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The majority of drugs available today were
discovered either from chance observations
or from the screening of synthetic or natural
product libraries. The chemical modification
of lead compounds, on a trial-and-error basis,
typically led to compounds with improved
potency, selectivity and bioavailability and 
reduced toxicity. However, this approach is
labor- and time-intensive and researchers in
the pharmaceutical industry are constantly
developing methods with a view to increasing
the efficiency of the drug discovery process
[1]. Two directions have evolved from these
efforts. The ‘random’ approach involves the
development of HTS assays and the testing of
a large number of compounds. Combinatorial
chemistry is used to satisfy the need for 
extensive compound libraries. The ‘rational’,
protein structure-based approach relies on an
iterative procedure of the initial determina-
tion of the structure of the target protein, 
followed by the prediction of hypothetical 
ligands for the target protein from molecular
modeling and the subsequent chemical syn-
thesis and biological testing of specific com-
pounds (the structure-based drug design cycle).

The rational approach is severely limited to
target proteins that are amenable to structure
determination. Although the protein data
bank (PDB; http://www.rcsb.org/pdb) is grow-
ing rapidly (~13 new entries daily), the 3D
structure of only 1–2% of all known proteins
has as yet been experimentally characterized.
However, advances in sequence comparison,
fold recognition and protein-modeling algo-
rithms have enabled the partial closure of 
the so-called ‘sequence-structure gap’ and the 
extension of experimental protein structure
information to homologous proteins. The qual-
ity of these homology models, and thus their
applicability to, for example, drug discovery,
predominantly depends on the sequence sim-
ilarity between the protein of known struc-
ture (template) and the protein to be modeled
(target). Despite the numerous uncertainties
that are associated with homology modeling,
recent research has shown that this approach
can be used to significant advantage in the
identification and validation of drug targets,
as well as for the identification and optimiz-
ation of lead compounds. In this review, we
will focus on the application of homology
models to the drug discovery process.

Homology modeling techniques
Homology, or comparative, modeling uses ex-
perimentally determined protein structures to
predict the conformation of another protein
that has a similar amino acid sequence. The
method relies on the observation that in na-
ture the structural conformation of a protein
is more highly conserved than its amino acid
sequence and that small or medium changes
in sequence typically result in only small
changes in the 3D structure [2].

Generally, the process of homology model-
ing involves four steps – fold assignment, se-
quence alignment, model building and model
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refinement (Figure 1). The fold assignment process identi-
fies proteins of known 3D structure (template structures)
that are related to the polypeptide sequence of unknown
structure (the target sequence; this is not to be mistaken
with drug target). Next, a sequence database of proteins
with known structures (e.g. the PDB-sequence database) is
searched with the target sequence using sequence similar-
ity search algorithms or threading techniques [3]. Following
identification of a distinct correlation between the target
protein and a protein of known 3D structure, the two pro-
tein sequences are aligned to identify the optimum corre-
lation between the residues in the template and target 
sequences. The next stage in the homology modeling
process is the model-building phase. Here, a model of the
target protein is constructed from the substitution of
amino acids in the 3D structure of the template protein
and the insertion and/or deletion of amino acids accord-
ing to the sequence alignment. Finally, the constructed
model is checked with regard to conformational aspects
and is corrected or energy minimized using force-field 
approaches.

Several improvements and modifications of this general
homology modeling strategy have been developed and 
applied to the prediction of protein structures. To subject

the available structure prediction methods to a blind test,
community-wide experiments on the critical assessment of
techniques for protein structure prediction (CASP 1–5)
have been performed and their results presented and pub-
lished. As a result, the current state-of-the-art in protein
structure prediction has been established, the progress
made has been documented and the areas where future 
efforts might be most productively concentrated have been
highlighted [4,5].

