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cis-acting genomic elements and frans-acting
proteins involved in the assembly of RNA viruses

Sondra Schlesinger®, Shinji Makinot and Maxine L. Linialt

There is now considerable evidence thai a specific site (or
sttes) in the genome of an RNA virus interacts with a viral
prrotein to tnifiale the assembly of the virus ribonucleoprotein
or nucleocapsid. We describe the progress that has been made
in defining these elements for a number of different viruses:
the togavirus, Sindbis virus, the coronavirus, mouse hepatitis
virus, influenza A virus, several retroviruses;, and the
hepadnavirus, hepatitis B virus. The importance of cis-acting
elements tn packaging has been established for all of these
viruses. For Sindbis virus, specificily in the binding of the
RNA element to a region of the viral capsid protein in vitro
has also been demonsirated.

Key words:  packaging signals / RNA-protein binding /
RNA structures

THE FOCUS OF this chapter is on the initial event
in the assembly of RNA viruses—the interaction
between a viral RNA genome and protein leading
to the formation of a ribonucleoprotein particle.
Specificity in the assembly process was first observed
over 30 years ago in the i vitro assembly experiments
carried out with tobacco mosaic virus (TMV). The
efficiency of reconstitution using the TMV protein
and TMV RNA was much greater than with other
viral RNAs. Atthat time Caspar noted that ‘the RNA
may contain the information necessary for it to link
up with its own protein, as well as the code for
the sequence of this protein’.! There are also examples
which suggested specificity of assembly in vize. The
positive-strand RNA alphaviruses and several
families of positive-strand RNA plant viruses
synthesize large quantities of both genomic and
subgenomic RNAs in infected cells. Usually only the
genomic RNA, and not the subgenomic RNA, is
packaged. Initially, it was possible to imagine that
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selectivity in packaging was a consequence of the
overall RNA structure which might, for instance,
contribute to the stability of the particles formed.
Now, however, an increasing number of viral RNA
genomes that contain a specific sequence which
appears to be important for encapsidation of that
RNA—an encapsidation or packaging signal—have
been identified.

The assembly of a wviral nucleocapsid or
ribonucleoprotein (RNP) is an essential step in the
formation of a virus. For many viruses, this step may
require only the interaction between the genomic
RNA and the viral capsid or coat protein. (See also
the chapter by J.M. Fox et al, thisissue.?) The capsid
protein can play several roles in the life cycle of the
virus. It serves as a coat to protect the genome of
nonenveloped viruses during the time the particles
exist in an extracellular environment. It also acts as
the mediator to bind the virus to a susceptible cell,
For enveloped viruses, the formation of the infectious
virus requires budding of the ribonucleoprotein
through cellular membranes.? For these viruses,
the capsid protein must also interact with other
viral proteins in the process of forming infectious
virions. For some enveloped viruses, in particular,
retroviruses and negative-strand RNA viruses, the
RNP is composed not only of the genome and a
capsid protein, but also other proteins required for
transcription and, for the negative-strand viruses,
replication of the RNA. Some of these proteins may
also be tmportant in the assembly of the RNP. We
are emphasizing the importance of RNA/protein
interactions in the initial steps of the assembly
process, but these interactions may also be critical
in disassembly or uncoating events. In infected cells,
the genomic RNA of positive-strand RNA viruses
(with the exception of retroviruses) must be able to
bind the ribosomes to initiate translation and some
mechanisms must exist to permit the ribosome access
to the viral RNA.

We discuss here only a few of the viruses for which
encapsidation signals have been identified, but they
do span several very different virus families. They
illustrate examples of specificity and also point out



S. Schlesinger et al

some of the complexities and problems in defining
the RNA and protein requirements for encapsidation.
Additional examples are covered in other chapters
in this issue.

