Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2010 Jan 25;26:15–25. [Article in Spanish] doi: 10.1016/S0213-005X(08)76537-6

Aplicación de los métodos moleculares al diagnóstico y el estudio epidemiológico de las infecciones respiratorias causadas por virus

Application of molecular methods in the diagnosis and epidemiological study of viral respiratory infections

Francisco Pozo 1,, Inmaculada Casas 1, Guillermo Ruiz 1, Ana Falcón 1, Pilar Pérez-Breña 1
PMCID: PMC7130302  PMID: 19195443

Abstract

Hasta la fecha se han identificado más de 200 virus pertenecientes a 6 familias taxonómicas diferentes asociados con la infección del tracto respiratorio humano. La utilización generalizada de métodos moleculares en los laboratorios de microbiología clínica no sólo ha aportado grandes ventajas al diagnóstico de estas infecciones, sino también está permitiendo profundizar en el conocimiento de la enfermedad y el comportamiento epidemiológico de los virus causantes. Esta tecnología incrementa de manera notable el rendimiento de detección de virus en las muestras respiratorias, debido a su elevada sensibilidad en comparación con las técnicas clásicas y a la posibilidad de identificar virus no cultivables o de crecimiento fastidioso en las líneas celulares habituales, lo que permite realizar el diagnóstico etiológico con mayor rapidez. Sin embargo, también comporta algunos inconvenientes, como son detectar virus que se encuentran colonizando la mucosa respiratoria de personas asintomáticas, o en secreciones de pacientes que ya se han recuperado de una infección pasada, a consecuencia de excreción prolongada de éstos. La secuenciación de los productos obtenidos en la reacción de amplificación genómica permite caracterizar de forma adicional los virus detectados mediante su genotipado, realizar estudios de epidemiología molecular e identificar resistencias a determinados antivirales, por citar sólo algunos ejemplos.

Palabras clave: Diagnóstico molecular, Epidemiología molecular, Reacción en cadena de la polimerasa, Gripe, Virus respiratorios, Infección respiratoria

Bibliografía

  • 1.García-Rodríguez J.A., Fresnadillo M.J. Microbiología de la infección respiratoria pediátrica. An Esp Pediatr. 2002;56(Supl 1):2–8. [Google Scholar]
  • 2.Coiras M.T., Pérez-Breña P., García M.L., Casas I. Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay. J Med Virol. 2003;69:132–144. doi: 10.1002/jmv.10255. [DOI] [PubMed] [Google Scholar]
  • 3.Smith A.B., Mock V., Melear R., Colarusso P., Willis D.E. Rapid detection of influenza A and B viruses in clinical specimens by Light Cycler real time RTPCR. J Clin Virol. 2003;28:51–58. doi: 10.1016/s1386-6532(02)00238-x. [DOI] [PubMed] [Google Scholar]
  • 4.Van Elden L.J., Nijhuis M., Schipper P., Schuurman R., Van Loon A.M. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR. J Clin Microbiol. 2001;39:196–200. doi: 10.1128/JCM.39.1.196-200.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Moore C., Hibbitts S., Owen N., Corden S.A., Harrison G., Fox J. Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A. J Med Virol. 2004;74:619–628. doi: 10.1002/jmv.20221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Poddar S.K. Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RTPCR) and agarose gel electrophoresis. J Virol Methods. 2002;99:63–70. doi: 10.1016/s0166-0934(01)00380-9. [DOI] [PubMed] [Google Scholar]
  • 7.Schweiger B., Zadow I., Heckler R., Timm H., Pauli G. Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples. J Clin Microbiol. 2000;38:1552–1558. doi: 10.1128/jcm.38.4.1552-1558.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Quan P.L., Palacios G., Jabado O.J., Conlan S., Hirschberg D.L., Pozo F. Detection of respiratory viruses and subtype identification of influenza A viruses by GreeneChipResp oligonucleotide microarray. J Clin Microbiol. 2007;45:2359–2364. doi: 10.1128/JCM.00737-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zou S., Han J., Wen L., Liu Y., Cronin K., Lum S.H. Human influenza A virus (H5N1) detection by a novel multiplex PCR typing method. J Clin Microbiol. 