Experimental protein structure information and the
sequence-structure gap
Homology modeling techniques are dependent on the
availability of high-resolution experimental protein struc-
ture data. The development of effective protein expression
systems and major technological advances in the instru-
mentation used for structure determination (X-ray crystal-
lography and NMR spectroscopy) has contributed to an ex-
ponential growth in the number of experimental protein
3D structures. By May 2004, the PDB contained ~23,000
experimental protein structures for ~7400 different pro-
teins (proteins with less than 90% sequence identity). A 
recent analysis of all protein chains in the PDB shows that
these proteins can be grouped into 2500 protein families
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Figure 1. The steps involved in the prediction of protein structure by homology modeling. Structure modeling of the bacterial
transcriptional repressor CopR is shown [28]. Although the model is based on a low-sequence identity of only 13.8% between CopR and
the P22 c2 repressor, several experimental methods support this homology model. Reproduced, with permission, from Ref. [84].
Abbreviation: CopR, plasmid copy control protein.
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comprising 900 unique protein folds [6] (updates can be
found at http://scop.mrc-lmb.cam.ac.uk). The majority of
the structures in the PDB (84%) were determined by X-ray
crystallography, with 15% of the structures being charac-
terized by NMR spectroscopy. The PDB database encom-
passes experimental information on an extensive array of
ligands (small organic molecules and ions) bound to more
than 50,000 different binding sites that can be analyzed
using programs including ReliBase (http://relibase.ebi.ac.uk)
[7], LigBase (http://alto.compbio.ucsf.edu/ligbase) [8] and
PDBsum (http://www.biochem.ucl.ac.uk/bsm/pdbsum) [9].

Although the experimental structure database is grow-
ing rapidly, there is still a substantial gap between the
number of known annotated sequences [1,182,126 unique
sequences in Swiss-Prot–TrEMBL (http://www.expasy.org/
sprot) as of 29 August 2003] and known protein 3D struc-
tures (23,000). If only significantly different proteins are
considered (~7400), which omits muteins, artificial pro-
teins and multiple structure determinations of the same
proteins (e.g. HIV-protease and carbonic anhydrase II),
then less than 1% of the 3D structures of known protein
sequences have been elucidated. This sequence-structure
gap can partly be filled with homology models. For exam-
ple, the queryable database ModBase (http://alto.compbio.
ucsf.edu/modbase-cgi/index.cgi) provides access to an
enormous number of annotated comparative protein struc-
ture models [10]. The program PSI-BLAST was used to as-
sign protein folds to all 1,182,126 unique sequence entries
in Swiss-Prot–TrEMBL. For 56% of these sequences, com-
parative models with an average model size of 235 amino
acids could be built using the program MODELLER [11].
Thus, by August 2003, 659,495 3D structure models of 
proteins were accessible via the Internet. The models are
predicted to have at least 30% of their Cα atoms superim-
posed within 3.5 Å of their correct positions. Information
on binding sites and ligands can be retrieved from this
database using LigBase [8]. However, the majority of the
models are built on a low sequence identity and it should
be realized that this level of accuracy is, in most cases, not
sufficient for a detailed structure-based ligand design.

The SWISS-MODEL Repository (http://swissmodel.expasy.
org/repository) [12] is also a database of annotated compara-
tive protein 3D structure models, which have been generated
using the fully automated homology-modeling pipeline
SWISS-MODEL. As of August 2003, this database contained
models for 282,096 different protein sequence entries (26%)
from the Swiss-Prot–TrEMBL databases (1,073,566 sequences),
with an average model size of ~200 amino acids.

Researchers from Eidogen (http://www.eidogen.com)
have created a database system called Target Informatics
Platform™ [13] that currently includes homology models

for 55,000 proteins. Homology modeling of 26,279 human
protein sequences resulted in the construction of 17,442
models for 13,114 different sequences (50%). Thus, puta-
tive and known ligand binding pockets can be detected,
analyzed and compared and the resulting data used to 
support target prioritization and lead discovery and/or
optimization procedures.

Accelrys (http://www.accelrys.com) produces Discovery
Studio (DS) AtlasStore™ as a complete Oracle®-based pro-
tein and ligand structural data management solution.
Currently, DS AtlasStore™ contains 2,052,000 homology
models that have been automatically generated from the
sequences of 195,000 proteins from 33 different genomes.
In conjunction with homology models, Cengent Therapeutics
(http://www.cengent.com) offers dynamic structural infor-
mation generated from molecular dynamics simulations
for 5500 human drug target proteins. This structural infor-
mation can be used for target prioritization and virtual
screening.

Structure information content in homology models
The quality of the homology models is dependent on the
level of sequence identity between the protein of known
structure and the protein to be modeled [14]. For a sequence
identity that is greater than 30%, homology can be as-
sumed; the two proteins probably have a common ances-
tor and are, therefore, evolutionarily related and are likely
to share a common 3D structure. In this case, pairwise and
multiple sequence alignment algorithms are reliable 
and can be used for the generation of homology models
(Figure 2).