Alphaviruses

Alphaviruses are positive-strand RNA enveloped
viruses belonging to the Togaviridae family.*5 The
genomic 498 RINA serves as the mRINA for translation
of a polyprotein precursor for the nonstructural
proteins encoded in the 5’ two-thirds of the viral
genome. These proteins are required for the
replication and transcription of viral RNA. The viral
structural proteins are also translated as a polyprotein,
but from a subgenomic 268 mRNA identical in
sequence to the 3’ terminal one-third of the 495
RNA. The viral capsid protein is translated first and
acts as an autoprotease to cleave itseif from the
nascent polyprotein, leaving the precursor for the
envelope proteins. The latter are synthesized and
processed in the rough endoplasmic reticulum and
are transported through the Golgi network to the
plasma membrane of the infected cell. As mentioned
above, there is discrimination in packaging, only the
genomic 495 RNA is found in virus particles. The
268 mRNA is not packaged.

Weiss et al identified a region of the genome that
interacts specifically with the viral capsid protein using
two different approaches.® They first defined a region
in the Sindbis virus genomic RNA encompassing
nucleotides 684 to 1253 that bound to purified capsid
protein immobilized on nitrocellulose. They then
demonstrated the importance of this region in
encapsidation by showing that defective interfering
(DI) RNAs of Sindbis virus containing this region of
the genome are packaged, but a DI RNA lacking this
region is not. This region lies within the coding region
of one of the nonstructural protein genes (nsP1) (Figure
1A}, More extensive deletion mapping demonstrated
that a fragment containing only 132 nucleotides
(from nucleotide 945 to 1076 in the Sindbis virus
genome) retained full binding activity (Figure 1B).

The binding of Sindbis virus RNA to the capsid
protein triggers the protein/protein interaction that
must occur for formation of the viral nucleocapsid.
The capsid polypeptide contains 264 amino acids
which can be divided into two domains based
on the amino acid sequence.”® The basic N-
terminal domain consists of about 115 residues. The
C-terminal domain has the autoprotease activity and
is conserved among alphaviruses. Sequence analysis
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and mutagenesis studies®1? suggested that the capsid
protein is a chymotrypsin-iike serine protease and
this has now been confirmed by X-ray diffraction
data.!! The capsid exists in the crystal structure as
a dimer with the monomer-monomer contacts at
residues 189 to 190 in a B-strand and also residue
222, The structure of the C-terminal domain {amino
acids 114-264) was determined and is similar to the
structure of mammalian serine proteases of the
chymotrypsin family. In contrast, the N-terminal 113
residues remain largely unstructured in the crystals.
The basic nature of this region and its apparent
flexibility are reminiscent of the structure of the coat
protein of several plant RNA viruses.

Two different studies have identified a region in
this domain that interacts with RNA. Geigenmiiller-
Gnirke et al analyzed a variety of deletion mutants
of the capsid protein for their ability to bind to the
Sindbis virus encapsidation signal.'? They identified
a 32 amino acid region {amino acids 76-107) that
is essential for RNA binding. They also demon-
strated that a 68 amino acid peptide (lacking residues
11-74 and 133-264) retains almost the same binding
activity as the intact protein. The assay measured
the binding of in zitro translated proteins to RNA
based on the migration of the protein with RNA
during electrophoresis in an agarose gel. Wengler
et al'? took a different tack to identify the region of
the capsid protein that binds to ribosomes. They!?
and Singh and Helenius!* have proposed that the
binding of alphavirus nucleocapsids to ribosomes
triggers the disassembly process. Wengler & al
showed that a proteolytic fragment of the capsid
protein purified from virions containing amino acids
94 to 264 binds to ribosomes, but a fragment
extending only from residue 106 to 264 lacks this
activity.’3 The stretch of amino acids between
residues 94 and 106 lies within the region involved
in the binding of the capsid polypeptide to Sindbis
virus RNA. This overlap suggests that at least some
of the amino acids are important in the assembly and
also in the disassembly of the nucleocapsid.

