Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Mar 1;40:103–180. doi: 10.1016/S0065-3527(08)60278-X

The 5′-Untranslated Region of Picornaviral Genomes

Vadim I Agol 1
PMCID: PMC7130636  PMID: 1957717

Publisher Summary

Picornaviruses are small naked icosahedral viruses with a single-stranded RNA genome of positive polarity. According to current taxonomy, the family includes four genera: Enterouirus (polioviruses, coxsackieviruses, echoviruses, and other enteroviruses), Rhinovirus, Curdiouirus [encephalomyocarditis virus (EMCV), mengovirus, Theiler's murine encephalomyelitis virus (TMEV)], and Aphthouirus [foot-and-mouth disease viruses (FMDV)]. There are also some, as yet, unclassified picornaviruses [e.g., hepatitis A virus (HAW] that should certainly be assessed as a separate genus. Studies on the molecular biology of picornaviruses might be divided into two periods: those before and after the first sequencing of the poliovirus genome. The 5'-untranslated region (5-UTR) of the viral genome was one of the unexpected problems. This segment proved to be immensely long: about 750 nucleotides or ∼10% of the genome length. There were also other unusual features (e.g., multiple AUG triplets preceding the single open reading frame (ORF) that encodes the viral polyprotein). This chapter shows that the picornaviral 5-UTRs are not only involved in such essential events as the synthesis of viral proteins and RNAs that could be expected to some extent, although some of the underlying mechanisms appeared to be quite a surprise, but also may determine diverse biological phenotypes from the plaque size or thermosensitivity of reproduction to attenuation of neurovirulence. Furthermore, a close inspection of the 5-UTR structure unravels certain hidden facets of the evolution of the picornaviral genome. Finally, the conclusions drawn from the experiments with the picornaviral5-UTRs provide important clues for understanding the functional capabilities of the eukaryotic ribosomes.

References

  1. Abramson R.D., Dever T.E., Merrick W.C. Biochemical evidence supporting a mechanism for cap-independent and internal initiation of eukaryotic mRNA. J. Biol. Chem. 1988;263:6016–6019. [PubMed] [Google Scholar]
  2. Agol V.I. Genetic determinants of neurovirulence and attenuation of poliovirus. Mol. Genet. Mikrobiol. Virusol. 1988;1:3–9. [PubMed] [Google Scholar]
  3. Agol V.I. Current approaches to the problem of poliovirus attenuation. In: Brinton M.A., Heinz F.X., editors. “New Aspects of Positive-Strand RNA Viruses”. Am. Soc. Microbiol.; Washington, D.C.: 1990. pp. 311–318. [Google Scholar]
  4. Agol V.I., Drozdov S.G., Ivannikova T.A., Kolesnikova M.S., Korolev M.B., Tolskaya E.A. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma. J. Virol. 1989;63:4034–4038. doi: 10.1128/jvi.63.9.4034-4038.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Almond J.W. The attenuation of poliovirus neurovirulence. Annu. Rev. Microbiol. 1987;41:153–180. doi: 10.1146/annurev.mi.41.100187.001101. [DOI] [PubMed] [Google Scholar]
  6. AlSaadi S., Hassard S., Stanway G. Sequences in the 5′ non-coding region of human rhinovirus 14 RNA that affect in vitro translation. J. Gen. Virol. 1989;70:2799–2804. doi: 10.1099/0022-1317-70-10-2799. [DOI] [PubMed] [Google Scholar]
  7. Ambros V., Baltimore D. Protein is linked to the 5′ end of poliovirus RNA by a phosphodiester linkage to tyrosine. J. Biol. Chem. 1978;253:5263–5266. [PubMed] [Google Scholar]
  8. Ambros V., Pettersson R.F., Baltimore D. An enzymatic activity in uninfected cells that cleaves the linkage between poliovirion RNA and the 5′ terminal protein. Cell. 1978;15:1439–1446. doi: 10.1016/0092-8674(78)90067-3. [DOI] [PubMed] [Google Scholar]
  9. Andino R., Rieckhof G.E., Trono D., Baltimore D. Substitutions in the protease (3Cpro) gene of poliovirus can suppress a mutation in the 5′ noncoding region. J. Virol. 1990;64:607–612. doi: 10.1128/jvi.64.2.607-612.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Argos P., Kamer G., Nicklin M.J.H., Wimmer E. Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Res. 1984;12:7251–7267. doi: 10.1093/nar/12.18.7251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Auvinen P., Stanway G., Hyypiä T. Genetic diversity of enterovirus subgroups. Arch. Virol. 1989;104:175–186. doi: 10.1007/BF01315541. [DOI] [PubMed] [Google Scholar]
  12. Aziz N., Munro H.N. Iron regulates ferritin mRNA translation through a segment of its 5′ untranslated region. Proc. Natl. Acad. Sci. U.S.A. 1987;84:8478–8482. doi: 10.1073/pnas.84.23.8478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bae Y.S., Eun H.M., Yoon J.W. Genomic differences between the diabetogenic and nondiabetogenic variants of encephalomyocarditis virus. Virology. 1989;170:282–287. doi: 10.1016/0042-6822(89)90379-6. [DOI] [PubMed] [Google Scholar]
  14. Bae Y.S., Eun H.M., Pon R.T., Giron D., Yoon J.W. Two amino acids, Phe 16 and Ala 776, on the polyprotein are most likely to be responsible for the diabetogenicity of encephalomyocarditis virus. J. Gen. Virol. 1990;71:639–645. doi: 10.1099/0022-1317-71-3-639. [DOI] [PubMed] [Google Scholar]
  15. Baughman G., Howell S.H. Cauliflower mosaic virus 35 S RNA leader region inhibits translation of downstream genes. Virology. 1988;167:125–135. doi: 10.1016/0042-6822(88)90061-x. [DOI] [PubMed] [Google Scholar]
  16. Beck E., Forss S., Strebel K., Cattaneo R., Feil G. Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res. 1983;11:7873–7885. doi: 10.1093/nar/11.22.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bernard O., Cory S., Gerondakis S., Webb E., Adams J.M. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J. 1983;2:2375–2383. doi: 10.1002/j.1460-2075.1983.tb01749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bernards A., Rubin C.M., Westbrook C.A., Paskind M., Baltimore D. The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukemia. Mol. Cell. Biol. 1987;7:3231–3236. doi: 10.1128/mcb.7.9.3231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bernstein H.D., Sonenberg N., Baltimore D. Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Mol. Cell. Biol. 1985;5:2913–2923. doi: 10.1128/mcb.5.11.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bienkowska-Szewczyk K., Ehrenfeld E. An internal 5′-noncoding region required for translation of poliovirus RNA in vitro. J. Virol. 1988;52:3068–3072. doi: 10.1128/jvi.62.8.3068-3072.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Black D.N., Stephenson P., Rowlands D.J., Brown F. Sequence and location of the poly C tract in aphtho- and cardiovirus RNA. Nucleic Acids Res. 1979;6:2381–2390. doi: 10.1093/nar/6.7.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Black T.L., Safer B., Hovanessian A., Katze M.G. The cellular 68,000-Mr protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: Implications for translational regulation. J. Virol. 1989;63:2244–2251. doi: 10.1128/jvi.63.5.2244-2251.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Blair G.E., Dahl H.H.M., Truelsen E., Lelong J.C. Functional identity of a mouse ascites and a rabbit reticulocyte initiation factor required for natural mRNA translation. Nature (London) 1977;265:651–653. doi: 10.1038/265651a0. [DOI] [PubMed] [Google Scholar]
  24. Blinov V.M., Pilipenko E.V., Romanova L.I., Sinyakov A.N., Maslova S.V., Agol V.I. A comparison of the secondary structures of the 5′-untranslated segment of neurovirulent and attenuated poliovirus strains. Dokl. Akad. Nauk SSSR. 1988;298:1004–1006. [PubMed] [Google Scholar]
  25. Borovjagin A.V., Evstafieva A.G., Ugarova T.Y., Shatsky I.N. A factor that specifically binds to the 5′-untranslated region of encephalomyocarditis virus RNA. FEBS Lett. 1990;261:237–240. doi: 10.1016/0014-5793(90)80561-v. [DOI] [PubMed] [Google Scholar]
  26. Brown F. Structure-function relationships in the picornaviruses. In: Perez-Bercoff R., editor. “The Molecular Biology of Picornaviruses”. Plenum; New York: 1979. pp. 49–72. [Google Scholar]