If the sequence identity is below 15%, structure model-
ing becomes speculative, which could lead to misleading
conclusions. When the sequence identity is between 15%
and 30%, conventional alignment methods are not suffi-
ciently reliable and only sophisticated, profile-based meth-
ods are capable of recognizing homology and predicting
fold. For regions of low sequence identity, threading meth-
ods [15] are often applied. Protein models that are built 
on such low sequence identities can be used for the assign-
ment of protein function and for the direction of mutage-
nesis experiments (Figure 2). Models that have a sequence
identity between ~30% and 50% could facilitate the struc-
ture-based prediction of target drugability, the design of
mutagenesis experiments and the design of in vitro test as-
says (Figure 2). If sequence identity is greater than ~50%,
the resulting models are frequently of sufficient quality to
be used in the prediction of detailed protein–ligand inter-
actions, such as structure-based drug design and prediction
of the preferred sites of metabolism of small molecules
(Figure 2).
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Application of homology models in the drug
discovery process
There are numerous applications for protein structure infor-
mation and, hence, homology models at various stages of
the drug discovery process [16]. The most spectacular suc-
cesses are clearly those where protein structural infor-
mation has helped to identify or to optimize compounds
that were subsequently progressed to clinical trials or to
the drug market [17]. The applications of homology models
that had an impact on target identification and/or valida-
tion, lead identification and lead optimization are reviewed
here (Figure 3).

Structure-based assessment of target drugability
It is clear that only a minute fraction of the entire pro-
teome can be affected by drug-like (preferentially orally

bioavailable) small molecules. Based on
the total numbers of known genes, dis-
ease-modifying genes and drugable pro-
teins, the number of drug target pro-
teins, for humans, has been estimated at
~600–1500 [18]. For small molecules, sets
of properties have been established that
differentiate drugs from other com-
pounds [19,20]; these properties can be
used to identify compounds with, for ex-
ample, poor oral absorption properties
[21]. Drug molecules and their corre-
sponding target proteins are highly com-
plementary, which suggests that some
rules that distinguish good target pro-
teins from others should be deducible
[22]. Deep lipophilic pockets that com-
prise distinct polar interaction sites are
clearly superior to shallow highly charged
protein surface regions. The inhibition
of protein–protein interfaces as a valu-
able therapeutic principle has recently
been shown with inhibitors of the
p53–murine double minute clone 2
(MDM2) interaction [23,24]. The bind-
ing site for these inhibitors is a distinct
lipophilic pocket that normally interacts
with the α-helical surface patches of the
p53 tumor suppressor transactivation
domain. Advances in the rapid detection,
description and analysis of ligand-bind-
ing pockets [25–27], together with the
availability of more than 0.5 million ho-
mology models, will open new possibili-
ties for the prioritization of proteins with

regards to drugability. In the pharmaceutical industry,
structural aspects are being increasingly implemented as
additional decision criteria on the drugability of potential
drug targets. Companies such as Inpharmatica (http://
www.inpharmatica.com) have developed an integrated
suite of informatics-based discovery technologies that con-
tain software tools for the structure-based assessment of
target drugability.

Structure-guided design of mutagenesis experiments
The design of site-directed mutant proteins is one further
important option for the application of homology models
to target validation. Introducing point mutations and sub-
sequently studying the effects in vitro or in vivo is a com-
mon approach in molecular biology. This strategy enables
the identification of amino acids that are functionally or
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Figure 2. Relationship between target and template sequence identity and the information
content of resulting homology models. Arrows indicate the methods that can be used
to detect sequence similarity between target and template sequences. Applications of
the homology models in drug discovery are listed to the right. The higher the sequence
identity, the more accurate the resulting structure information. Homology models that
are built on sequence identities above ~50% can frequently be used for drug design
purposes. Superimpositions of X-ray crystal structures of the ligand-binding domains of
members of the nuclear receptor family are shown to the left. These X-ray structures
illustrate the increase in structure deviation with a decreased sequence identity. The PR
is red, the GR is green, the ERα is blue and the TRβ is cyan. Sequence identities: PR:GR,
54%; PR:ERα, 24%; and PR:TRβ, 15%. Abbreviations: ERα, estrogen receptor α; GR,
glucocorticoid receptor; PR, progesterone receptor; TRβ, thyroid receptor β.
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structurally important in the protein under investigation,
which ultimately contributes to biological knowledge on,
for example, potential target proteins. Typically, the amino
acids that are to be modified in these studies are selected
on the basis of sequence alignments by focusing on con-
served residues. However, if at least some structure infor-
mation is available, the selection of the amino acids that
are to be mutated can be much more precise and successful
[28]. This approach is even more powerful when applied in
conjunction with pharmacologically active compounds.
Site-directed mutants of the target protein can be made to
render that target sensitive to an existing pharmacological
agent. Based on homology models, some members of the
mitogen-activated protein (MAP) kinase family were mu-
tated to make them sensitive to a kinase inhibitor from the
pyridinyl imidazole class [29]. This enabled the use of the
compound for broader target validation studies.