Coronaviruses

The study of coronavirus nucleocapsid assembly and
its regulation is still in its infancy. To date, the
data in this area centers on the identification of
the putative packaging signal of the prototypic
coronavirus, mouse hepatitis virus (MHV}.
Coronaviruses are enveloped RNA viruses that
contain a 27 to 32 kb single-stranded positive-sense
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Figure 1. A. The RNA genome of Sindbis virus, The open boxes are the coding regions;
nsP refers to the nonstructural proteins, C, p62, 6k and E1 are the structural proteins; C is
the capsid protein. The thin lines represent noncoding regions. The horizontal arrow refers to
the start of the 265 subgenomic RNA and indicates the location of the promoter for the
transcriprion of this RNA. The cross in nsP1 is the location of the packaging signal. B. The optimal
secondary structure of the 132 nucleotide capsid binding region located from nucleotides 945
to 1076 in the Sindbis virus genome. Some of the single-stranded constraints on this structure
are based on chemical modifications (B. Weiss, 8. Schlesinger, submitted for publication).

genomic RNA.1517 The genome interacts with the
nucleocapsid (N) protein to form a helical nucleocapsid
structure.!® Tn infected cells there are six to eight
subgenomic mRNA species and one genomic-sized
mRNA-mRNA 1.1 These mRNAs form a
3'-coterminal nested-set. All coronavirus mRNA
5'-ends originate with a 60 to 80 nucleotide-long
leader sequence.?0-2! MHV efficiently packages only
the genomic RNA.'6 Another coronavirus,
transmissive gastroenteritis virus, does contain a
small amount of subgenomic RNA species.?? It is
not clear if this represents selective RNA packaging.

Experiments using MHV defective interfering
(DI) RNAs provided the first evidence that a cis-acting
RNA element (a packaging signal) is necessary for
the packaging of coronavirus RNA. The MHV strain
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JHM has several naturally occurring DI RNAs, not
all of which are packaged. A 3.6 kb-long DI RNA,
called DIssF, is packaged,? whereas others, both larger
and smaller than DIssF, are not effictently packaged.?*
This finding suggested that the size of MHV RNA
does not determine packaging efficiency. Instead,
some RNA sequence or structure in the genomic
RINA must be important for MHV RNA encapsidation.

DlssF contains 1400 nucleotides that are not
present in another DI RNA, DIssE, a 2.2kb DI
RNA that is packaged inefficiently.?2% Evidence
that the packaging signal lies within these sequences
came from insertion of these DIssF-unique sequences
into a DIssE ¢cDNA construct; the in vitro-transcribed
RNA from this hybrid construct is efficiently
packaged into viral particles.? In another study,
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van der Most ef af showed by deletion analysis of a
DI RNA derived from another strain of MHV
MHV-A59, that the packaging signal maps within
650 nucleotides located near the 3’ region of gene
1.26 This 650 nucleotide region is included within
the 1400-nucleotides identified in the MHV-JHM
DI RNA 23,2 Deletion analysis of DIssF located the
packaging signal to a 61 nucleotide sequence—a
sequence that is found 1381 to 1441 nucleotides
upstream of the 3’ end of gene 1 in the MHV
genomic RNA (Figure 2).22 Mutational analysis of
this region suggests that the RNA secondary
structure is important for function.?’ It is not known
if this 61 nucleotide region is sufficient for packaging
of MHV RNA and further studies with DI RNAs
should determine if this sequence (or structure) is
necessary and sufficient for packaging of MHV
RNA.

The protein or proteins that bind to the MHV
packaging signal have not been identified. Although
the MHV N protein is a likely candidate, it does bind
to the leader sequence of all MHV subgenomic
mRNA species?® and only mRNA 1, not the
subgenomic mRNAs, forms a nucleocapsid structure
in infected cells.?® N protein also binds to non-
MHV RNA 30 Therefore, the binding of N protein
to leader sequences does not seem to be sufficient
for specific encapsidation of genomic RNA and some
other factor must be required for discrimination in
packaging.