  27. Brown B.A., Ehrenfeld E. Translation of poliovirus RNA in vitro: Changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology. 1979;97:396–405. doi: 10.1016/0042-6822(79)90350-7. [DOI] [PubMed] [Google Scholar]
  28. Brown E.A., Jansen R.W., Lemon S.M. Characterization of a simian hepatitis A virus (HAV): Antigenic and genetic comparison with human HAV. J. Virol. 1989;63:4932–4937. doi: 10.1128/jvi.63.11.4932-4937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Brown F., Newman J., Stott J., Porter A., Frisby D., Newton C., Carey N., Fellner P. Poly(C) in animal viral RNAs. Nature (London) 1974;251:342–344. doi: 10.1038/251342a0. [DOI] [PubMed] [Google Scholar]
  30. Brown P.H., Daniels-McQueen S., Walden W.E., Patino M.M., Gaffield L., Bielser D., Thach R.E. Requirements for the translation repression of ferritin transcripts in wheat germ extracts by a 90-kDa protein from rabbit liver. J. Biol. Chem. 1989;264:13383–13386. [PubMed] [Google Scholar]
  31. Browning K.S., Fletcher L., Ravel J.M. Evidence that the requirements for ATP and wheat germ initiation factors 4A and 4F are affected by a region of satellite tobacco necrosis virus RNA that is 3′ to the ribosomal binding site. J. Biol. Chem. 1988;263:8380–8383. [PubMed] [Google Scholar]
  32. Bruce C., Al-Nakib W., Forsyth M., Stanway G., Almond J.W. Detection of enterovirus using cDNA and synthetic oligonucleotide probes. J. Virol. Methods. 1989;25:233–240. doi: 10.1016/0166-0934(89)90035-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Buckley B., Ehrenfeld E. Two-dimensional gel analyses of the 24-kDa cap binding protein from poliovirus-infected and uninfected HeLa cells. Virology. 1986;152:497–501. doi: 10.1016/0042-6822(86)90155-8. [DOI] [PubMed] [Google Scholar]
  34. Buckley B., Ehrenfeld E. The cap-binding protein complex in uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 1987;262:13599–13606. [PubMed] [Google Scholar]
  35. Calenoff M.A., Faaberg K.S., Lipton H.L. Genomic regions of neurovirulence and attenuation in Theiler murine encephalomyelitis virus. Proc. Natl. Acad. Sci. U.S.A. 1990;87:978–982. doi: 10.1073/pnas.87.3.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Callahan P.L., Mizutani S., Colonno R.J. Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proc. Natl. Acad. Sci. U.S.A. 1985;82:732–736. doi: 10.1073/pnas.82.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Cann A.J., Stanway G., Hughes P.J., Minor P.D., Evans D.M.A., Schild G.C., Almond J.W. Reversion to neurovirulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucleic Acids Res. 1984;12:7787–7792. doi: 10.1093/nar/12.20.7787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Castrillo J.L., Carrasco L. Adenovirus late protein synthesis is resistant to the inhibition of translation induced by poliovirus. J. Biol. Chem. 1987;262:7328–7334. [PubMed] [Google Scholar]
  39. Chang K.H., Auvinen P., Hyypiä T., Stanway G. The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. J. Gen. Virol. 1989;70:3269–3280. doi: 10.1099/0022-1317-70-12-3269. [DOI] [PubMed] [Google Scholar]
  40. Chang L.-J., Pryciak P., Ganem D., Varmus H.E. Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature (London) 1989;337:364–368. doi: 10.1038/337364a0. [DOI] [PubMed] [Google Scholar]
  41. Chevrier D., Vezina C., Bastille J., Linard C., Sonenberg N., Boileau G. Higher order structures of the 5′-proximal region decrease the efficiency of translation of the porcine pro-opiomelanocortin mRNA. J. Biol. Chem. 1988;263:902–910. [PubMed] [Google Scholar]
  42. Chumakov K.M., Agol V.I. Poly(C) sequence is located near the 5′ end of encephalomyocarditis virus RNA. Biochem. Biophys. Res. Commun. 1976;71:551–557. doi: 10.1016/0006-291x(76)90822-6. [DOI] [PubMed] [Google Scholar]
  43. Chumakov K.M., Chichkova N.V., Agol V.I. 5′-Terminal sequence of encephalomyocarditis virus RNA: Localization of the poly(C) tract and its role in translation. Dokl. Akad. Nauk SSSR. 1979;246:994–996. [PubMed] [Google Scholar]
  44. Clarke B.E., Sangar D.V. Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA. J. Gen. Virol. 1988;69:2313–2325. doi: 10.1099/0022-1317-69-9-2313. [DOI] [PubMed] [Google Scholar]
  45. Clarke B.E., Brown A.L., Currey K.M., Newton S.E., Rowlands D.J., Carroll A.R. Potential secondary and tertiary structure in the genomic RNA of foot and mouth disease virus. Nucleic Acids Res. 1987;15:7067–7079. doi: 10.1093/nar/15.17.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cohen J.I., Rosenblum B., Ticehurst J.R., Daemer R.J., Feinstone S.M., Purcell R.H. Complete nucleotide sequence of an attenuated hepatitis A virus: Comparison with wild-type virus. Proc. Natl. Acad. Sci. U.S.A. 1987;84:2497–2501. doi: 10.1073/pnas.84.8.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Cohen J.I., Ticehurst J.R., Purcell R.H., Buckler-White A., Baroudy B.M. Complete nucleotide sequence of wild-type hepatitis A virus: Comparison with different strains of hepatitis A virus and other picornaviruses. J. Virol. 1987;61:50–59. doi: 10.1128/jvi.61.1.50-59.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Cohen J.I., Rosenblum B., Feinstone S.M., Ticehurst J., Purcell R.H. Attenuation and cell culture adaptation of hepatitis A virus (HAV): A genetic analysis with HAV cDNA. J. Virol. 1989;63:5364–5370. doi: 10.1128/jvi.63.12.5364-5370.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Cohen S.H., Naviaux R.K., Vanden Brink K.M., Jordan G.W. Comparison of the nucleotide sequences of diabetogenic and nondiabetogenic encephalomyocarditis virus. Virology. 1988;166:603–607. doi: 10.1016/0042-6822(88)90534-x. [DOI] [PubMed] [Google Scholar]
  50. Cooper P.D. Genetics of picornaviruses. Compr. Virol. 1977;9:133–207. [Google Scholar]
  51. Cooper P.D., Agol V.I., Bachrach H.L., Brown F., Ghendon Y., Gibbs A.J., Gillespie J.H., Lonberg-Holm K., Mandel B., Melnick J.L., Mohanty S.B., Povey R.C., Rueckert R.R., Schaffer F.L., Tyrrell D.A.J. Picornaviridae: Second report. Intervirology. 1978;10:165–180. [Google Scholar]
  52. Costa Giomi M.P., Bergman I.E., Scodeller E.A., Auge de Mello P., Gomez I., La Torre J.L. Heterogeneity of the polyribocytidylic acid tract in aphthovirus: Biochemical and biological studies of viruses carrying polyribocytidylic acid tracts of different lengths. J. Virol. 1984;51:799–805. doi: 10.1128/jvi.51.3.799-805.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Costa Giomi M.P., Gomes I., Tiraboschi B., Auge de Mello P., Bergman I.E., Scodeller E.A., La Torre J.L. Heterogeneity of the polyribocytidylic acid tract in aphthovirus: Changes in the size of the poly(C) of viruses recovered from persistently infected cattle. Virology. 1988;162:58–64. doi: 10.1016/0042-6822(88)90394-7. [DOI] [PubMed] [Google Scholar]
  54. Curran J., Kolakofsky D. Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J. 1988;7:2869–2874. doi: 10.1002/j.1460-2075.1988.tb03143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Currey K.M., Peterlin B.M., Maizel J.V., Jr. Secondary structure of poliovirus RNA: Correlation of computer-predicted with electron microscopically observed structures. Virology. 1986;148:33–46. doi: 10.1016/0042-6822(86)90401-0. [DOI] [PubMed] [Google Scholar]
  56. Dabrowski C., Alwine J.C. Translational control of synthesis of simian virus 40 late proteins from polycistronic 19S late mRNA. J. Virol. 1988;62:3182–3192. doi: 10.1128/jvi.62.9.3182-3192.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Daniels-McQueen S., Detjen B.M., Grifo J.A., Merrick W.C., Thach R.E. Unusual requirements for optimum translation of polio viral RNA in vitro. J. Biol. Chem. 1983;258:7195–7199. [PubMed] [Google Scholar]