Tool compound design for probing biological function
One of the most attractive ways to validate a target protein
is to administer a pharmacologically active compound that
selectively acts on that protein and to study the effects in 
a relevant animal model. Similar strategies have been de-
scribed under the term ‘chemogenomics’ [30].

It has recently been shown that it is possible to design
small molecules based on homology models and then to
use these compounds as tools to study the physiological
role of the respective target protein of that particular drug
[31]. Eight years after the discovery of estrogen receptor β
(ERβ), the distinct roles of the two ER isotypes, ERα and
ERβ, in mediating the physiological responses to estrogens
are not completely understood. Although knockout ani-
mal experiments have provided an insight into estrogen
signaling, additional information on the function of ERα

and ERβ was imparted by the application of isotype selec-
tive ER agonists. Based on the crystal structure of the ERα-
ligand-binding domain (LBD) and a homology model of
the ERβ-LBD (59% sequence identity to ERα), Hillisch et al.
[31] designed steroidal ligands that exploit the differences
in size and flexibility of the two ligand-binding cavities
(Figure 4). Compounds that were predicted to bind prefer-
entially to either ERα or ERβ were synthesized and tested in
vitro. This approach led directly to highly ER isotype-selec-
tive (200–250-fold) ligands that were also highly potent.
To unravel the physiological roles of each of the two recep-
tors, in vivo experiments with rats were conducted using
the ERα- and ERβ-selective agonists in parallel with the
natural ligand of ER, 17β-estradiol. The ERα agonist was
shown to be responsible for most of the known estrogenic
effects (e.g. induction of uterine growth and bone-protec-
tion), in addition to pituitary (e.g. reduction of luteinizing
hormone plasma levels) and liver (e.g. increase in an-
giotensin I plasma levels) effects [31]. However, the ERβ ag-
onist had distinct effects on the ovary, for example, the
stimulation of early folliculogenesis [32], which possibly
presents clinicians with a new option for tailoring classical
ovarian stimulation protocols. A comparison of the homol-
ogy model with the X-ray crystal structure of the ERβ-LBD
complexed with genistein [33] revealed that the homology
model had a root-mean-square deviation (rmsd) of the
backbone atoms (not considering helix 12) of 1.4 Å. The 
X-ray crystal structure confirmed the presence of essential
interactions between the ligand and the ERβ and did not
reveal, at least in this case, any new aspects for the design
of ERβ agonists that were not covered by the homology
model. These studies show that it is possible to design
highly selective compounds, if structure information on
all of the relevant homologs of the target is available, and
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Figure 3. Applications of homology models in the drug discovery process. The enormous amount of protein structure information currently
available could not only support lead compound identification and optimization, but could also contribute to target identification and
validation. Reproduced, with permission, from [84].
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that the designed tool compounds contribute to the eluci-
dation of the physiological roles of the target protein.

Homology model-based ligand design
There are numerous examples where protein homology
models have supported the discovery and the optimization
of lead compounds with respect to potency and selectivity.

Currently, the structures of 40 of the 518 known different
human protein kinases have been characterized by X-ray
crystallography [34]. Homology model-based drug design
has been applied to epidermal growth factor-receptor tyro-
sine kinase protein [35,36], Bruton’s tyrosine kinase [37],
Janus kinase 3 [38] and human aurora 1 and 2 kinases [39].

Using the X-ray crystal structure of cyclin-dependent 
kinase 2 (CDK2), Honma et al. [40] generated a homology

model of CDK4. This model guided the
design of highly potent and selective
CDK4 inhibitors that were targeted to-
wards the ATP binding pocket. The diary-
lurea class of compounds were subse-
quently synthesized and tested. In an in
vitro inhibition assay, the most potent
compound had an IC50 of 42 nM. The
predicted binding mode of the lead com-
pound was verified by co-crystallization
with CDK2 [40]. Vangrevelinghe et al. [41]
identified a CDK2 inhibitor using a ho-
mology model of the protein and high-
throughput docking.