2007;45:1889–1892. doi: 10.1128/JCM.02392-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Cooper L.A., Subbarao K. A simple restriction fragment length polymorphism-based strategy that can distinguish the internal genes of human H1N1, H3N2, and H5N1 influenza A viruses. J Clin Microbiol. 2000;38:2579–2583. doi: 10.1128/jcm.38.7.2579-2583.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Saito R., Oshitani H., Masuda H., Suzuki H. Detection of amantadine-resistant influenza A virus strains in nursing homes by PCR-restriction fragment length polymorphism analysis with nasopharyngeal swabs. J Clin Microbiol. 2002;40:84–88. doi: 10.1128/JCM.40.1.84-88.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hoffmann B., Harder T., Starick E., Depner K., Werner O., Beer M. Rapid and highly sensitive pathotyping of avian influenza A H5N1 virus by using real-time reverse transcription-PCR. J Clin Microbiol. 2007;45:600–603. doi: 10.1128/JCM.01681-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bright R.A., Shay D.K., Shu B., Cox N.J., Klimov A.I. Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA. 2006;295:891–894. doi: 10.1001/jama.295.8.joc60020. [DOI] [PubMed] [Google Scholar]
  • 14.Matsuzaki Y., Abiko C., Mizuta K., Sugawara K., Takashita E., Muraki Y. A nationwide epidemic of influenza C virus infection in Japan in 2004. J Clin Microbiol. 2007;45:783–788. doi: 10.1128/JCM.01555-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.García-García M.L., Calvo C., Pérez-Breña P., De Cea J.M., Acosta B., Casas I. Prevalence and clinical characteristics of human metapneumovirus infections in hospitalized infants in Spain. Pediatr Pulmonol. 2006;41:863–871. doi: 10.1002/ppul.20456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Van den Hoogen B.G., De Jong J.C., Groen J., Kuiken T., De Groot R., Fouchier R.A. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7:719–724. doi: 10.1038/89098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Tablan O.C., Anderson L.J., Besser R., Bridges C., Hajjeh R. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep. 2004;53:1–36. [PubMed] [Google Scholar]
  • 18.García O., Martín M., Dopazo J., Arbiza J., Frabasile S., Russi J. Evolutionary pattern of human respiratory syncytial virus (subgroup A): cocirculating lineages and correlation of genetic and antigenic changes in the G glycoprotein. J Virol. 1994;68:5448–5459. doi: 10.1128/jvi.68.9.5448-5459.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Van den Hoogen B.G., Herfst S., Sprong L., Cane P.A., Forleo-Neto E., De Swart R.L. Antigenic and genetic variability of human metapneumoviruses. Emerg Infect Dis. 2004;10:658–666. doi: 10.3201/eid1004.030393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Collins P.L., Crowe J.E. Respiratory syncytial virus and metapneumovirus. In: Knipe D.M., Howley P.M., editors. Vol. 2. Lippincott Williams & Wilkins; Philadelphia: 2007. pp. 1601–1646. (Fields virology). [Google Scholar]
  • 21.Reina J., Ferres F., Alcoceba E., Mena A., De Gopegui E.R., Figuerola J. Comparison of different cell lines and incubation times in the isolation by the shell vial culture of human metapneumovirus from pediatric respiratory samples. J Clin Virol. 2007;40:46–49. doi: 10.1016/j.jcv.2007.06.006. [DOI] [PubMed] [Google Scholar]
  • 22.Percivalle E., Sarasini A., Visai L., Revello M.G., Gerna G. Rapid detection of human metapneumovirus strains in nasopharyngeal aspirates and shell vial cultures by monoclonal antibodies. J Clin Microbiol. 2005;43:3443–3446. doi: 10.1128/JCM.43.7.3443-3446.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.López-Huertas M.R., Casas I., Acosta-Herrera B., García M.L., Coiras M.T., Pérez-Breña P. Two RT-PCR based assays to detect human metapneumovirus in nasopharyngeal aspirates. J Virol Methods. 2005;129:1–7. doi: 10.1016/j.jviromet.2005.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Williams J.V., Harris P.A., Tollefson S.J., Halburnt-Rush L.L., Pingsterhaus J.M., Edwards K.M. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004;350:443–450. doi: 10.1056/NEJMoa025472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Pabbaraju K., Wong S., McMillan T., Lee B.E., Fox J.D. Diagnosis and epidemiological studies of human metapneumovirus using real-time PCR. J Clin Virol. 2007;40:186–192. doi: 10.1016/j.jcv.2007.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Montes M., Vicente D., Esnal O., Cilla G., Pérez-Trallero E. A PCR-restriction fragment length polymorphism assay to genotype human metapneumovirus. Clin Microbiol Infect. 2008;14:91–93. doi: 10.1111/j.1469-0691.2007.01875.x. [DOI] [PubMed] [Google Scholar]