  58. Darveau A., Pelletier J., Sonenberg N. Differential efficiencies of in vitro translation of mouse c-myc transcripts differing in the 5′ untranslated region. Proc. Natl. Acad. Sci. U.S.A. 1985;82:2315–2319. doi: 10.1073/pnas.82.8.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Dasso M.C., Milburn S.C., Hershey J.W.B., Jackson R.J. Selection of the 5′-proximal translation initiation site is influenced by mRNA and eIF-2 concentrations. Eur. J. Biochem. 1990;187:361–371. doi: 10.1111/j.1432-1033.1990.tb15313.x. [DOI] [PubMed] [Google Scholar]
  60. del Angel R.M., Papavassiliou A.G., Fernández-Tomas C., Silverstein S.J., Racaniello V.R. Cell proteins bind to multiple sites within the 5′-untranslated region of poliovirus RNA. Proc. Natl. Acad. Sci. U.S.A. 1989;86:8299–8303. doi: 10.1073/pnas.86.21.8299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Devaney M.A., Vakharia V.N., Lloyd R.E., Ehrenfeld E., Grubman M.J. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol. 1988;62:4407–4409. doi: 10.1128/jvi.62.11.4407-4409.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Dildine S.L., Semler B.L. The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive lesion in the 5′ noncoding region of genomic RNA. J. Virol. 1989;63:847–862. doi: 10.1128/jvi.63.2.847-862.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Di Segni G.D., Rosen H., Kaempfer R. Competition between α- and β-globin messenger ribonucleic acids for eucaryotic initiation factor 2. Biochemistry. 1979;13:2847–2854. doi: 10.1021/bi00580a027. [DOI] [PubMed] [Google Scholar]
  64. Dolph P.J., Racaniello V., Villamarin A., Palladino F., Schneider R.J. The adenovirus tripartite leader may eliminate the requirement for cap-binding protein complex during translation initiation. J. Virol. 1988;62:2059–2066. doi: 10.1128/jvi.62.6.2059-2066.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Donahue T.F., Cigan A.M., Pabich E.K., Valavicius B.C. Mutations at a Zn(II) finger motif in the yeast eIF-2B gene alter ribosomal start-site selection during the scanning process. Cell. 1988;54:621–632. doi: 10.1016/s0092-8674(88)80006-0. [DOI] [PubMed] [Google Scholar]
  66. Dorner A.J., Rothberg P.G., Wimmer E. The fate of VPg during in vitro translation of poliovirus RNA. FEBS Lett. 1981;132:219–223. doi: 10.1016/0014-5793(81)81164-7. [DOI] [PubMed] [Google Scholar]
  67. Dorner A.J., Semler B.L., Jackson R.J., Hanecak R., Duprey E., Wimmer E. In vitro translation of poliovirus RNA: Utilization of internal initiation sites in reticulocyte lysate. J. Virol. 1984;50:507–514. doi: 10.1128/jvi.50.2.507-514.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Drygin Y.F., Vartapetian A.B., Chumakov K.M. The covalent bond between RNA and protein in encephalomyocarditis virus. Mol. Biol. (Moscow) 1979;13:777–789. [PubMed] [Google Scholar]
  69. Duechler M., Skern T., Sommergruber W., Neubauer C., Gruendler P., Fogy I., Blaas D., Kuechler E. Evolutionary relationships within the human rhinovirus genus: Comparison of serotypes 89, 2, and 14. Proc. Natl. Acad. Sci. U.S.A. 1987;84:2605–2609. doi: 10.1073/pnas.84.9.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Duke G.M., Palmenberg A.C. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J. Virol. 1989;63:1822–1826. doi: 10.1128/jvi.63.4.1822-1826.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Duke G.M., Osorio J.E., Palmenberg A.C. Attenuation of Mengo virus through genetic engineering of the 5′ noncoding poly(C) tract. Nature (London) 1990;343:474–476. doi: 10.1038/343474a0. [DOI] [PubMed] [Google Scholar]
  72. Duncan R., Etchison D., Hershey J.W.B. Protein synthesis eukaryotic initiation factors 4A and 4B are not altered by poliovirus infection of HeLa cells. J. Biol. Chem. 1983;258:7236–7239. [PubMed] [Google Scholar]
  73. Duncan R., Milburn S.C., Hershey J.W.B. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem. 1987;262:380–388. [PubMed] [Google Scholar]
  74. Earl J.A.P., Skuce R.A., Fleming C.S., Hoey E.M., Martin S.J. The complete nucleotide sequence of a bovine enterovirus. J. Gen. Virol. 1988;69:253–263. doi: 10.1099/0022-1317-69-2-253. [DOI] [PubMed] [Google Scholar]
  75. Edery I., Lee K.A.W., Sonenberg N. Functional characterization of eucaryotic mRNA cap binding protein complex: Effects on translation of capped and naturally uncapped RNAs. Biochemistry. 1984;23:2456–2462. doi: 10.1021/bi00306a021. [DOI] [PubMed] [Google Scholar]
  76. Edery I., Pelletier J., Sonenberg N. Role of eukaryotic messenger RNA capbinding protein in regulation of translation. In: Ilan J., editor. “Translational Regulation of Gene Expression”. Plenum; New York: 1987. pp. 335–366. [Google Scholar]
  77. Ehrenfeld E. Picornavirus inhibition of host cell protein synthesis. Compr. Virol. 1984;19:177–221. [Google Scholar]
  78. Elroy-Stein O., Fuerst T.R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc. Natl. Acad. Sci. U.S.A. 1989;86:6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Ericson G., Wollenzien P. Use of reverse transcription to determine the exact locations of psoralen photochemical crosslinks in RNA. Anal. Biochem. 1988;174:215–223. doi: 10.1016/0003-2697(88)90538-6. [DOI] [PubMed] [Google Scholar]
  80. Etchison D., Fout S. Human rhinovirus 14 infection of HeLa cells results in the proteolytic cleavage of the p220 cap-binding complex subunit and inactivates globin mRNA translation in vitro. J. Virol. 1985;54:634–638. doi: 10.1128/jvi.54.2.634-638.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Etchison D., Milburn S.C., Edery I., Sonenberg N., Hershey J.W.B. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 1982;257:14806–14810. [PubMed] [Google Scholar]
  82. Etchison D., Hansen J., Ehrenfeld E., Edery I., Sonenberg N., Milburn S., Hershey J.W.B. Demonstration in vitro that eucaryotic initiation factor 3 is active but that a cap-binding protein complex is inactive in poliovirus-infected HeLa cells. J. Virol. 1984;51:832–837. doi: 10.1128/jvi.51.3.832-837.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Evans D.M.A., Dunn G., Minor P.D., Schild G.C., Cann A.J., Stanway G., Almond J.W., Currey K., Maizel J.V., Jr. Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature (London) 1985;314:548–550. doi: 10.1038/314548a0. [DOI] [PubMed] [Google Scholar]
  84. Fernandez-Muñoz R., Darnell J.E. Structural difference between the 5′ termini of viral and cellular mRNA in the poliovirus-infected cells: Possible basis for the inhibition of host protein synthesis. J. Virol. 1976;18:719–726. doi: 10.1128/jvi.18.2.719-726.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Fernandez-Muñoz R., Lavi U. 5′ Termini of poliovirus RNA: Difference between virion and nonencapsidated 35S RNA. J. Virol. 1977;21:820–824. doi: 10.1128/jvi.21.2.820-824.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Fitzgerald M.C., Flanagan M.A. Characterization and sequence analysis of the human ornithine decarboxylase gene. DNA. 1989;8:623–634. doi: 10.1089/dna.1.1989.8.623. [DOI] [PubMed] [Google Scholar]
  87. Flanegan J.B., Pettersson R.F., Ambros V., Hewlett M.J., Baltimore D. Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc. Natl. Acad. Sci. U.S.A. 1977;74:961–965. doi: 10.1073/pnas.74.3.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Forss S., Strebel K., Beck E., Schaller H. Nucleotide sequence and genome organization or foot-and-mouth disease virus. Nucleic Acids Res. 1984;12:6587–6601. doi: 10.1093/nar/12.16.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Fox G.E., Woese C.R. 5S RNA secondary structure. Nature (London) 1975;256:505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  90. Franssen H., Leunissen J., Goldbach R., Lomonossoff G., Zimmern D. Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses. EMBO J. 1984;3:855–861. doi: 10.1002/j.1460-2075.1984.tb01896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Fütterer J., Gordon K., Bonneville J.M., Sanfaçon H., Pisan B., Penswick J., Hohn T. The leading sequence of caulimovirus large RNA can be folded into a large stem-loop structure. Nucleic Acids Res. 1988;16:8377–8390. doi: 10.1093/nar/16.17.8377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. vUtterer J., Gordon K., Pfeffer P., Sanfaçon H., Pisan B., Bonneville J.M., Hohn T. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader. Virus Genes. 1989;3:45–55. doi: 10.1007/BF00301986. [DOI] [PubMed] [Google Scholar]