Siedlecki et al. [42] have demonstrated
the utility of homology modeling in the
prediction of pharmacologically active
compounds. Alterations in DNA methy-
lation patterns play an important role in
tumorigenesis; therefore, inhibitors of
DNA methyltransferase 1 (DNMT1), which
is the protein that represents the major
DNA methyltransferase activity in human
cells, are desired. Known inhibitors from
the 5-azacytidine class were docked into
the active site of a DNMT1 homology
model, which led to the design of N4-flu-
oroacetyl-5-azacytidine derivatives that
acted as highly potent inhibitors of DNA
methylation in vitro.

Thrombin-activatable fibrinolysis in-
hibitor (TAFI) is an important regulator
of fibrinolysis, and inhibitors of this 
enzyme have potential use in antithrom-
botic and thrombolytic therapy. Based 
on a homology model of TAFI (~50% se-

quence identity to carboxypeptidases A and B), appropri-
ately substituted imidazole acetic acids were designed and
were subsequently found to be potent and selective in-
hibitors of activated TAFI [43].

Homology models of the voltage-gated K+-channel Kv1.3
and the Ca2+-activated channel IKCa1 were used to design
selective IKCa1 inhibitors that were based on the polypep-
tide toxin charybdotoxin. Comparison of the two models
revealed a unique cluster of negatively charged residues 
in the turret of Kv1.3 that were not present in IKCa1. To 
exploit this difference, the homology model was used to
design novel analogs, which were then synthesized and
tested. Research demonstrated that the novel compounds
blocked IKCa1 activity with ~20-fold higher affinity than
Kv1.3 [44].
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Figure 4. (a,b) Comparison of the two isotypes of the estrogen receptor. In the
homology model, ERα (blue) and ERβ (green) ligand-binding pockets are shown in
complex with the natural ligand of the ER, 17β-estradiol. The binding of 8β-VE2, a
highly potent and selective ERβ agonist, modeled into the ERβ ligand-binding niche is
depicted to the right. Reproduced, with permission, from Ref. [31]. (c,d) A model of
the antiprogestin RU 486 (Mifepristone) bound to hPR. A single amino acid mutation
renders this compound inactive at the cPR and hamster PR. Steric clashes between RU
486 and cPR are shown on the right side. Abbreviations: ER, estrogen receptor; hER,
human estrogen receptor; cPR, chicken progesterone receptor; hPR, human
progesterone receptor; PR, progesterone receptor; RBA, relative binding affinity; 
8β-VE2, 8β-vinylestra-1,3,5(10)-triene-3,17β-diol.
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The key proteinase (Mpro, or 3CLpro) of the new coron-
avirus (CoV) that caused the severe acute respiratory syn-
drome (SARS) outbreak of 2003 (SARS-CoV) is another ex-
ample of successful homology model building; in this case,
success is defined as the ability to use the model to propose
an inhibitor that has significant affinity for the target en-
zyme. X-ray crystal structures for the Mpros of transmissible
gastroenteritis virus (TGEV, a porcine coronavirus) and of
human coronavirus 229E [45,46] have been characterized.
These proteinases have 44 and 40% sequence identity, re-
spectively, with the key proteinase of SARS-CoV. Following
publication of the genome sequence of the new virus, first
on the internet and a few weeks later in print [46,47], the
level of sequence identity between the proteinases enabled
Anand et al. [46] to construct a 3D homology model for the
Mpro of human CoV. However, the 3D homology model
generated was insufficient for the design of inhibitors with
reasonable confidence. To establish the structural basis of
the interaction with the polypeptide substrate of the Mpro,
Anand and co-workers [46] synthesized a substrate-analo-
gous hexapeptidyl chloromethylketone inhibitor that was
complexed with TGEV Mpro. The X-ray crystal structure of
the complex was then determined, which revealed that, as
expected, the chloromethylketone moiety had covalently
reacted with the active-site cysteine residue of the pro-
teinase. The P1, P2, and P4 side chains of the inhibitor had
bound to, and thereby defined, the specificity binding sites
of the target enzyme. The experimentally determined
structure of the inhibitor–TGEV Mpro complex was then
compared with all inhibitor complexes of cysteine pro-
teinases in the PDB, which revealed a surprisingly similar
inhibitor binding mode in the complex of human rhino-
virus type 2 (HRV2) 3C proteinase with AG7088 (Figure 5)
[48]. At that time, AG7088 was in late Phase II clinical tri-
als as a drug for the treatment of the strain of the common
cold that is caused by human rhinovirus. The comparison
of the crystal structures of HRV2 in complex with AG7088
and TGEV Mpro in complex with the hexapeptidyl chloro-
methylketone inhibitor revealed little similarity between
the two target enzymes, except in the immediate neigh-
borhood of the catalytic cysteine residue, but an almost
perfect match of the inhibitors. To investigate these find-
ings further, AG7088 was docked into the substrate-bind-
ing site of the SARS-CoV Mpro model without much diffi-
culty, although it was noted that there could potentially 
be steric problems with the p-fluorobenzyl group in the 
S2 pocket, and also with the ethylester moiety in S1′.
Therefore, it was proposed that, although AG7088 was not
an ideal inhibitor, this compound should be a good start-
ing point for the design of anti-SARS drugs. Indeed, only a
few days after the on-line publication of these results in