  • 27.Aguilar J.C., Pérez-Breña M.P., García M.L., Cruz N., Erdman D.D., Echevarría J.E. Detection and identification of human parainfluenza viruses 1, 2, 3, and 4 in clinical samples of pediatric patients by multiplex reverse transcription-PCR. J Clin Microbiol. 2000;38:1191–1195. doi: 10.1128/jcm.38.3.1191-1195.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Echevarría J.E., Erdman D.D., Swierkosz E.M., Holloway B.P., Anderson L.J. Simultaneous detection and identification of human parainfluenza viruses 1, 2, and 3 from clinical samples by multiplex PCR. J Clin Microbiol. 1998;36:1388–1391. doi: 10.1128/jcm.36.5.1388-1391.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Echevarría J.E., Erdman D.D., Meissner H.C., Anderson L. Rapid molecular epidemiologic studies of human parainfluenza viruses based on direct sequencing of amplified DNA from a multiplex RT-PCR assay. J Virol Methods. 2000;88:105–109. doi: 10.1016/s0166-0934(00)00163-4. [DOI] [PubMed] [Google Scholar]
  • 30.Templeton K.E., Scheltinga S.A., Beersma M.F., Kroes A.C., Claas E.C. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J Clin Microbiol. 2004;42:1564–1569. doi: 10.1128/JCM.42.4.1564-1569.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Hibbitts S., Rahman A., John R., Westmoreland D., Fox J.D. Development and evaluation of NucliSens basic kit NASBA for diagnosis of parainfluenza virus infection with ‘end-point’ and ‘real-time’ detection. J Virol Methods. 2003;108:145–155. doi: 10.1016/s0166-0934(02)00268-9. [DOI] [PubMed] [Google Scholar]
  • 32.Hu A., Colella M., Zhao P., Li F., Tam J.S., Rappaport R. Development of a real-time RT-PCR assay for detection and quantitation of parainfluenza virus 3. J Virol Methods. 2005;130:145–148. doi: 10.1016/j.jviromet.2005.06.014. [DOI] [PubMed] [Google Scholar]
  • 33.Zambon M., Bull T., Sadler C.J., Goldman J.M., Ward K.N. Molecular epidemiology of two consecutive outbreaks of parainfluenza 3 in a bone marrow transplant unit. J Clin Microbiol. 1998;36:2289–2293. doi: 10.1128/jcm.36.8.2289-2293.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.García M.L., Aguilar J.C., Echeverría J.E., Calvo C., Pinto I., Ordobás M. Parainfluenza virus type 4 infections. An Esp Pediatr. 2002;57:116–120. [PubMed] [Google Scholar]
  • 35.Vachon M.L., Dionne N., Leblanc E., Moisan D., Bergeron M.G., Boivin G. Human parainfluenza type 4 infections, Canada. Emerg Infect Dis. 2006;12:1755–1758. doi: 10.3201/eid1211.060196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lau S.K., To W.K., Tse P.W., Chan A.K., Woo P.C., Tsoi H.W. Human parainfluenza virus 4 outbreak and the role of diagnostic tests. J Clin Microbiol. 2005;43:4515–4521. doi: 10.1128/JCM.43.9.4515-4521.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Avellón A., Pérez P., Aguilar J.C., Lejarazu R., Echevarría J.E. Rapid and sensitive diagnosis of human adenovirus infections by a generic polymerase chain reaction. J Virol Methods. 2001;92:113–120. doi: 10.1016/s0166-0934(00)00269-x. [DOI] [PubMed] [Google Scholar]
  • 38.Chmielewicz B., Nitsche A., Schweiger B., Ellerbrok H. Development of a PCR-based assay for detection, quantification, and genotyping of human adenoviruses. Clin Chem. 2005;51:1365–1373. doi: 10.1373/clinchem.2004.045088. [DOI] [PubMed] [Google Scholar]
  • 39.Adhikary A.K., Inada T., Banik U., Numaga J., Okabe N. Identification of subgenus C adenoviruses by fiber-based multiplex PCR. J Clin Microbiol. 2004;42:670–673. doi: 10.1128/JCM.42.2.670-673.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Wong S., Pabbaraju K., Pang X.L., Lee B.E., Fox J.D. Detection of a broad range of human adenoviruses in respiratory tract samples using a sensitive multiplex real-time PCR assay. J Med Virol. 2008;80:856–865. doi: 10.1002/jmv.21136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Casas I., Avellón A., Mosquera M., Jabado O., Echevarría J.E., Campos R.H. Molecular identification of adenoviruses in clinical samples by analyzing a partial hexon genomic region. J Clin Microbiol. 