 3). By contrast, wild-type, GKO[112,116,117],
12KO [118], and anti-IFN-� Ab-treated mice[119] were
equally infected by VSV, despite the fact that IFN-� engi-
neered to be retained in the endoplasmic reticulum mediates
in vitro VSV resistance in murine fibroblasts[120]. Follow-
ing SFV infection 12KO mice showed an enhanced virus
replication and pathology in the brain[121], whereas GKO
mice were unaffected[112]. GKO mice were also unaffected
following SV [122] and YF[123] infection, even if IFN-�
mediates T cell-dependent virus clearance from CNS neu-
rons in SV infected-mice[124]. GKO [112,118,125–129]
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Table 3
Rare virus infection in the absence of IFN-�- or IL-12/IL-23-mediated immunity in humans and mice

Virus family Humans Mice

Virus
speciesa

No. of
seropositiveb

Severe illness
(infections)c

Virus speciesd Apparently normale Abnormalf

Poxviridae (ds DNA) VV No data No lesion reported VV GKO, aG[111–113]
EV GKO [136]; aG [135]

Picornaviridae (RNA ss) EMCV No data No case reported EMCV GKO[115]
Rhabdoviridae (RNA ss) VSV No data No case reported VSV GKO[112,116,117];

12KO [118]; aG [119]

Togaviridae (RNA ss) SFV No data No case reported SFV GKO [112] 12KO [121]
SV No data No case reported SV GKO [122]
EAV No data No case reported LDV GKO, aG[139,140]
YF No data No case reported YF GKO[123]

Flaviviridae (RNA ss) WNV No data No case reported WNV GKO[114]

Arenaviridae (RNA ss) LCMV No data No case reported LCMV 12KO [118]; a12
[132–134]

GKO
[112,118,125–129];
aG [119,130,131]

Retroviridae (RNA ss) HIV1 0/17 (0%) No case reported
Increased in vitro
replication[109]

FV 12KO [145] GKO [145,146]; aG [146]

MMTV GKO [147]
LP-BM5 aG [143,144]; a12 [143] GKO [141,142]

a VV, vaccinia virus; EMCV, encephalomyocarditis virus; VSV, vescicular stomatitis virus; SFV, Semliki Forest virus; SV, Sindbis virus; EAV, equine
arteritis virus; YF, yellow fever virus; WNV, West Nile virus; LCMV, lymphocytic choriomeningitis virus; HIV, human immunodeficiency virus; mouse
permissive or mouse specific tropic viruses are indicated in italics. These RNA viruses are considered limited or rare since<10% of individuals are
seropositive at 10 years.

b Data from IL-12�1, p40IL-12, IFN�R1, IFN-�R2 and STAT1 deficient patients; mean± S.D. age (years) of the patients in which the specific
seropositivity was evaluated: HIV, 22± 13.

c An abnormal immune defense refers to more severe infection or disease in patients with impaired IFN-�- or IL-12/IL-23-mediated responses than
in healthy individuals.

d Species related to human-tropic virus; non-human, mouse-tropic virus species are indicated in italics.EV, echromelia virus; LDV, lactate dehydrogenase
elevating virus;FV, Friend virus;MMTV, mouse mammary tumor virus, LP-BM5 is a defective murine leukemia virus (MuLV).

e An apparently normal immune defense refers to a comparable disease or in vitro response between mice with or without impaired IFN�- or
IL-12-mediated response.

f An abnormal immune defense refers to a more severe disease or in vitro immune response in mice with impaired IFN�- or IL-12/IL-23-mediated
response; GKO: and IFN-�R1KO mice; aG: anti-IFN� antibody treated-mice; 12KO: IL-12p40 and IL-12R�1 KO mice; a12: anti-IL-12 antibody-treated
mice. Infection routes: intravenous[112,117,126,131,142]; intraperitoneal [113,114,125,126,139–141]; intradermal [112,125,135,136]; intracerebral
[115,123,127,128]; intranasal[116,121]; milk [147]. References for each of the experimental infection are indicated. Genetic backgrounds were: IFN-�KO
mice: Balb/C[112,125,127,128,141,149]; C57BL/6 [114,116,117,123,127,128,145,147]; IFN-�R1KO mice: 129/SV/E[112,115,122,126,136–140]; Balb/C
[147]; anti-IFN� antibody-treated mice: Balb/C[113,132,142]; C57BL/6 [112,119,135,143,144]; 129/SV/E [113]; CBA/Ht [140]; IL-12p40KO mice:
C57BL/6 [118,121,145]; anti-IL-12-antibody treated mice: Balb/C[143].

and anti-IFN-� Ab-treated [119,130,131] mice become
more susceptible or succumb to LCMV infection. How-
ever, 12KO[118] or anti-IL-12Ab-treated[132–134]mice
infected with LMCV showed comparable viral replication
and CTL induction.