  93. Geballe A.P., Mocarski E.S. Translational control of cytomegalovirus gene expression is mediated by upstream AUG codons. J. Virol. 1988;62:3334–3340. doi: 10.1128/jvi.62.9.3334-3340.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Goodchild J., Fellner P., Porter A.G. The determination of secondary structure in the poly(C) tract of encephalomyocarditis virus RNA with sodium bisulphite. Nucleic Acids Res. 1975;2:887–895. doi: 10.1093/nar/2.6.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Gorbalenya A.E., Donchenko A.P., Blinov V.M. A possible common origin of poliovirus proteins with different functions. Mol. Genet. Mikrobiol. Virusol. 1986;1:36–41. [PubMed] [Google Scholar]
  96. Greif C., Hemmer O., Fritsch C. Nucleotide sequence of tomato black ring virus RNA-1. J. Gen. Virol. 1988;69:1517–1529. [Google Scholar]
  97. Grifo J.A., Tahara S.M., Morgan M.A., Shatkin A.J., Merrick W.C. New initiation factor activity required for globin mRNA translation. J. Biol. Chem. 1983;258:5804–5810. [PubMed] [Google Scholar]
  98. Grubman M.J., Bachrach H.L. Isolation of foot-and-mouth disease virus messenger RNA from membrane-bound polyribosomes and characterization of its 5′ and 3′ termini. Virology. 1979;98:466–470. doi: 10.1016/0042-6822(79)90570-1. [DOI] [PubMed] [Google Scholar]
  99. Guan K.L., Weiner H. Influence of the 5′-end region of aldehyde dehydrogenase mRNA on translational efficiency. Potential secondary structure inhibition of translation in vitro. J. Biol. Chem. 1989;264:17764–17769. [PubMed] [Google Scholar]
  100. Gupta N.K., Ahmad M.F., Chakrabarti D., Nasrin N. Roles of eukaryotic initiation factor 2 and eukaryotic initiation factor 2 ancillary protein factors in eukaryotic protein synthesis initiation. In: Ilan J., editor. “Translational Regulation of Gene Expression”. Plenum; New York: 1987. pp. 287–334. [Google Scholar]
  101. Hackett P.B., Petersen R.B., Hensel C.H., Albericio F., Gunderson S.I., Palmenberg A.C., Barany G. Synthesis in vitro of a seven amino acid peptide encoded in the leader RNA of Rous sarcoma virus. J. Mol. Biol. 1986;190:45–57. doi: 10.1016/0022-2836(86)90074-4. [DOI] [PubMed] [Google Scholar]
  102. Hagenbüchle O., Santer M., Steitz J.A. Conservation of the primary structure at the 3′ end of 18S rRNA from eucaryotic cells. Cell. 1978;13:551–563. doi: 10.1016/0092-8674(78)90328-8. [DOI] [PubMed] [Google Scholar]
  103. Haile D.J., Hentze M.W., Rouault T.A., Harford J.B., Klausner R.D. Regulation of interaction of the iron-responsive element binding protein with iron-responsive RNA elements. Mol. Cell. Biol. 1989;9:5055–5061. doi: 10.1128/mcb.9.11.5055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Hannig E.M., Hinnebusch A.G. Molecular analysis of GCN3, a translational activator of GCN4: Evidence for posttranslational control of GCN3 regulatory function. Mol. Cell. Biol. 1988;8:4808–4820. doi: 10.1128/mcb.8.11.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Harashima S., Hinnebusch A.G. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1986;6:3990–3998. doi: 10.1128/mcb.6.11.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Harris T.J.R. The nucleotide sequence at the 5′ end of foot and mouth disease virus RNA. Nucleic Acids Res. 1979;7:1765–1785. doi: 10.1093/nar/7.7.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Harris T.J.R. Comparison of the nucleotide sequence at the 5′ end of RNAs from nine aphthoviruses, including representatives of the seven serotypes. J. Virol. 1980;36:659–664. doi: 10.1128/jvi.36.3.659-664.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Harris T.J.R., Brown F. The location of the poly(C) tract in the RNA of foot-and-mouth disease virus. J. Gen. Virol. 1976;33:493–501. doi: 10.1099/0022-1317-33-3-493. [DOI] [PubMed] [Google Scholar]
  109. Harris T.J.R., Brown F. Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus. J. Gen. Virol. 1977;34:87–105. doi: 10.1099/0022-1317-34-1-87. [DOI] [PubMed] [Google Scholar]
  110. Haselman T., Camp D.G., Fox G.E. Phylogenetic evidence for tertiary interactions in 16S-like ribosomal RNA. Nucleic Acids Res. 1989;17:2215–2221. doi: 10.1093/nar/17.6.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Helentjaris T., Ehrenfeld E. Control of protein synthesis in extracts from poliovirus-infected cells. I. mRNA discrimination by crude initiation factors. J. Virol. 1978;2b:510–521. doi: 10.1128/jvi.26.2.510-521.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Helentjaris T., Ehrenfeld E., Brown-Luedi M.L., Hershey J.W.B. Alterations in initiation factor activity from poliovirus-infected HeLa cells. J. Biol. Chem. 1979;254:10973–10978. [PubMed] [Google Scholar]
  113. Hensel C.H., Petersen R.B., Hackett P.B. Effects of alterations in the leader sequence of Rous sarcoma virus RNA on initiation of translation. J. Virol. 1989;63:4986–4990. doi: 10.1128/jvi.63.11.4986-4990.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Hentze M.W., Rouault T.A., Caughman S.W., Dancis A., Harford J.B., Klausner R.D. A cis-acting element is necessary and sufficient for translational regulation of human ferritin expression in response to iron. Proc. Natl. Acad. Sci. U.S.A. 1987;84:6730–6734. doi: 10.1073/pnas.84.19.6730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Herman R.C. Internal initiation of translation on the vesicular stomatitis virus phosphoprotein mRNA yields a second protein. J. Virol. 1986;58:797–804. doi: 10.1128/jvi.58.3.797-804.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Herman R.C. Characterization of the internal initiation of translation on the vesicular stomatitis virus phosphoprotein mRNA. Biochemistry. 1987;26:8346–8350. doi: 10.1021/bi00399a048. [DOI] [PubMed] [Google Scholar]
  117. Herman R.C. Alternatives for the initiation of translation. Trends Biochem. Sci. (Pers. Ed.) 1989;14:219–222. doi: 10.1016/0968-0004(89)90030-3. [DOI] [PubMed] [Google Scholar]
  118. Hershey J.W.B. Protein phosphorylation controls translation rates. J. Biol. Chem. 1989;264:20823–20826. [PubMed] [Google Scholar]
  119. Hewlett M.J., Rose J.K., Baltimore D. 5′-Terminal structure of poliovirus polyribosomal RNA is pUp. Proc. Natl. Acad. Sci. U.S.A. 1976;73:327–330. doi: 10.1073/pnas.73.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Hinnebusch A.G. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. U.S.A. 1984;81:6442–6446. doi: 10.1073/pnas.81.20.6442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Hinnebusch A.G. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1985;5:2349–2360. doi: 10.1128/mcb.5.9.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hinnebusch A.G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 1988;52:248–273. doi: 10.1128/mr.52.2.248-273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hinnebusch A.G. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends Biochem. Sci. (Pers. Ed.) 1990;15:148–152. doi: 10.1016/0968-0004(90)90215-w. [DOI] [PubMed] [Google Scholar]
  124. Hinnebusch A.G., Mueller P.P. Translational control of a transcriptional activator in the regulation of amino acid biosynthesis in yeast. In: Ilan J., editor. “Translational Regulation of Gene Expression”. Plenum; New York: 1987. pp. 397–412. [Google Scholar]
  125. Horwitz M.S. Adenoviruses and their replication. In: Fields B.N., editor. “Virology”. Raven; New York: 1985. pp. 433–476. [Google Scholar]
  126. Hovanessian A.G., Galabru J., Meurs E., Buffet-Janvresse C., Svab J., Robert N. Rapid decrease in the levels of the double-stranded RNA-dependent protein kinase during virus infections. Virology. 1987;159:126–136. doi: 10.1016/0042-6822(87)90355-2. [DOI] [PubMed] [Google Scholar]