ScienceXpress [46], it was confirmed that AG7088 had
anti-SARS activity in vitro. Derivatives of AG7088 with
modified P2 residues have since been shown to have Ki val-
ues in the lower µmolar range (Rao et al., pers. commun.).
The crystal structure of the authentic SARS-CoV key pro-
teinase was determined a few months later [49]. Although
the dimeric structure showed the expected similarity to 
the homologous enzymes of TGEV and human CoV 229E,
there were interesting differences in detail. In particular,
one of the monomers in the dimer was observed to be in
an inactive conformation, which was thought to be the 
result of the low pH of crystallization. The overall rmsd for
the entire dimer from the homology model of Anand et al.
[46] was >3.0 Å (i.e. no residues excluded from the compar-
ison), which dropped to 2.1 Å when a few outliers at the
carboxy terminus were excluded from the comparison, and
to <1.8 Å for each of the three individual domains of the
enzyme. Other homology models were generated (D. Debe,
unpublished and [50]) and virtual screening has been per-
formed using a SARS-CoV Mpro model [51]. Taken together,
these findings confirm that homology modeling is often
inadequate for the prediction of the mutual orientation of
domains in multidomain proteins. However, the homol-
ogy model generated by Anand et al. [46] also shows that a
reasonable model of a substrate-binding site can serve to
develop useful ideas for inhibitor design that can inspire
medicinal chemists to start a synthesis program long 
before the 3D structure of the target enzyme is experimen-
tally determined.

In the case of G-protein-coupled receptors (GPCR), ho-
mology-modeling approaches are limited by the lack of ex-
perimentally determined structures and the low sequence
similarity of those structures that have been characterized
with respect to pharmacologically important target proteins.
The X-ray crystal structure of only one GPCR, bovine
rhodopsin, has been determined [52]. This structure is com-
plemented by bacteriorhodopsin, which is a transmembrane
protein that comprises seven helices and is also of relevance
for modeling approaches, even though this protein is not a
GPCR. Some examples of homology models for GPCRs and
their utility have recently been reviewed [53]. High-through-
put docking has been applied to verify the ability of homol-
ogy models to identify agonists (glucocorticoid receptor
agonists) [54], antagonists of retinoic acid receptor α [55],
D3-dopamine-, M1-muscarinic acetylcholine- and V1a-vaso-
pressin-receptors [56] and inhibitors of thrombin [57]. In the
identification of thrombin inhibitors, homology models of
thrombin were built retrospectively and were based on ho-
mologous serine proteases (28%–40% sequence identity);
the best docking solutions were yielded with those models
that were derived from proteins of higher sequence identity.
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Recently, the performance of docking studies into pro-
tein active sites that had been constructed from homology
models was assessed using experimental screening datasets
of CDK2 and factor VIIa [58]. When the sequence identity
between the model and the template near the binding site
was greater than ~50%, there was an approximate fivefold
increase in the number of active compounds identified
than would have been be detected randomly. This perfor-
mance is comparable to docking to crystal structures.

Design of in vitro test assays and prediction of animal
model suitability
A further application of homology models is the design of
test assays for the in vitro pharmacological characterization
of compounds or HTS. Based on the structure of the coiled-
coil domain of c-Jun, models for α-helical proteins were
designed such that they can be used as affinity-tagged pro-
teins that incorporate protease cleavage sites [59]. The re-
sulting 10.5 kDa recombinant proteins were synthesized
and used as molecularly defined and uniform substrates for
in vitro detection of HIV-1 and IgA endoprotease activity,
which enabled the surface plasmon resonance-based
screening of inhibitors.