Influenza viruses

The influenza A virus genome consists of eight
single-stranded RNA segments of negative polarity.
An infectious virion contains at least eight unique
helical ribonucleoproteins (RINPs) composed of an
RNA molecule, the RNA polymerase proteins, and
the nucleoprotein (NP). In contrast to the
paramyxovirus RNP, the RNAs in the influenza
virus RNPs are partially susceptible to RNase
digestion,?1:32 indicating that at least some regions
are exposed on the surface of RNP structure.33
Palese and his colleagues described the location
of an influenza virus cis-acting packaging signal.3*
They constructed an influenza virus ¢cDNA in
which the viral termini were maintained but the
chloramphenicol acetyltransferase (CAT) gene
replaced the viral NS gene-coding sequence. This
cDNA was transcribed in vitro into RNA, which was
then reconstituted with purified viral proteins to form
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a viral RNP. The RNP was transfected into cells
which had also been infected with influenza virus.
CAT activity was detected in these cells, but more
importantly, it was also detected in cells infected with
virus released from the transfected/infected cells. This
result supports the conclusion that the signals for
transcription, replication and packaging of an RNA
are located in the 22 5'-terminal and the 26 3'-
terminal nucleotides of the influenza A virus RNA .34
Influenza virus genomic RNAs exist in a circular
conformation that is based on a terminal panhandle
of approximately 15 base pairs (Figure 2C).% It is
possible that this terminal panhandle structure plays
a role in influenza virus RNA packaging.??

The proteins required for packaging of influenza
virus have not been identified. Influenza virus
NP protein can bind any RNA longer than 15
nucleotides.3® The RNA polymerase binds
approximately 12-15 nucleotides at the 3’ end of each
influenza virus RNA.%7 As described above, short
stretches of nucleotides at both termini of influenza
virus RNAs are sufficient for RNA packaging and
contribute to the panhandle structure. It may be the
RNA polymerase that confers the specificity to
packaging of influenza virus RNAs.

One 1nteresting question about the packaging of
influenza virus RNAs is how a complete set of each
of the RNASs is selected during assembly of influenza
virus. Specific selective packaging of the full
complement of eight RNAs into each particle
would require complex molecular interactions and
recognition signals. Although several observations
support the selective packaging mechanism 3840 3
number of observations are consistent with random
packaging of more than eight RNAs. Estimates of
the ratio of infectious to noninfectious particles based
on calculations of random packaging are compatible
with published values for the infectivity ratio of virus
particles. 142 A heterozygotic influenza virus with
two copies each of RNA3 and RNA6 was reported.*?
Furthermore, an influenza virus containing nine
different RNA segments rather than eight RNA
species was identified.** Currently the model that
assumes influenza virus forms infectious virus
particles via random packaging of more than eight
viral RNA segments seems to be in favor.

Retroviruses and hepadnaviruses

Specific encapsidation of genomic molecules is critical
to the survival of all viruses. In the case of viral
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Figure 2. Location and structure of coronavirus and influenza virus packaging elements.
A. Location of MHYV packaging signal. Genes 1 through 7 represent the seven genes of MHV.
The 61 nucleatide packaging signal is shown as a black box. B. Predicted secondary structure
of the 61 nucleotide MHV packaging signal. C. Proposed influenza virus RNA structure.
The bold lines include the RNA packaging signal. The panhandle is approximately 15 base

pairs.