Experimental infection with rare murine-specific tropic
viruses was considered (Table 3). GKO and anti-IFN-�
Ab-treated mice succumbed to infection with mousepox
virus, and ecromelia virus (EV)[135,136]. Inhibition of EV
replication is due to the ability of IFN-� to induce nitric
oxide synthases[137,138]. By contrast, infection with lac-
tate dehydrogenase (LDV)-elevating virus had no effect in
either GKO or anti-IFN-� treated mice[139,140]. Murine
AIDS (MAIDS) is induced by LP-BM5 murine leukemia

retrovirus (MuLV) in susceptible mice. After LP-BM5
infection, GKO mice displayed accelerated neurodegenera-
tion [141] and the therapeutic effect of IL-12 on mice with
MAIDS was absent in GKO and anti-IFN-� mAb-treated
mice [142]. However, anti-IFN-� mAb-treated mice dis-
played delayed progression of MAIDS[143,144] and
knocking out of IFN-� gene or anti-IL-12 mAb treatment
did not induce disease in resistant mice[144]. 12KO mice
were comparable to wild-type mice in their ability to control
murine Friend retrovirus (FV) infection[145]. In contrast,
GKO and anti-IFN-�-treated mice were unable to maintain
long-term control over FV infection[146]. No differences
between wild-type and GKO mice were observed after
mouse mammary tumor virus (MMTV) infection[147].
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3. A tentative picture of the role of IL-12/IL-23-IFN-�
axis in natural and experimental viral infections

Nine years after the discovery of the first germline mu-
tations in IFN-�-mediated immunity in man[13,14] an at-
tempt can be made to illustrate the protective impact of
the IL-12/IL-23-IFN-� axis by comparing the phenotypes
of naturally infected deficient patients and experimentally
infected deficient mice. Experimental viral infection is con-
ducted with pure, homogeneous laboratory strains, in inbred
mice via artificial routes and generally is effective. By con-
trast, natural infection is the result of incidental exposure
to clinical samples of one or more species and is often re-
pelled. It may occur in vaccinated individuals or individuals
with a history of other related or unrelated infections[148].
Viral infections in humans are associated with primary im-
munodeficiency diseases or are idiopathic. In patients with
deficiencies in the IFN-�- and IL-12/IL-23-mediated immu-
nity, viral illness may be favored by previous mycobacterial
disease, which results in poor clinical status and low CD4
counts. Several viruses may be associated with resistance in
mice, but vulnerability in humans.

Four phenotypes were assigned to deficient patients
to define their vulnerability to natural infections: normal
(absence of clinical cases, with positive serology or no
serological data), moderate (clinical cases, with positive
serology or no serological data), high (occurrence of severe
or lethal cases with positive serology or no serological data)
and unknown (absence of clinical cases reported with no
positive serology or no serological data). Three phenotypes
were assigned to KO mice to define their vulnerability to
experimental viral infection: normal (enhanced morbidity or
mortality), moderate (enhanced subclinical infection or en-
hanced mortality or morbidity in GKO or 12KO mice only),
and high (enhanced mortality or morbidity in both GKO and
12KO).

For common DNA viruses, the vulnerability of deficient
patients is moderate to HSV and VZV, and high to HCMV
and HHV8, whereas that of deficient mice is moderate to
�-MHV68 and high to HSV and MCMV. In both settings,
the IL-12/IL-23-IFN-� axis is required for protection against
HSV, but not HAV. For natural infections only, it is not
required for protection against EBV, HHV6, MCV, B19, and
HPV, whereas only IFN-� is required for protection against
HCMV and HHV8. For experimental infection only, the axis
is required for protection against�-MHV68.

