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In a paper published 2 years ago in this journal, some of
us described the potentially therapeutic benefits of the
quinoline antimalarial chloroquine in viral diseases such
as HIV-1/AIDS and severe acute respiratory syndrome
(SARS).1 Chloroquine/hydroxychloroquine has since
been adopted to treat HIV-1-infected patients in clinical
trials, and new insights into its antiviral activity have
been obtained from in-vitro studies.

On the HIV/AIDS front, chloroquine (250 mg twice
daily) has been administered to HIV-1-infected patients
with baseline viral loads over 50 000 copies per mL, in
combination with lamivudine (150 mg twice daily) and
hydroxyurea (500 mg twice daily) in an ongoing clinical
trial in India.2 Ten out of 18 volunteers had an
undetectable viral load at week 24.2 The median drop in
viral load was more than 2·0 log,2 more than the median
1·5 log drop seen with a nucleoside reverse transcriptase
inhibitor (NRTI) and hydroxyurea alone.3

These results are different from those of another trial
in Singapore using didanosine (125–250 mg twice

daily), hydroxyurea (500 mg twice daily), and hydroxy-
chloroquine (200 mg twice daily, corresponding to
125 mg of chloroquine).1 The median drop in viral load
was 1·3 log, similar to that induced by a NRTI plus
hydroxyurea. Follow-up of these patients at week 144
suggests that the value of hydroxychloroquine may lie in
the maintenance of the effects of didanosine/
hydroxyurea.4

The discrepancy between the two studies, besides
differences in the design and patients enrolled, probably
reflects the different dosages of chloroquine/hydroxy-
chloroquine. Drops in viral load are reported to occur using
daily doses of 800 mg of hydroxychloroquine,1 corre-
sponding to 500 mg of chloroquine (as used in the Indian
study), but not using 250 mg of chloroquine daily,5

corresponding to 400 mg of hydroxychloroquine (as
adopted in the Singapore study). Chloroquine/hydroxy-
chloroquine might thus be a valuable option to be tested
in low-cost antiretroviral combinations, but correct
dosages should be used, considering that the study
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empirically, because of its activity against most of the
causative filamentous fungi and its time-tested
experience.7,8,10 Newer agents may be useful when
microbiological diagnosis is established (eg,
voriconazole for Aspergillus spp, posaconazole for
zygomycetes), although further studies are required.

Lastly, Van Damme and Hartman refer to noma
(chancrum oris), a devastating necrotising destructive
process of the face typically affecting young malnourished
children in Africa. This condition has been presented in a
recent excellent review by Baratti-Mayer and colleagues.14

We thank Van Damme and Hartman for their interest
in our paper, and their comments which allowed us to
elaborate upon the most important topic of rapidly
progressive SSTIs.
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participants should be regularly monitored to prevent
retinopathy. Prospective randomised double-blind
placebo studies are also needed to assess the contribution
of chloroquine/hydroxychloroquine as part of an
antiretroviral regimen. According to new in-vitro results,
the antiretroviral effects of chloroquine are attributable to
the inhibition of viral particle glycosylation.6 These effects
appeared to be specific, since the chloroquine concen-
trations effective in vitro neither affected any other step in
HIV-1 replication nor were cytotoxic.6

Our hypothesis that chloroquine might inhibit
replication of the SARS coronavirus1 has been confirmed
in two independent in-vitro studies.7,8 Researchers at
the Belgian Catholic University of Leuven found that
chloroquine inhibited SARS coronavirus replication with
a 50% effective concentration of 8·8 (SE 1·2) �mol/L,
within the range of blood concentrations achievable
during antimalarial treatment.7 The dose inducing
50% cytostatic activity was much higher
(261·3 [14·5] �mol/L). Time-of-addition experiments
indicated that chloroquine affected an early stage of SARS
coronavirus replication.7 Researchers at the Centers for
Disease Control and Prevention (Atlanta, GA, USA)
reported potent anti-SARS coronavirus effects of chloro-
quine in vitro, attributable to a deficit in the glycosylation
of the SARS coronavirus receptor ACE2.8 Again, the
antiviral drug concentrations were not cytotoxic. If animal
models confirm these results, chloroquine might repre-
sent a valuable therapeutic option if SARS re-emerges.