elements which encode reverse transcriptase,
sequestration of only genomic RNAs into protein
complexes containing active reverse transcriptase
activity is also vital for the genetic integrity of the
host cell. Cellular mRINAs which are introduced into
retroviruses in artificial situations can be reverse
transcribed and integrated into the genomes of newly
infected cells.*:46 Promiscuous integration of
nontranscribed ¢cDNAs {as processed pseudogene-
like structures) could disrupt normal gene function.
In addition, many reverse transcriptase viruses do
not kill the infected cells, and in some cases transform
or immortalize them; thus allowing more chance of
such events to occur. Thus for these viruses, absolute
packaging specificity is particularly important.
Both retroviruses and hepadnaviruses are enveloped
viruses whose genomes are plus-strand RNAs. Both
viral groups encode reverse transcriptase and
synthesis of a cDNA copy of their genomes is central
to their replication. These viruses also encode both
genomic and subgenomic RNAs, but package only
full length genomic species. In the case of the
retroviruses, proviral DNA is synthesized early after
viral infection following partial uncoating of the
particle. Two identical { +) strand 8-11kb RNA
genomes are found in each particle; reverse
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transcriptase is associated with the genomes
complexed with the tRNA primer at the primer
binding site located near the 5" end of the RNA.
Hepadnaviruses have evolved an entirely different
time course of reverse transcription. Reverse
transcription occurs late in infection prior to viral
release such that the encapsidated genome is a
partially double-stranded 3.2 kb circular DNA with
the reverse transcriptase (P protein) covalently
attached to the ( - ) strand. The retroviruses and
hepadnaviruses have developed different strategies
to ensure that only sequestered genomic RNAs are
available for reverse transcription. In the case of
retroviruses, reverse transcriptase is synthesized as
a fusion protein with the product of the first open
reading frame, the gag gene. Synthesis of Gag-Pol
is less frequent than that of Gag and occurs via
suppression of a stop codon or ribosomal frameshifting
(reviewed in ref 47). The activity of the Gag-Pol
fusion protein varies among the retroviruses; in some
cases there is no activity until cleaved by the viral
protease which is encoded within either pof or gag.
Protease itself is only activated as a dimer and this
only occurs when the concentration is high, in the
viral particle after assembly and budding. Changes
in the protease structure may also be required
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(reviewed in ref 48). Only after viral maturation is
Pol released and bound to genomic RNA. In a viral
mutant which encapsidates cellular mRINAs, reverse
transcription of these RNAs is efficient.®? In
retroviruses, cDNA synthesis does not occur until
after infection and partial uncoating of the viral core,
and cDNA is not commonly found within mature
particles. In the yeast retrotransposons such as Tyl
and Tvy3 which also synthesize a fusion Gag-Pol
reverse transcriptase precursor, particles do not bud
from the cell and particles are found to contain cDNA
products as well as genomic RNA (reviewed in ref
50). Although not well characterized, non-L'TR (long
terminal repeat) retroposons such as LINE elements,
appear to encode a potential open reading frame
upstream of reverse transcriptase which could encode
a Gag-like protein. When expressed as a fusion
protein with Tyl Gag, a human LINE-1 orf2 does
encode functional polymerase.3! All existing data
suggests that in the case of retroviruses and
retrotransposons, packaging of the Pol protein is
through the Gag domain. In contrast, the reverse
transcriptase of the hepadnaviruses (the P protein)
is not synthesized as a fusion protein. P is translated
inefficiently from full length RNA; the major
translation product is the amino terminal core
protein.*? Binding of P to its own mRNA (also
genomic length} at a specific sequence in ¢is during
synthesis appears to be required for packaging and
is the nucleation signal for particle formation;>3-33
recently reviewed in more detail in ref 56. This
pathway ensures the specific packaging of both RNA
and reverse transcriptase.