  127. Howell M.T., Kaminski A., Jackson R.J. Unique features of initiation of picornavirus RNA translation. In: Brinton M.A., Heinz F.X., editors. “New Aspects of Positive-Strand RNA Viruses”. Am. Soc. Microbiol.; Washington, D.C.: 1990. pp. 144–151. [Google Scholar]
  128. Huang W.M., Ao S.Z., Casjens S., Orlandi R., Zeikus R., Weiss R., Winge D., Fang M. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science. 1988;239:1005–1012. doi: 10.1126/science.2830666. [DOI] [PubMed] [Google Scholar]
  129. Hughes P.J., Evans D.M.A., Minor P.D., Schild G.C., Almond J.W., Stanway G. The nucleotide sequence of a type 3 poliovirus isolated during a recent outbreak of poliomyelitis in Finland. J. Gen. Virol. 1986;67:2093–2102. doi: 10.1099/0022-1317-67-10-2093. [DOI] [PubMed] [Google Scholar]
  130. Hughes P.J., North C., Jellis C.H., Minor P.D., Stanway G. The nucleotide sequence of human rhinovirus 1B: Molecular relationships within the rhinovirus genus. J. Gen. Virol. 1988;69:49–58. doi: 10.1099/0022-1317-69-1-49. [DOI] [PubMed] [Google Scholar]
  131. Hughes P.J., North C., Minor P.D., Stanway G. The complete nucleotide sequence of coxsackievirus A21. J. Gen. Virol. 1989;70:2943–2952. doi: 10.1099/0022-1317-70-11-2943. [DOI] [PubMed] [Google Scholar]
  132. Hunt T. False starts in translational control of gene expression. Nature (London) 1985;316:580–581. doi: 10.1038/316580a0. [DOI] [PubMed] [Google Scholar]
  133. Hyypiä T., Auvinen P., Maaronen M. Polymerase chain reaction for human picornaviruses. J. Gen. Virol. 1989;70:3261–3268. doi: 10.1099/0022-1317-70-12-3261. [DOI] [PubMed] [Google Scholar]
  134. Iizuka N., Kuge S., Nomoto A. Complete nucleotide sequence of the genome of coxsackievirus B1. Virology. 1987;156:64–73. doi: 10.1016/0042-6822(87)90436-3. [DOI] [PubMed] [Google Scholar]
  135. Iizuka N., Kohara M., Hagino-Yamagishi K., Abe S., Komatsu T., Tago K., Arita M., Nomoto A. Construction of less neurovirulent polioviruses by introducing deletions into the 5′ noncoding sequence of the genome. J. Virol. 1989;63:5354–5365. doi: 10.1128/jvi.63.12.5354-5363.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. N. Iizuka H. Yonekawa A. Nomoto (1990). RNAs of less virulent CVB1 constructed in vitro are less efficient mRNAs. Rinshoken Int. Conf., 5th p. 66.
  137. Inoue T., Suzuki T., Sekiguchi K. The complete nucleotide sequence of swine vesicular disease virus. J. Gen. Virol. 1989;70:919–934. doi: 10.1099/0022-1317-70-4-919. [DOI] [PubMed] [Google Scholar]
  138. Jackson R.J. The cytoplasmic control of protein synthesis. In: Perez-Bercoff R., editor. “Protein Biosynthesis in Eucaryotes”. Plenum; New York: 1982. pp. 363–417. [Google Scholar]
  139. Jackson R.J. Comparison of encephalomyocarditis virus and poliovirus with respect to translation initiation and processing in vitro. In: Semler B.L., Ehrenfeld E., editors. “Molecular Aspects of Picornavirus Infection and Detection”. Am. Soc. Microbiol.; Washington, D.C.: 1989. pp. 51–71. [Google Scholar]
  140. R.J. Jackson M.T. Howell A. Kaminski (1990). Initiation of translation of picornaviral RNAs. Rinshoken Int. Conf., 5th p. 18.
  141. Jacobson M.F., Baltimore D. Polypeptide cleavages in the formation of poliovirus proteins. Proc. Natl. Acad. Sci. U.S.A. 1968;61:77–84. doi: 10.1073/pnas.61.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. James B.D., Olsen G.J., Liu J., Pace N.R. The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell. 1988;52:19–26. doi: 10.1016/0092-8674(88)90527-2. [DOI] [PubMed] [Google Scholar]
  143. Jang S.K., Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: Structural elements of the internal ribosomal entry site and essential binding of a cellular 57 kD protein. Genes Dev. 1990;4:1560–1572. doi: 10.1101/gad.4.9.1560. [DOI] [PubMed] [Google Scholar]
  144. Jang S.K., Kräusslich H.-G., Nicklin M.J.H., Duke G.M., Palmenberg A.C., Wimmer E. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 1988;62:2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Jang S.K., Davies M.V., Kaufman R.J., Wimmer E. Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 1989;63:1651–1660. doi: 10.1128/jvi.63.4.1651-1660.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Jansen R.W., Newbold J.E., Lemon S.M. Complete nucleotide sequence of cell culture-adapted variant of hepatitis A virus: Comparison with wild-type virus with restricted capacity for in vitro replication. Virology. 1988;163:299–307. doi: 10.1016/0042-6822(88)90270-x. [DOI] [PubMed] [Google Scholar]
  147. Jean-Jean O., Weimer T., De Recondo A.M., Will H., Rossignol J.M. Internal entry of ribosomes and ribosomal scanning involved in hepatitis B virus P gene expression. J. Virol. 1989;63:5451–5454. doi: 10.1128/jvi.63.12.5451-5454.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Jenkins O., Booth J.D., Minor P.D., Almond J.W. The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the picornaviridae. J. Gen. Virol. 1987;68:1835–1848. doi: 10.1099/0022-1317-68-7-1835. [DOI] [PubMed] [Google Scholar]
  149. Johansen H., Schumperli D., Rosenberg M. Affecting gene expression by altering the length and sequence of the 5′ leader. Proc. Natl. Acad. Sci. U.S.A. 1984;81:7698–7702. doi: 10.1073/pnas.81.24.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Johnson V.H., Semler B.L. Defined recombinants of poliovirus and coxsackievirus: Sequence-specific deletions and functional substitutions in the 5′-noncoding region of viral RNAs. Virology. 1988;162:47–57. doi: 10.1016/0042-6822(88)90393-5. [DOI] [PubMed] [Google Scholar]
  151. Kaempfer R. Regulation of eukaryotic translation. Compr. Virol. 1984;19:99–175. [Google Scholar]
  152. Kaempfer R., van Emmelo J., Fiers W. Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5′-terminal sequence comprising the ribosome binding site. Proc. Natl. Acad. Sci. U.S.A. 1981;78:1542–1546. doi: 10.1073/pnas.78.3.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Kahana C., Nathans D. Nucleotide sequence of murine ornithine decarboxylase mRNA. Proc. Natl. Acad. Sci. U.S.A. 1985;82:1673–1677. doi: 10.1073/pnas.82.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Kaufmann Y., Goldstein E., Penman S. Poliovirus-induced inhibition of polypeptide initiation in vitro on native polyribosomes. Proc. Natl. Acad. Sci. U.S.A. 1976;73:1834–1838. doi: 10.1073/pnas.73.6.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Kawamura N., Kohara M., Abe S., Komatsu T., Tago K., Arita M., Nomoto A. Determinants in the 5′ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J. Virol. 1989;63:1302–1309. doi: 10.1128/jvi.63.3.1302-1309.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Khalili K., Brady J., Khoury G. Translational regulation of SV40 early mRNA defines a new viral protein. Cell. 1987;48:639–645. doi: 10.1016/0092-8674(87)90242-x. [DOI] [PubMed] [Google Scholar]
  157. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Kitamura N., Semler B.L., Rothberg P.G., Larsen G.R., Adler C.J., Corner A.J., Emini E.A., Hanecak R., Lee J.J., van der Werf S., Anderson C.W., Wimmer E. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature (London) 1981;291:547–553. doi: 10.1038/291547a0. [DOI] [PubMed] [Google Scholar]
  159. Koch F., Koch G. “The Molecular Biology of Poliovirus.”. Springer-Verlag; Berlin: 1985. [Google Scholar]
  160. Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–1123. doi: 10.1016/0092-8674(78)90039-9. [DOI] [PubMed] [Google Scholar]
  161. Kozak M. Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. Curr. Top. Microbiol. Immunol. 1981;93:81–123. doi: 10.1007/978-3-642-68123-3_5. [DOI] [PubMed] [Google Scholar]
  162. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984;12:857–871. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Kozak M. Selection of initiation sites by eucaryotic ribosomes: Effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res. 1984;12:3873–3893. doi: 10.1093/nar/12.9.3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  165. Kozak M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. U.S.A. 1986;83:2850–2854. doi: 10.1073/pnas.83.9.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Kozak M. Bifunctional messenger RNAs in eukaryotes. Cell. 1986;47:481–483. doi: 10.1016/0092-8674(86)90609-4. [DOI] [PubMed] [Google Scholar]