The broad spectrum antiviral effects of chloroquine
deserve particular attention in a time in which the world
is threatened by the possibility of a new influenza

Figure: Can chloroquine interact with sugar-modifying enzymes? 
This computer-assisted simulation of ligand/protein docking by use of the
program GOLD12 indicates that chloroquine (red) fits to the active site of UDP-
N-acetylglucosamine 2-epimerase (grey). This evidence suggests that
chloroquine could inhibit the enzyme that catalyses the rate-determining step
in the sialic acid biosynthetic pathway.

pandemic, and the availability of effective drugs would
be fundamental during evaluation of an effective
vaccine. The effect of chloroquine against replication of
Orthomyxoviridae has long been known.9,10 Inhibitory
effects of chloroquine on both type A and B influenza
viruses have been described.9,10 We are currently
investigating the inhibitory effect of chloroquine on the
H5N9/A/chicken/Italy/9097/97 avian influenza virus,
recently isolated from poultry in Italy.11 Depending on
the viral challenging doses and the methods adopted to
detect the antiviral effects, the inhibitory concentrations
fell within the 0·5–10 �mol/L range—ie, clinically
achievable in plasma during malaria treatment (LDT, AS,
ID, RC, and AC, unpublished data). If these effects are
confirmed, chloroquine would deserve to be tested
against the H5N1 type A avian influenza virus, currently
a matter of serious concern for public health.

As discussed above, glycosylation inhibition might
represent a major mechanism for the antiviral effects of
chloroquine, suggesting that specific interactions of
chloroquine with sugar-modifying enzymes or glycosyl-
transferases may occur within human cells (figure).
Chloroquine was recently shown to inhibit quinone
reductase 2,13 a structural neighbour of UDP-N-acetyl-
glucosamine 2-epimerases,14 which are involved in sialic
acid biosynthesis. If chloroquine should indeed inhibit the
biosynthesis of sialic acid, this effect could explain not
only the effects of chloroquine on HIV and SARS
coronavirus (sialic acid moieties are present in HIV-1
glycoproteins and SARS coronavirus receptor ACE2), but
also the in-vitro effects on orthomyxoviruses (which use
sialic acid moieties as receptors15). These effects deserve
further investigation, in that they may lead to new
strategies controlling the replication of several viruses.
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I write in response to the article by Fiona Cooke and
colleagues1 on training in infectious diseases around the
world. I would like to bring our efforts to initiate such a
programme at the Infectious Diseases Institute (IDI) at
Makerere Faculty of Medicine, Kampala, Uganda to the
readers’ attention. The IDI was built to carry out the
programmes of the Academic Alliance for AIDS Care and
Prevention in Africa, aimed at developing human
capacity to fight HIV/AIDS and other infectious diseases
in Africa. The alliance is made up of professors of
medicine, paediatrics, and public health from Makerere
(including Nelson Sewankambo, the medical school
dean, Harriet Mayanja, Moses Kamya, Edward Mbidde,
Roy Mugerwa, David Serwadda, Fred Wabire-Mangen,
Philippa Musoke, and Elly Katabira) together with
infectious diseases academic physicians from North
America (Allan Ronald, Tom Quinn, Mike Scheld, Jerry
Ellner, and myself). In 2004, Bob Colebunders from
Antwerp joined the alliance, and Keith McAdam was
recruited as the first IDI director. We have now trained
more than 350 African physician trainers (from 15
African countries) in advanced HIV/AIDS care and
prevention in a 1-month course in partnership with
trainers from the Infectious Diseases Society of America.
The programmes of the alliance were initially funded by
a generous grant from Pfizer Inc and the Pfizer
Foundation, under the leadership of Hank McKinnell.

We started our infectious diseases fellowship
programme 4 years ago and our first trainee, Andrew

Kambugu, completed his training last September and
was recruited as a faculty member at IDI. We have three
others currently in the programme. We have primarily
used the American model which includes emphasis on
developing clinical and investigational expertise that is
currently mainly focused on HIV/AIDS. The trainees
have completed their training in internal medicine or
paediatrics and are mentored by members of the
alliance and the director. We have also made
experiences available in North America for training in
microbiology (in Manitoba, Canada) and western
clinical infectious diseases (in Salt Lake City, UT, USA).
One of our current trainees is doing a paediatric
infectious diseases rotation at Baylor (Houston, TX,
USA) and another a tuberculosis epidemiology rotation
in Atlanta, GA, USA. Our objective for this programme
is to train the African infectious diseases academic
leaders of tomorrow as part of our commitment to
build human resources. 
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