Thus for hepadna- and retroviruses, survival
depends upon a requirement for genomic RNA to
be marked with a unique element which can interact
specifically with a viral protein and ensure its
preferential encapsidation. This element has been
called € in the case of the hepadnaviruses and ¥ or
E in the case of the retroviruses (see Figure 3). The
structure of ¢ has been more precisely determined
than that of Y. In the case of human hepatitis B, a
94 nucleotide sequence at the 5’ end of the genomic
RNA is necessary and sufficient for encapsidation?*57
(Figure 3C). The € sequence is also found at the 3’
end of the genomic RNA but does not function as
a packaging signal in that position.?%3 The
predicted structure of the hepatitis B € region is a
stem loop with an upper and lower portion separated
by a 6 nucleotide bulge and topped with a 6
nucleotide loop (see Figure 3D). Chemical probing
and mutational analysis suggest that the predicted
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structure is important in encapsidation.’” It is
interesting that recent evidence suggests that the
same stem-loop structure is also where P protein first
binds and is the template for synthesis of a short
DNA primer which then translocates to the
complementary repeated region at the 3" end of the
genome where DNA synthesis then continues. Thus
packaging seems to be intimately associated with the
ability of the virus to initiate reverse transcription.?8
Packaging and reverse transcription are clearly
separable however since P protein lacking enzymatic
activities still functions in encapsidation.?? The viral
core protein 1s also important for encapsidation and
an arginine-rich region in the carboxy-terminus of
the core protein plays a role in this process.’?
The location and putative structure of the
retroviral ¥ sequence is not as clearly defined as €.
There are many differences in the ¢is-acting
packaging signals among the viruses in which these
have been most studied; the avian and murine
oncoviruses, and human immunodeficiency virus
(HIV). However, in all cases the packaging
sequences have been located to regions near the 5’
end of the genomic RNA (Figure 3A and B). Such
studies have employed both deletion analysis and
transfer of sequences to heterologous RNAs
(reviewed in ref 60). Several groups have used
computer-assisted folding programs to generate
potential structures and have used i vitro RNase
probing to determine whether such structures are
formed.%1%% However thus far, the relationship of
these in vitro generated RNA secondary structures
to the minimal packaging sequences required in vivo,
has not been determined. In the case of Rous
sarcoma virus (RSV), an avian retrovirus, a
270 nucleotide sequence between the major 3’
splice site and the start of the gag gene has been
found to be sufficient to allow encapsidation when
placed 3’ of a heterologous RNA sequence.%® More
recent studies suggest that 192 nucleotides are
sufficient in this assay (A, Yeo, M.L. Linial,
unpublished observations). 'The 192 nucleotide ¥
sequence does not contain the putative purine rich
motifs hypothesized to be important for in vitre
dimerization.%¢ Although all retroviruses contain
two genomic RNAs in a dimeric structure, whether
or not dimerization precedes encapsidation is not yet
known. It has been suggested that there may be two
types of dimers, early dimers which are less stable
to heat dissociation than those that form later and
could involve RNA/protein interactions (W. Fu,
A. Rein, submitted). In the case of mutant retroviruses
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Figure 3. Location and structure of retro- and hepadnaviral packaging elements. A. Avian
leukosis virus (ALV) RNA genome showing location of ¢ and the three genes encoding
structural proteins (gag), reverse transcriptase (pol) and glycoproteins (env). The major 5" and
3’ splice sites (ss) are shown, as well as the DR (direct repeat) element which is required
for optimal packaging. B. Murine leukemia virus (MLV) genome—symbols as in A.
C. Human hepatitis virus B (HBV) RNA genome show location of € in relation to the known
genes for the core protein, polymerase (Pol), surface protein (S} and X of unknown function.
DR1 and DR?2 are repeats at the ends important for reverse transcription but not packaging.
D. Comparison of the putative HBV packaging element to that of HIV-1 TAR (Tat responsive
element). The numbers refer to the number of nucleotides in each portion of the proposed
structure. Data taken from ref 37 for HBVe and ref 85 for HIV-1 TAR.

which package cellular RNAs, there is some evidence
that these are in a higher order complex.4? Further
studies on encapsidated heterologous RNAs
containing ¥ sequences devoid of dimerization
signals are necessary to clarify this point. In avian
retroviruses, the minimal ¥ sequences are found on
both genomic and subgenomic RNAs, yet the latter
are not encapsidated (see Figure 3A). Sequences
located at the 3' ends of both the genomic and
mRNAs are also involved in packaging;57:%8 it is
likely that a complex interaction between the ends
is required for packaging and this is only achieved
in the full length genome. The situation for murine
leukemia virus (MLV) is much simpler in that 5’
sequences required for packaging are removed by
splicing and not found in subgenomic mRNAs. %9
HIV packaging signals seem to be complex. Deletion
analyses originally located a small region between
the 5' splice site and gag.79-72 However, this region
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does not appear to be required for packaging
genomic RNA (P.P. Lee, M.L. Linial, submitted
for publication). It is interesting to note that the TAR
loop at the 5’ of the HIV genome has some structural
sirnilarity to the hepadnavirus e structure (see
Figure 3D), but the relationship of the TAR stem-
loop to HIV-1 packaging is currently not known.