The enormous volume of structure information on en-
tire target protein families that is available might also have
an impact on screening cascades. Many drug discovery
projects endeavor to identify ligands that are highly selec-
tive for particular drug targets. Selective compounds are
supposed to be superior because such compounds typically
lead to fewer adverse side effects (e.g. COX-2 inhibitors).
However, the most important homologs that should not
be targeted by the desired drug, with respect to the actual
target, are not always clear, particularly within the larger
target protein families. The sequence similarity of the 
full-length proteins or entire domains might not always be
representative of the target protein when considering the
conservation of the ligand-binding pockets. Comparison

of the shape and features of the binding pockets within a
protein family could indicate which homologs should be
included in the screening cascade for so-called ‘counter
screening’. The structure information that is currently
available on entire protein families (e.g. proteases, kinases
and nuclear receptors) could contribute to the design of se-
lective compounds or better screening cascades, both of
which could potentially advance the design of drugs that
have fewer side effects.

A detailed structural knowledge of the ligand-binding
sites of target proteins was also shown to facilitate the se-
lection of animal models for ex vivo or in vivo experiments.
The proposal is that animals having target proteins with
significantly different binding sites compared with human
orthologs should be excluded as pharmacological models.
Many promising compounds showing high-potency in
human in vitro assays have not reached clinical trials 
because efficacy could not be demonstrated in animal
models. Single amino acid differences between humans
and animals might, in some cases, be sufficient to cause
such effects. The ER selectivity of ligands described by
Hillisch et al. [31] was shown by homology models and in
vitro assays to be crucially dependent on the interaction of
ligand substituents with one particular amino acid that dif-
fers between ERα and ERβ (Figure 4a) [31]. To ensure that
this important interaction is present in estrogen receptors
of all animal models that are used to characterize com-
pounds [32], homology models of murine, rat and bovine
ERβ were built and compared with the binding pocket of
human ERβ (hERβ). A complete conservation of amino
acids within the binding pockets of human, murine and
rat ERβ was observed. However, bovine ERβ showed one
amino acid difference at the exact position that was deter-
mined to be crucial for ERβ ligand selectivity. The predic-
tion that the hERβ selective compounds should not bind
to bovine ERβ was later verified using transactivation ex-
periments (unpublished results). Thus, the implementa-
tion of uninterpretable experiments could be avoided at an
early stage and the otherwise attractive bovine tissues (later
available in larger amounts) could be excluded from ex vivo
investigations. Similarly, information on the structure of
progesterone receptors (PR) can be used to explain the
abolished binding of the progesterone antagonist mifepris-
tone (RU 486) to chicken PR and hamster PR [60]. A single
point mutation (human PR Gly722 to chicken PR Cys575)
prevents antiprogestins containing 11β-aryl substituents
(e.g. RU 486) from binding to chicken (and hamster) PR
(Figure 4c), which therefore excludes hamsters, for exam-
ple, from pharmacological studies with antiprogestins [61].
In the future, such effects could be predicted and particu-
lar species could then be excluded from pharmacological
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Figure 5. Structure of AG7088. This compound is an inhibitor of
HRV2 3C proteinase and, on the basis of a homology model of
HRV2 3C proteinase, was suggested as a potential inhibitor of
SARS-CoV Mpro. Abbreviations: CoV, coronavirus; HRV2, human
rhinovirus type 2; SARS, severe acute respiratory syndrome.
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studies at an early stage, which would ultimately reduce 
attrition rates in the drug discovery process.

Structure-based prediction of drug metabolism and toxicity
One of the challenges in lead optimization is to identify
compounds that not only show a high potency at the de-
sired target protein but also have adequate physical prop-
erties to reach systemic circulation, to resist metabolic in-
activation for a specific time period and to avoid undesired
pharmacological effects. Knowledge of the structure of the
proteins that are involved in these processes, such as drug-
metabolizing enzymes, transcription factors or transporters,
could help to design molecules that do not interact with
these ‘non-target’ proteins.