  167. Kozak M. Regulation of protein synthesis in virus-infected animal cells. Adv. Virus Res. 1986;31:229–292. doi: 10.1016/S0065-3527(08)60265-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 1987;196:947–950. doi: 10.1016/0022-2836(87)90418-9. [DOI] [PubMed] [Google Scholar]
  169. Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 1987;7:3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–8133. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Kozak M. Leader length and secondary structure modulate mRNA function under conditions of stress. Mol. Cell. Biol. 1988;8:2737–2744. doi: 10.1128/mcb.8.7.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Kozak M. The scanning model for translation: An update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell. Biol. 1989;9:5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 1989;9:5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Kräusslich H.-G., Nicklin M.J.H., Toyoda H., Etchison D., Wimmer E. Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. J. Virol. 1987;61:2711–2718. doi: 10.1128/jvi.61.9.2711-2718.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Kuge S., Nomoto A. Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: Function of the 5′ noncoding sequence in viral replication. J. Virol. 1987;61:1478–1487. doi: 10.1128/jvi.61.5.1478-1487.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Kuge S., Saito I., Nomoto A. Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanism of particles. J. Mol. Biol. 1986;192:473–487. doi: 10.1016/0022-2836(86)90270-6. [DOI] [PubMed] [Google Scholar]
  178. Kuge S., Kawamura N., Nomoto A. Strong inclination toward transition mutation in nucleotide substitutions by poliovirus replicase. J. Mol. Biol. 1989;207:175–182. doi: 10.1016/0022-2836(89)90448-8. [DOI] [PubMed] [Google Scholar]
  179. Kuge S., Kawamura N., Nomoto A. Genetic variation occurring on the genome of an in vitro insertion mutant of poliovirus type 1. J. Virol. 1989;63:1069–1075. doi: 10.1128/jvi.63.3.1069-1075.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. La Monica N., Racaniello V.R. Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J. Virol. 1989;63:2357–2360. doi: 10.1128/jvi.63.5.2357-2360.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. La Monica N., Meriam C., Racaniello V.R. Mapping of sequences required for mouse neurovirulence of poliovirus type 2 Lansing. J. Virol. 1986;57:515–525. doi: 10.1128/jvi.57.2.515-525.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Larsen G.R., Semler B.L., Wimmer E. Stable hairpin structure within the 5′-terminal 85 nucleotides of poliovirus RNA. J. Virol. 1981;37:328–335. doi: 10.1128/jvi.37.1.328-335.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Lawson T.G., Lee K.A., Maimone M.M., Abramson R.D., Dever T.E., Merrick W.C., Thach R.E. Dissociation of double-stranded polynucleotide helical structures by eukaryotic initiation factors, as revealed by a novel assay. Biochemistry. 1989;28:4729–4734. doi: 10.1021/bi00437a033. [DOI] [PubMed] [Google Scholar]
  184. Laz T., Clements J., Sherman F. The role of messenger RNA sequences and structures in eukaryotic translation. In: Ilan J., editor. “Translational Regulation of Gene Expression”. Plenum; New York: 1987. pp. 413–429. [Google Scholar]
  185. Lazarus P., Parkin N., Sonenberg N. Developmental regulation by the 5′ noncoding region of murine c-myc mRNA in Xenopus laevis. Oncogene. 1988;3:517–521. [PubMed] [Google Scholar]
  186. Lee K.A.W., Edery I., Sonenberg N. Isolation and structural characterization of cap-binding proteins from poliovirus-infected HeLa cells. J. Virol. 1985;54:515–524. doi: 10.1128/jvi.54.2.515-524.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Lee Y.F., Nomoto A., Wimmer E. The genome of poliovirus is an exceptional eukaryotic mRNA. Prog. Nucleic Acid Res. Mol. Biol. 1976;19:89–96. doi: 10.1016/s0079-6603(08)60910-1. [DOI] [PubMed] [Google Scholar]
  188. Lee Y.F., Nomoto A., Detjen M.B., Wimmer E. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. U.S.A. 1977;74:59–63. doi: 10.1073/pnas.74.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Leibold E.A., Munro H.N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc. Natl. Acad. Sci. U.S.A. 1988;85:2171–2175. doi: 10.1073/pnas.85.7.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Lindberg A.M., Stålhandske P.O.K., Pettersson U. Genome of coxsackievirus B3. Virology. 1987;156:50–63. doi: 10.1016/0042-6822(87)90435-1. [DOI] [PubMed] [Google Scholar]
  191. Lindquist S. Translational regulation in the heat-shock response of Drosophila cells. In: Ilan J., editor. “Translational Regulation of Gene Expression”. Plenum; New York: 1987. pp. 187–207. [Google Scholar]
  192. Liu C.C., Simonsen C.C., Levinson A.D. Initiation of translation at internal AUG codons in mammalian cells. Nature (London) 1984;309:82–85. doi: 10.1038/309082a0. [DOI] [PubMed] [Google Scholar]
  193. Lloyd R.E., Grubman M.J., Ehrenfeld E. Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing. J. Virol. 1988;62:4216–4223. doi: 10.1128/jvi.62.11.4216-4223.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Logan J., Shenk T. Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc. Natl. Acad. Sci. U.S.A. 1984;81:3655–3659. doi: 10.1073/pnas.81.12.3655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. London I.M., Levin D.H., Matts R.L., Thomas N.S.B., Petryshyn R., Chen J.J. Regulation of protein synthesis. Enzymes. 1987;18:360–380. [Google Scholar]
  196. López-Guerrero J.A., Carrasco L., Martinez-Abaraca F., Frezno M., Alonso M.A. Restriction of poliovirus RNA translation in a human monocytic cell line. Eur. J. Biochem. 1989;186:571–582. doi: 10.1111/j.1432-1033.1989.tb15247.x. [DOI] [PubMed] [Google Scholar]
  197. Macejak D.G., Hambidge S.J., Najita L., Sarnov P. EIf-4-independent translation of poliovirus RNA and cellular mRNA encoding glucose-regulated protein 78/immunoglobulin heavy-chain binding protein. In: Brinton M.A., Heinz F.X., editors. “New Aspects of Positive-Strand RNA Viruses”. Am. Soc. Microbiol.; Washington, D.C.: 1990. pp. 152–157. [Google Scholar]
  198. Marth J.D., Overell R.W., Meier K.E., Krebs E.G., Perlmutter R.M. Translation activation of the lck proto-oncogene. Nature (London) 1988;332:171–173. doi: 10.1038/332171a0. [DOI] [PubMed] [Google Scholar]
  199. Matthews R.E.F. Classification and nomenclature of viruses. Intervirology. 1982;71:1–199. doi: 10.1159/000149278. [DOI] [PubMed] [Google Scholar]
  200. McGarry T.J., Lindquist S. The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell. 1985;42:903–911. doi: 10.1016/0092-8674(85)90286-7. [DOI] [PubMed] [Google Scholar]
  201. Meerovitch K., Pelletier J., Sonenberg N. A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: Implications for internal translation initiation. Genes Dev. 1989;3:1026–1034. doi: 10.1101/gad.3.7.1026. [DOI] [PubMed] [Google Scholar]
  202. Mellor E.J.C., Brown F., Harris T.J.R. Analysis of the secondary structure of the poly(C) tract in foot-and-mouth disease virus RNAs. J. Gen. Virol. 1985;66:1919–1929. doi: 10.1099/0022-1317-66-9-1919. [DOI] [PubMed] [Google Scholar]
  203. Melnick J.L. Enteroviruses: Polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Fields B.N., editor. “Virology”. Raven; New York: 1985. pp. 739–794. [Google Scholar]
  204. Miller P.F., Hinnebusch A.G. Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control. Genes Dev. 1989;3:1217–1225. doi: 10.1101/gad.3.8.1217. [DOI] [PubMed] [Google Scholar]
  205. Minor P.D., Dunn G. The effect of sequences in the 5′ non-coding region on the replication of polioviruses in the human gut. J. Gen. Virol. 1988;69:1091–1096. doi: 10.1099/0022-1317-69-5-1091. [DOI] [PubMed] [Google Scholar]