While the initial interaction of RNA and protein
in hepadnaviruses appears to require only the viral
polymerase, the situation in retroviruses is less clearly
defined. By the process of elimination, the precursor
of the retroviral structural proteins, PrGag, is
thought to specifically interact with ¢; expression of
gag alone leads to particles containing RNA, (See
the chapter by E. Hunter, this issue.’?) In the case
of HIV specific binding of PrGag to 5’ genomic RNA
has been demonstrated in an in vitro assay.’®7 The
major retroviral RNA binding protein NC, binds
to RNA with high affinity but no specificity,’® and
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is only released from precursor PrGag after viral
assembly. Protease activity is not required for
packaging.””.’® The domains in PrGag which
actually interact with RINA and confer specificity are
not known. The Zn finger motifs found in most (but
not all) retroviral and retrotransposon NC proteins
have been implicated in specific binding and
packaging,”079-82 byt in the case of RSV, specific
RNA packaging can occur if they are deleted.% In
retroviruses it is highly unlikely that Gag-y
interaction is a trigger for viral assembly because
under certain conditions particles devoid of genomic
RNA can be produced® and viral mutants have
been found which do not package genomic RNAs
but produce particles. For instance, mutants of RSV
lacking the terminal protease domain of PrGag
produce particles which lack genomic or ¥-containing
RNAs.65.77.8%3 MLV with mutations in the
nucleocapsid domain also are deficient in RNA
encapsidation, Interestingly, some mutants continue
to package other cellular RN As related to the MLV
genome which contain y-like sequences.®? While
details of the requirements and specificities of
retroviral protein/genomic RNA interactions have
thus far proved elusive, the great interest in
developing antiviral agents for HIV and the exquisite
specificity of this step in the viral life cycle, makes
intervention at this step very attractive, and should
be an impetus for more detailed examination.

Perspectives

Many of the chapters in this issue describe nucleic
acid sequences or structures required in the
encapsidation of a variety of different viruses. These
nucleic acid/protein interactions are specific and, for
those viruses associated with disease, encapsidation
may be an important target for antiviral agents. An
additional goal, particularly pertinent in the study
of RNA/protein interactions, is the attempt to
determine if there are general principles that can be
applied in defining these interactions. Although there
are many different DNA-binding proteins, it is often
possible to identify a specific DNA-binding domain
within the protein. Several different classes of DNA-
binding domains have been identified and structural
studies have accurately defined the DNA-amino acid
contacts.8 It has been more of a challenge to
define domains in RNA binding proteins. X-ray
crystallography and NMR data are available for a
very few RNA/protein structures and only a few
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specific types of interactions have been identified.
A large family of RNA-binding proteins share
a consensus sequence or an RNA recognition
motif 8788 Thus far these sequences have been
found most frequently in SnRNPs, splicing factors
and hnRNPs.87-88 Some of the most detailed studies
are those mvolving the interactions of the HIV-1 Tat
and Rev proteins with their RNA elements TAR and
RRE respectively (See Figure 3D). Studies of Tat-
TAR interactions have demonstrated a crucial role
for arginine in the interaction.8.90 These studies, as
well as those with Rev-RRE,?! suggest an important
role for the sugar phosphate backbone of the RNA
In recognition.

The concept that RNA structure plays a crucial
role in the recognition process has also received
support in the RNA/protein interactions leading to
assembly of RNA viruses. Extensive mutagenesis of
the packaging signals of R1792 and TMV? led to
the conclusion that the structure of the RNA is
essential in the recognition process. More recently,
a bulged stem-loop structure was proposed to be the
critical element for the encapsidation of the RNA
of flock house virus, a small nonenveloped insect
virus.?* The importance of structure is now being
explored further in the interaction of the viral RNAs
and the viral proteins described in this and other
chapters.
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