2005;43:6176–6182. doi: 10.1128/JCM.43.12.6176-6182.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Ebner K., Suda M., Watzinger F., Lion T. Molecular detection and quantitative analysis of the entire spectrum of human adenoviruses by a two-reaction real-time PCR assay. J Clin Microbiol. 2005;43:3049–3053. doi: 10.1128/JCM.43.7.3049-3053.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Lamson D., Renwick N., Kapoor V., Liu Z., Palacios G., Ju J. MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004-2005. J Infect Dis. 2006;194:1398–1402. doi: 10.1086/508551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Coiras M.T., Aguilar J.C., García M.L., Casas I., Pérez-Breña P. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays. J Med Virol. 2004;72:484–495. doi: 10.1002/jmv.20008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Andreoletti L., Lesay M., Deschildre A., Lambert V., Dewilde A., Wattre P. Differential detection of rhinoviruses and enteroviruses RNA sequences associated with classical immunofluorescence assay detection of respiratory virus antigens in nasopharyngeal swabs from infants with bronchiolitis. J Med Virol. 2000;61:341–346. doi: 10.1002/1096-9071(200007)61:3<341::AID-JMV10>3.0.CO;2-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Halonen P., Rocha E., Hierholzer J., Holloway B., Hyypia T., Hurskainen P. Detection of enteroviruses and rhinoviruses in clinical specimens by PCR and liquid-phase hybridization. J Clin Microbiol. 1995;33:648–653. doi: 10.1128/jcm.33.3.648-653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Arola A., Santti J., Ruuskanen O., Halonen P., Hyypia T. Identification of enteroviruses in clinical specimens by competitive PCR followed by genetic typing using sequence analysis. J Clin Microbiol. 1996;34:313–318. doi: 10.1128/jcm.34.2.313-318.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kares S., Lonnrot M., Vuorinen P., Oikarinen S., Taurianen S., Hyoty H. Real-time PCR for rapid diagnosis of entero- and rhinovirus infections using LightCycler. J Clin Virol. 2004;29:99–104. doi: 10.1016/s1386-6532(03)00093-3. [DOI] [PubMed] [Google Scholar]
  • 49.Andeweg A.C., Bestebroer T.M., Huybreghs M., Kimman T.G., De Jong J.C. Improved detection of rhinoviruses in clinical samples by using a newly developed nested reverse transcription-PCR assay. J Clin Microbiol. 1999;37:524–530. doi: 10.1128/jcm.37.3.524-530.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Steininger C., Aberle S.W., Popow-Kraupp T. Early detection of acute rhinovirus infections by a rapid reverse transcription-PCR assay. J Clin Microbiol. 2001;39:129–133. doi: 10.1128/JCM.39.1.129-133.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Lu X., Holloway B., Dare R.K., Kuypers J., Yagi S., Williams J.V. Real-time reverse transcription-PCR assay for comprehensive detection of human rhinoviruses. J Clin Microbiol. 2008;46:533–539. doi: 10.1128/JCM.01739-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Dagher H., Donninger H., Hutchinson P., Ghildyal R., Bardin P. Rhinovirus detection: comparison of real-time and conventional PCR. J Virol Methods. 2004;117:113–121. doi: 10.1016/j.jviromet.2004.01.003. [DOI] [PubMed] [Google Scholar]
  • 53.Casas I., Klapper P.E., Cleator G.M., Echevarría J.E., Tenorio A., Echevarría J.M. Two different PCR assays to detect enteroviral RNA in CSF samples from patients with acute aseptic meningitis. J Med Virol. 1995;47:378–385. doi: 10.1002/jmv.1890470414. [DOI] [PubMed] [Google Scholar]
  • 54.Casas I., Tenorio A., Echevarría J.M., Klapper P.E., Cleator G.M. Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification. J Virol Methods. 1997;66:39–50. doi: 10.1016/s0166-0934(97)00035-9. [DOI] [PubMed] [Google Scholar]
  • 55.Pozo F., Casas I., Tenorio A., Trallero G., Echevarría J.M. Evaluation of a commercially available reverse transcription-PCR assay for diagnosis of enteroviral infection in archival and prospectively collected cerebrospinal fluid specimens. J Clin Microbiol. 1998;36:1741–1745. doi: 10.1128/jcm.36.6.1741-1745.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Costa A.M., Lamb D., Garland S.M., Tabrizi S.N. Evaluation of LightCycler as a platform for nucleic acid sequence-based amplification (NASBA) in real-time detection of enteroviruses. Curr Microbiol. 2008;56:80–83. doi: 10.1007/s00284-007-9043-2. [DOI] [PubMed] [Google Scholar]