  206. Moldave K. Eukaryotic protein synthesis. Annu. Rev. Biochem. 1985;54:1109–1149. doi: 10.1146/annurev.bi.54.070185.005333. [DOI] [PubMed] [Google Scholar]
  207. Mosenkis J., McQueen S.D., Janovec S., Duncan R., Hershey J.W.B., Grifo J.A., Merrick W.C., Thach R.E. Shutoff of host translation by encepha-lomyocarditis virus infection does not involve cleavage of the eucaryotic initiation factor 4F polypeptide that accompanies poliovirus infection. J. Virol. 1985;54:643–645. doi: 10.1128/jvi.54.2.643-645.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Moss E.G., O'Neill R.E., Racaniello V.R. Mapping of attenuating sequences of an avirulent poliovirus type 2 strain. J. Virol. 1989;63:1884–1890. doi: 10.1128/jvi.63.5.1884-1890.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Mueller P.P., Hinnebusch A.G. Multiple upstream AUG codons mediate translational control of GCN4. Cell. 1986;45:201–207. doi: 10.1016/0092-8674(86)90384-3. [DOI] [PubMed] [Google Scholar]
  210. Mueller P.P., Harashima S., Hinnebusch A.G. A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript. Proc. Natl. Acad. Sci. U.S.A. 1987;84:2863–2867. doi: 10.1073/pnas.84.9.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Mueller P.P., Jackson B.M., Miller P.F., Hinnebusch A.G. The first and fourth upstream open reading frames in GCN4 mRNA have similar initiation efficiencies but respond differently in translational control to changes in length and sequence. Mol. Cell. Biol. 1988;8:5439–5447. doi: 10.1128/mcb.8.12.5439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Muller A.J., Witte O.N. The 5′ noncoding region of the human leukemia-associated oncogene BCR/ABL is a potent inhibitor of in vitro translation. Mol. Cell. Biol. 1989;9:5234–5238. doi: 10.1128/mcb.9.11.5234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Muñoz A., Alonso M.A., Carrasco L. Synthesis of heat-shock proteins in HeLa cells: Inhibition by virus infection. Virology. 1984;137:150–159. doi: 10.1016/0042-6822(84)90018-7. [DOI] [PubMed] [Google Scholar]
  214. A.R. Muzychenko G.Y. Lipskaya S.V. Maslova Y.V. Svitkin E.V. Pilipenko B.K. Nottay O.M. Kew V.I. Agol (1991). Coupled mutations in the 5′-untranslated region of the Sabin poliovirus strains during in vivo passages: Structural and functional implications. Virus Res. (in press). [DOI] [PubMed]
  215. Najarian R., Caput D., Gee W., Potter S.J., Renard A., Merryweather J., Nest G.V., Dina D. Primary structure and gene organization of human hepatitis A virus. Proc. Natl. Acad. Sci. U.S.A. 1985;82:2627–2631. doi: 10.1073/pnas.82.9.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Najita L., Sarnow P. Oxidation-reduction sensitive interaction of a cellular 50 kDa protein with an RNA hairpin in the 5′ noncoding region of the poliovirus genome. Proc. Natl. Acad. Sci. U.S.A. 1990;87:5846–5850. doi: 10.1073/pnas.87.15.5846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Newton S.E., Carroll A.R., Campbell R.O., Clarke B.E., Rowlands D.J. The sequence of foot-and-mouth disease virus RNA to the 5′ side of the poly(C) tract. Gene. 1985;40:331–336. doi: 10.1016/0378-1119(85)90057-5. [DOI] [PubMed] [Google Scholar]
  218. Nicklin M.J.H., Kräusslich H.G., Toyoda H., Dunn J.J., Wimmer E. Poliovirus polypeptide precursors: Expression in vitro and processing by exogenous 3C and 2A proteinases. Proc. Natl. Acad. Sci. U.S.A. 1987;84:4002–4006. doi: 10.1073/pnas.84.12.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Noller H.F., Woese C.R. Secondary structure of 16S ribosomal RNA. Science. 1981;212:403–411. doi: 10.1126/science.6163215. [DOI] [PubMed] [Google Scholar]
  220. Nomoto A., Wimmer E. Genetic studies of the antigenicity and the attenuation phenotype of poliovirus. Soc. Gen. Microbiol. Symp. 1987;40:107–134. [Google Scholar]
  221. Nomoto A., Lee Y.F., Wimmer E. The 5′ end of poliovirus mRNA is not capped with m7G(5′)ppp(5′)Np. Proc. Natl. Acad. Sci. U.S.A. 1976;73:375–380. doi: 10.1073/pnas.73.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Nomoto A., Omata T., Toyoda H., Kuge S., Horie H., Kataoka Y., Genba Y., Nakano Y., Imura N. Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc. Natl. Acad. Sci. U.S.A. 1982;79:5793–5797. doi: 10.1073/pnas.79.19.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Nuss D.L., Oppermann H., Koch G. Selective blockage of initiation of host protein synthesis in RNA-virus-infected cells. Proc. Natl. Acad. Sci. U.S.A. 1975;72:1258–1262. doi: 10.1073/pnas.72.4.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. S.-K. Oh S. Hambidge L. Najita M.P. Scott P. Sarnow (1990). Translation initiation by internal ribosome binding of viral and cellular mRNA molecules. Rinshoken Int. Conf., 5th p. 20.
  225. Ohara Y., Stein S., Fu J., Stillman L., Klaman L., Roos R.P. Molecular cloning and sequence determination of DA strain of Theiler's murine encephalomyelitis viruses. Virology. 1988;164:245–255. doi: 10.1016/0042-6822(88)90642-3. [DOI] [PubMed] [Google Scholar]
  226. O'Neill R.E., Racaniello V.R. Inhibition of translation in cells infected with a poliovirus 2Apro mutant correlates with phosphorylation of the alpha subunit of eucaryotic initiation factor 2. J. Virol. 1989;63:5069–5075. doi: 10.1128/jvi.63.12.5069-5075.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Ozawa K., Ayub J., Young N. Translational regulation of B19 parvovirus capsid protein production by multiple upstream AUG triplets. J. Biol. Chem. 1988;263:10922–10926. [PubMed] [Google Scholar]
  228. Palmenberg A.C., Kirby E.M., Janda M.R., Drake N.L., Duke G.M., Potratz K.F., Collett M.S. The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Res. 1984;12:2969–2985. doi: 10.1093/nar/12.6.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Pani A., Julian M., Lucas-Lenard J. A kinase able to phosphorylate exogenous protein synthesis initiation factor eIF-2a is present in lysate of mengovirus-infected L cells. J. Virol. 1986;60:1012–1017. doi: 10.1128/jvi.60.3.1012-1017.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Panniers R., Stewart E.B., Merrick W.C., Henshaw E.C. Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich cells involves reduction of eukaryotic initiation factor 4F activity. J. Biol. Chem. 1985;260:9648–9653. [PubMed] [Google Scholar]
  231. Parkin N., Darveau A., Nicholson R., Sonenberg N. cis-Acting translational effects of the 5′ noncoding region of c-myc mRNA. Mol. Cell. Biol. 1988;8:2875–2883. doi: 10.1128/mcb.8.7.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Parkin N.T., Cohen E.A., Darveau A., Rosen C., Haseltine W., Sonenberg N. Mutational analysis of the 5′ non-coding region of human immunodeficiency virus type 1: Effects of secondary structure on translation. EMBO J. 1988;7:2831–2837. doi: 10.1002/j.1460-2075.1988.tb03139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Parks G.D., Duke G.M., Palmenberg A.C. Encephalomyocarditis virus 3C protease: Efficient cell-free expression from clones which link viral 5′ noncoding sequences to the P3 region. J. Virol. 1986;60:376–384. doi: 10.1128/jvi.60.2.376-384.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Paul A.V., Tada H., von der Helm K., Wissel T., Kiehn R., Wimmer E., Deinhardt F. The entire nucleotide sequence of the genome of human hepatitis A virus (isolate MBB) Virus Res. 1987;8:153–171. doi: 10.1016/0168-1702(87)90026-8. [DOI] [PubMed] [Google Scholar]
  235. Peabody D.S., Berg P. Termination-reinitiation occurs in the translation of mammalian cell mRNAs. Mol. Cell. Biol. 1986;6:2695–2703. doi: 10.1128/mcb.6.7.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Peabody D.S., Subramani S., Berg P. Effect of upstream reading frames on translation efficiency in simian virus 40 recombinants. Mol. Cell. Biol. 1986;6:2704–2711. doi: 10.1128/mcb.6.7.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Pelletier J., Sonenberg N. Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eucaryotic mRNA reduces translational efficiency. Cell. 1985;40:515–526. doi: 10.1016/0092-8674(85)90200-4. [DOI] [PubMed] [Google Scholar]