For common RNA viruses the vulnerability of defi-
cient patients is moderate to PIV and RSV, whereas that
of deficient mice is moderate to RSV, MHV and en-
terovirus and high to measles virus. In both settings, the
IL-12/IL-23-IFN-� axis is required for protection against
RSV, but not IV, rotavirus and enterovirus. For natural in-
fections only, it is required for protection against PIV, but
not mumps virus, measles virus, coronavirus, reovirus, HAV
and rubella virus. For experimental infections only, it is not
required for protection against PIV and reovirus, but it is

required for protection against measles virus, coronavirus,
and (confined to IFN-� only) to enterovirus.

Due to the absence of clinical cases and/or negative sero-
logical data, the vulnerability of deficient patients to rare
viruses is unknown. For these viruses the vulnerability of
deficient mice is moderate to SVF, LCMV, FV and LP-BM5
and high to VV, EV, WNV and EMCV. For experimental
infections only, the IL-12/IL-23-IFN-� axis is not required
for protection against VSV, SV, LDV, YF and MMTV, but is
required for protection against VV, EV, WNV and ECMV.
IFN-� only is required for protection against LMCV and FV
whereas IL-12 and IL-23 only are required for protection
against SVF.

The vulnerability of natural and experimental infection
with rare viruses cannot be compared. The vulnerability of
mice to rare viruses and common viruses is much the same
(58% versus 54%).

4. Conclusions

In experimental infections, the IL-12/IL-23 and IFN-�
axis displays a conspicuous redundancy, since KO mice dis-
play vulnerability to about 60% of the rare and common
viruses considered. In natural infections, this redundancy
is much more pronounced, since deficient patients display
modest vulnerability to about 20% of common viruses. This
indicates that non-IFN-� and non-IL-12/IL-23 mechanisms
are certainly involved in the control of viral infections, par-
ticularly natural infections.

IL-12 and IL-23 share a common p40 subunit, yet they
comprise unique p35 and p19 subunits, respectively[149].
IL-12 and IL-23 receptor complexes share a common
IL-12R�1 subunit, yet they comprise unique IL-12R�2
and a specific IL-23R component[9]. Since IL-12p40 and
IL-12R�1 mutants, in mice and man, lack both IL-12 and
IL-23 immunity [4,9,150], we do not know whether the
antiviral effects detected (particularly in natural infections)
are caused by the lack of IL-12 or IL-23. A possible unique
role of IL-12 in antiviral immunity is suggested by the
observation that IL-12p35 KO mice display an enhanced
susceptibility following infection with MCMV, SV and VV
[61,90,113] and that mice deficient in STAT4, which is
mainly induced by IL-12 rather than IL-23[9], are more
susceptible to RSV and VSV infection[84,151]. However,
the simplest explanation for the absence of patients identi-
fied as being genetically deficient in p35IL-12- or IL-12R�2
is the lack of an infectious phenotype, suggesting that IL-12
alone is entirely redundant in protective immunity against
all microorganisms in humans.

IFN-�/� is considered to play a major role in antiviral
defense[152]. For experimental infections, anti-IFN�/�
antibody-treated mice[152] and IFN�/� receptor KO mice
[104,112,153–157], as well as mice deficient in both IFN�/�
and IFN-� receptors[5,55], STAT1 [158,159] and STAT2
[160] showed marked sensitivity to a broad range of DNA
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and RNA viruses. However, the IL-12/IL-23 and IFN-�
axis is interconnected with IFN�/� in the antiviral de-
fense. IL-12 is essential for antibody-mediated protection of
HSV-infected mice without a functional IFN type I system
[161] and IFN�/� directly activates STAT-4 which is re-
quired for IFN-� production during viral infection[162]. For
natural infection, while patients with a heterozygousSTAT1
mutation that impairs IFN-�, but not IFN�/�-mediated
activation, are susceptible only to mycobacterial disease
[32], two patients with a heterozygousSTAT1 mutation
that impairs both IFN-� and IFN�/�-mediated activation
suffered from mycobacterial disease but, unlike patients
with IFN-�R deficiency, died of disseminated HSV-1 infec-
tion with recurrent encephalitis[163]. These data indicate
that human IFN�/� plays a pivotal role for immunological
control of HSV, and probably other viruses in vivo.
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