  • 57.Landry M.L., Garner R., Ferguson D. Comparison of the NucliSens Basic kit (Nucleic Acid Sequence-Based Amplification) and the Argene Biosoft Enterovirus Consensus Reverse Transcription-PCR assays for rapid detection of enterovirus RNA in clinical specimens. J Clin Microbiol. 2003;41:5006–5010. doi: 10.1128/JCM.41.11.5006-5010.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Oberste M.S., Maher K., Williams A.J., Dybdahl-Sissoko N., Brown B.A., Gookin M.S. Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J Gen Virol. 2006;87:119–128. doi: 10.1099/vir.0.81179-0. [DOI] [PubMed] [Google Scholar]
  • 59.Palacios G., Casas I., Tenorio A., Freire C. Molecular identification of enterovirus by analyzing a partial VP1 genomic region with different methods. J Clin Microbiol. 2002;40:182–192. doi: 10.1128/JCM.40.1.182-192.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Smura T., Blomqvist S., Paananen A., Vuorinen T., Sobotova Z., Bubovica V. Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5’-untranslated region evolution. J Gen Virol. 2007;88:2520–2526. doi: 10.1099/vir.0.82866-0. [DOI] [PubMed] [Google Scholar]
  • 61.Smura T.P., Junttila N., Blomqvist S., Norder H., Kaijalainen S., Paananen A. Enterovirus 94, a proposed new serotype in human enterovirus species D. J Gen Virol. 2007;88:849–858. doi: 10.1099/vir.0.82510-0. [DOI] [PubMed] [Google Scholar]
  • 62.Oberste M.S., Maher K., Nix W.A., Michele S.M., Uddin M., Schnurr D. Molecular identification of 13 new enterovirus types, EV79-88, EV97, and EV100-101, members of the species Human Enterovirus B. Virus Res. 2007;128:34–42. doi: 10.1016/j.virusres.2007.04.001. [DOI] [PubMed] [Google Scholar]
  • 63.Oberste M.S., Michele S.M., Maher K., Schnurr D., Cisterna D., Junttila N. Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75. J Gen Virol. 2004;85:3205–3212. doi: 10.1099/vir.0.80148-0. [DOI] [PubMed] [Google Scholar]
  • 64.Palacios G., Casas I., Cisterna D., Trallero G., Tenorio A., Freire C. Molecular epidemiology of echovirus 30: temporal circulation and prevalence of single lineages. J Virol. 2002;76:4940–4949. doi: 10.1128/JVI.76.10.4940-4949.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Lau S.K., Yip C.C., Tsoi H.W., Lee R.A., So L.Y., Lau Y.L. Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol. 2007;45:3655–3664. doi: 10.1128/JCM.01254-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.McErlean P., Shackelton L.A., Lambert S.B., Nissen M.D., Sloots T.P., Mackay I.M. Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol. 2007;39:67–75. doi: 10.1016/j.jcv.2007.03.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Savolainen C., Blomqvist S., Mulders M.N., Hovi T. Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol. 2002;83:333–340. doi: 10.1099/0022-1317-83-2-333. [DOI] [PubMed] [Google Scholar]
  • 68.Pyrc K., Berkhout B., Van der Hoek L. Identification of new human coronaviruses. Expert Rev Anti Infect Ther. 2007;5:245–253. doi: 10.1586/14787210.5.2.245. [DOI] [PubMed] [Google Scholar]
  • 69.Garbino J., Crespo S., Aubert J.D., Rochat T., Ninet B., Deffernez C. A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection. Clin Infect Dis. 2006;43:1009–1015. doi: 10.1086/507898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Cheng V.C., Lau S.K., Woo P.C., Yuen K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20:660–694. doi: 10.1128/CMR.00023-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Druce J., Tran T., Kelly H., Kaye M., Chibo D., Kostecki R. Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002-2003. J Med Virol. 2005;75:122–129. doi: 10.1002/jmv.20246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Birch C.J., Clothier H.J., Seccull A., Tran T., Catton M.C., Lambert S.B. Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia. Epidemiol Infect. 2005;133:273–277. doi: 10.1017/s0950268804003346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Woo P.C., Lau S.K., Tsoi H.W., Huang Y., Poon R.W., Chu C.M. Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis. 2005;192:1898–1907. doi: 10.1086/497151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Lambert S.B., Allen K.M., Druce J.D., Birch C.J., Mackay I.M., Carlin J.B. Community epidemiology of human metapneumovirus, human coronavirus NL63, and other respiratory viruses in healthy preschool-aged children using parent-collected specimens. Pediatrics. 2007;120:e929–e937. doi: 10.1542/peds.2006-3703. [DOI] [PubMed] [Google Scholar]