The cytochrome P450s (CYP) are an extremely impor-
tant class of enzymes that are involved in Phase I oxidative
metabolism of structurally diverse chemicals. Only ~10 
hepatic CYPs are responsible for the metabolism of 90% of
known drugs. Recently, the X-ray crystal structures of three
mammalian CYPs, CYP2C5 [62], CYP2C8 [63] and CYP2C9
[64], have been solved and represent a solid basis for the
homology modeling of this entire superfamily. Models of
CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP2E1, CYP3A4 and CYP4A11 have been gener-
ated using different structure templates. These models have
been used to explain and to predict the probable sites of
metabolic attack in a variety of CYP substrates [65–72].
However, the large lipophilic and highly flexible character
of some CYP binding cavities renders pure in silico approaches
towards the prediction of the occurrence and site of small
molecule metabolism extremely difficult. If protein struc-
ture information is combined with pharmacophoric pat-
terns and quantum mechanical calculations, some predic-
tions concerning the preferred sites of metabolism within
small molecules are possible [73]. Regarding this aspect of
homology modeling, CYP2D6 is a particularly interesting
CYP because 5–9% of the Caucasian population does not
produce this polymorphic member of the CYP superfamily.
The resulting deficiencies in drug oxidation can lead to severe
side effects in these individuals. Predictions on whether or
not a lead compound could act as a CYP2D6 substrate could
help to identify problematic cases early in drug discovery.
Combined homology modeling and quantitative SAR ap-
proaches are able to predict such CYP inhibitors [74]. Thus,
in the future, protein structure information in conjunction
with high-throughput docking and pharmacophore-based
methods could be used to decide which compounds have
the potential to inhibit particular CYPs. This approach
could facilitate the detection of potential drug–drug inter-
actions early in the drug discovery process and measures
could then be taken to avoid such interactions [75].

CYP substrates and inhibitors are not the only com-
pounds to have been studied using homology models.
These approaches have been used recently to investigate
CYP inducers. The induction of CYPs is primarily mediated
via the activation of ligand-dependent transcription fac-
tors, such as the aryl hydrocarbon receptor (AhR) for the
CYP1A family, the constitutive androstane receptor (CAR)
for the CYP2D family and the pregnane X receptor (PXR),
glucocorticoid receptor (GR) and vitamin D receptor (VDR)
for the CYP3A family [76]. In principle, the in silico predic-
tion of drug-metabolizing enzyme induction could be 
reduced to predicting the binding and activation of tran-
scription factors (e.g. AhR and CAR). However, recent X-
ray structure analyses of PXR have shown that the LBD of
this nuclear receptor contains a large lipophilic and flexi-
ble binding pocket [77]. This renders pure in silico struc-
ture-based predictions concerning whether or not a small
molecule will activate PXR difficult. The homology model-
ing of CAR [78,79] and other members of the nuclear re-
ceptor family involved in CYP induction [80] have recently
been described. These models predict reasonably shaped
potential ligand binding pockets. However, further results
on the utility of these models are needed.

With respect to the structure-based prediction of adverse
health effects, progress has been described with the human
ether-a-go-go-related gene (hERG). This tetrameric potas-
sium channel contributes to phase three repolarization of
heart muscle cells by opposing the depolarizing Ca2+ influx
during the plateau phase. Inhibition of this protein results
in cardiovascular toxicity (QT-prolongation) and has caused
several drugs to be withdrawn from the market. Therefore,
in silico predictions on the probability of the formation of
an interaction between a drug and hERG have gained enor-
mous attention and have recently been reviewed [81].
Homology models of hERG, which are based on the X-ray
crystal structures of the bacterial KcsA [82] and MthK chan-
nels [83], have already shed light on some details of the
molecular interactions that initiate hERG inhibition.
However, the complexity of this potassium channel signi-
fies that detailed X-ray structure analyses of the protein 
in the open- and closed-state are required before these mol-
ecular interactions can be fully understood and predicted,
which has implications for the prediction of cardiotoxicity.

Conclusions and outlook
Numerous examples for the successful application of ho-
mology modeling in drug discovery are described here. In
the absence of experimental structures of drug target pro-
teins, homology models have supported the design of sev-
eral potent pharmacological agents. One of the advantages
of homology models is that these models can be generated
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relatively easily and quickly. Furthermore, such models
could support the hypotheses of medicinal chemists on
how to generate biologically active compounds in the im-
portant early conceptual phase of a drug discovery project.
The design of compounds that are selectively directed at
particular drug target proteins is one of the strengths of
this technique. Such selective compounds can even be ap-
plied to gain insights into the physiological role of novel
drug targets. The in silico protein structure-based predic-
tion of metabolism and toxicity of small molecules, particu-
larly CYP inhibition and induction and hERG inhibition,
is currently in its infancy and predictive capabilities could
be limited to classification only. However, while complete
experimental structures of pharmacologically important
proteins are missing, the homology modeling technique
provides one approach to bridge the gap until this infor-
mation becomes available.
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