  • 75.Kaplan N.M., Dove W., Abd-Eldayem S.A., Abu-Zeid A.F., Shamoon H.E., Hart C.A. Molecular epidemiology and disease severity of respiratory syncytial virus in relation to other potential pathogens in children hospitalized with acute respiratory infection in Jordan. J Med Virol. 2008;80:168–174. doi: 10.1002/jmv.21067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Chibo D., Birch C. Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J Gen Virol. 2006;87:1203–1208. doi: 10.1099/vir.0.81662-0. [DOI] [PubMed] [Google Scholar]
  • 77.Zhao G.P. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc Lond B Biol Sci. 2007;362:1063–1081. doi: 10.1098/rstb.2007.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Allander T., Tammi M.T., Eriksson M., Bjerkner A., Tiveljung-Lindell A., Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA. 2005;102:12891–12896. doi: 10.1073/pnas.0504666102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Allander T. Human bocavirus. J Clin Virol. 2008;41:29–33. doi: 10.1016/j.jcv.2007.10.026. [DOI] [PubMed] [Google Scholar]
  • 80.Longtin J., Bastien M., Gilca R., Leblanc E., De Serres G., Bergeron M.G. Human bocavirus infections in hospitalized children and adults. Emerg Infect Dis. 2008;14:217–221. doi: 10.3201/eid1402.070851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.García M.L., Calvo C., Pozo F., Pérez-Breña P., Quevedo S., Bracamonte T. Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection. Pediatr Infect Dis J. 2008;27:358–360. doi: 10.1097/INF.0b013e3181626d2a. [DOI] [PubMed] [Google Scholar]
  • 82.Kesebir D., Vázquez M., Weibel C., Shapiro E.D., Ferguson D., Landry M.L. Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis. 2006;194:1276–1282. doi: 10.1086/508213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Allander T., Jarti T., Gupta S., Niesters H.G., Lehtinen P., Osterback R. Human bocavirus and acute wheezing in children. Clin Infect Dis. 2007;44:904–910. doi: 10.1086/512196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Neske F., Blessing K., Tollmann F., Schubert J., Rethwilm A., Kreth H.W. Real-time PCR for diagnosis of human bocavirus infections and phylogenetic analysis. J Clin Microbiol. 2007;45:2116–2122. doi: 10.1128/JCM.00027-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Kleines M., Scheithauer S., Rackowitz A., Ritter K., Hausler M. High prevalence of human bocavirus detected in young children with severe acute lower respiratory tract disease by use of a standard PCR protocol and a novel realtime PCR protocol. J Clin Microbiol. 2007;45:1032–1034. doi: 10.1128/JCM.01884-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Lu X., Chittaganpitch M., Olsen S.J., Mackay I.M., Sloots T.P., Fry A.M. Real-time PCR assays for detection of bocavirus in human specimens. J Clin Microbiol. 2006;44:3231–3235. doi: 10.1128/JCM.00889-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Vicente D., Cilla G., Montes M., Pérez-Yarza E.G., Pérez-Trallero E. Human bocavirus, a respiratory and enteric virus. Emerg Infect Dis. 2007;13:636–637. doi: 10.3201/eid1304.061501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Lee J.I., Chung J.Y., Han T.H., Song M.O., Hwang E.S. Detection of human bocavirus in children hospitalized because of acute gastroenteritis. J Infect Dis. 2007;196:994–997. doi: 10.1086/521366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Pozo F., García M.L., Calvo C., Cuesta I., Pérez-Breña P., Casas I. High incidence of human bocavirus infection in children in Spain. J Clin Virol. 2007;40:224–228. doi: 10.1016/j.jcv.2007.08.010. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Enfermedades Infecciosas Y Microbiologia Clinica are provided here courtesy of Elsevier

RESOURCES