  238. Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature (London) 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  239. Pelletier J., Sonenberg N. Internal binding of eucaryotic ribosomes on poliovirus RNA: Translation in HeLa cell extracts. J. Virol. 1989;63:441–444. doi: 10.1128/jvi.63.1.441-444.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Pelletier J., Flynn M.E., Kaplan G., Racaniello V., Sonenberg N. Mutational analysis of upstream AUG codons of poliovirus RNA. J. Virol. 1988;62:4486–4492. doi: 10.1128/jvi.62.12.4486-4492.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Pelletier J., Kaplan G., Racaniello V.R., Sonenberg N. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5′ noncoding region. Mol. Cell. Biol. 1988;8:1103–1112. doi: 10.1128/mcb.8.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Pelletier J., Kaplan G., Racaniello V.R., Sonenberg N. Translational efficiency of poliovirus mRNA: Mapping inhibitory cis-acting elements within the 5′ noncoding region. J. Virol. 1988;62:2219–2227. doi: 10.1128/jvi.62.7.2219-2227.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Penswick J., Hubler R., Hohn T. A viable mutation in cauliflower mosaic virus, a retroviruslike plant virus, separates its capsid protein and polymerase genes. J. Virol. 1988;62:1460–1463. doi: 10.1128/jvi.62.4.1460-1463.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Perez-Bercoff R., Gander M. The genomic RNA of mengovirus. I. Location of the poly(C) tract. Virology. 1977;80:426–429. doi: 10.1016/s0042-6822(77)80018-4. [DOI] [PubMed] [Google Scholar]
  245. Perez-Bercoff R., Gander M. In vitro translation of mengovirus RNA deprived of the terminally-linked (capping?) protein. FEBS Lett. 1978;96:306–311. doi: 10.1016/0014-5793(78)80424-4. [DOI] [PubMed] [Google Scholar]
  246. Perez-Bercoff R., Kaempfer R. Genomic RNA of mengovirus. V. Recognition of common features by ribosomes and eucaryotic initiation factor 2. J. Virol. 1982;41:30–41. doi: 10.1128/jvi.41.1.30-41.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Pestova T.V., Maslova S.V., Potapov V.K., Agol V.I. Distinct modes of poliovirus polyprotein initiation in vitro. Virus Res. 1989;14:107–118. doi: 10.1016/0168-1702(89)90032-4. [DOI] [PubMed] [Google Scholar]
  248. Petersen R.B., Moustakas A., Hackett P.B. A mutation in the short 5′-proximal open reading frame on Rous sarcoma virus RNA alters virus production. J. Virol. 1989;63:4787–4796. doi: 10.1128/jvi.63.11.4787-4796.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Pevear D.C., Calenoff M., Rozhon E., Lipton H.L. Analysis of the complete nucleotide sequence of the picornavirus Theiler's murine encephalomyelitis virus indicates that it is closely related to cardioviruses. J. Virol. 1987;61:1507–1516. doi: 10.1128/jvi.61.5.1507-1516.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Pevear D.C., Borkowski J., Calenoff M., Oh C.K., Ostrowski B., Lipton H.L. Insights into Theiler's virus neurovirulence based on a genomic comparison of the neurovirulent GDVII and less virulent BeAn strains. Virology. 1988;164:1–12. doi: 10.1016/0042-6822(88)90652-6. [DOI] [PubMed] [Google Scholar]
  251. Pevear D.C., Oh C.K., Cunningham L.L., Calenoff M., Jubelt B. Localization of genomic regions specific for the attenuated, mouse-adapted poliovirus type 2 strain W-2. J. Gen. Virol. 1990;71:43–52. doi: 10.1099/0022-1317-71-1-43. [DOI] [PubMed] [Google Scholar]
  252. Phillips B.A., Emmert A. Modulation of the expression of poliovirus proteins in reticulocyte lysates. Virology. 1986;148:255–267. doi: 10.1016/0042-6822(86)90323-5. [DOI] [PubMed] [Google Scholar]
  253. Pilipenko E.V., Blinov V.M., Romanova L.I., Sinyakov A.N., Maslova S.V., Agol V.I. Conserved structural domains in the 5′-untranslated region of picornaviral genomes: An analysis of the segment controlling translation and neurovirulence. Virology. 1989;168:201–209. doi: 10.1016/0042-6822(89)90259-6. [DOI] [PubMed] [Google Scholar]
  254. Pilipenko E.V., Blinov V.M., Chernov B.K., Dmitrieva T.M., Agol V.I. Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 1989;17:5701–5711. doi: 10.1093/nar/17.14.5701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Pilipenko E.V., Blinov V.M., Agol V.I. Gross rearrangements within the 5′-untranslated region of the picornaviral genomes. Nucleic Acids Res. 1990;18:3371–3375. doi: 10.1093/nar/18.11.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. E.V. Pilipenko S.V. Maslova V.I. Agol (1991). Manuscript in preparation.
  257. Pollard S.R., Dunn G., Cammack N., Minor P.D., Almond J.W. Nucleotide sequence of a neurovirulent variant of the type 2 oral poliovirus vaccine. J. Virol. 1989;63:4949–4951. doi: 10.1128/jvi.63.11.4949-4951.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Porter A., Carey N., Fellner P. Presence of a large poly(rC) tract within the RNA of encephalomyocarditis virus. Nature (London) 1974;248:675–678. doi: 10.1038/248675a0. [DOI] [PubMed] [Google Scholar]
  259. Proud C.G. Guanine nucleotides, protein phosphorylation and the control of translation. Trends Biochem. Sci. (Pers. Ed.) 1986;11:73–77. [Google Scholar]
  260. Racaniello V.R. Poliovirus neurovirulence. Adv. Virus Res. 1988;34:217–246. doi: 10.1016/s0065-3527(08)60519-9. [DOI] [PubMed] [Google Scholar]
  261. Rancaniello V.R., Baltimore D. Molecular cloning of poliovirus DNA and determination of the complete nucleotide sequence of the viral genome. Proc. Natl. Acad. Sci. U.S.A. 1981;78:4887–4891. doi: 10.1073/pnas.78.8.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Racaniello V.R., Meriam C. Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5′-noncoding region of the viral RNA. Virology. 1986;155:498–507. doi: 10.1016/0042-6822(86)90211-4. [DOI] [PubMed] [Google Scholar]
  263. Ransone L.J., Dasgupta A. Activation of double-stranded RNA-activated protein kinase in HeLa cells after poliovirus-infection does not result in increased phosphorylation of eIF-2. J. Virol. 1987;61:1781–1787. doi: 10.1128/jvi.61.6.1781-1787.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Ransone L.J., Dasgupta A. A heat-sensitive inhibitor in poliovirus-infected cells which selectively blocks phosphorylation of the α subunit of eucaryotic initiation factor 2 by the double-stranded RNA-activated protein kinase. J. Virol. 1988;62:3551–3557. doi: 10.1128/jvi.62.10.3551-3557.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Rao C.D., Pech M., Robbins K.C., Aaronson S.A. The 5′ untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol. Cell. Biol. 1988;8:284–292. doi: 10.1128/mcb.8.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Ratner L., Thielan B., Collins T. Sequence of the 5′ portion of the human cis-gene: Characterization of the transcriptional promoter and regulation of expression of the protein product by 5′ untranslated mRNA sequences. Nucleic Acids Res. 1987;15:6017–6036. doi: 10.1093/nar/15.15.6017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Ray B.K., Lawson T.G., Kramer J.C., Cladaras M.H., Grifo J.A., Abramson R.D., Merrick W.C., Thach R.E. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 1985;260:7651–7658. [PubMed] [Google Scholar]
  268. Reynolds G.A., Basu S.K., Osborne T.F., Chin D.J., Gil G., Brown M.S., Goldstein J.L., Luskey K.L. HMG CoA reductase: A negatively regulated gene with unusual promoter and 5′ untranslated regions. Cell. 1984;38:275–285. doi: 10.1016/0092-8674(84)90549-x. [DOI] [PubMed] [Google Scholar]
  269. Rhoads R.E. Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem. Sci. (Pers. Ed.) 1988;13:52–56. doi: 10.1016/0968-0004(88)90028-x. [DOI] [PubMed] [Google Scholar]
  270. Rivera V.M., Welsh D., Maizel J.V., Jr. Comparative sequence analysis of the 5′ noncoding region of the enteroviruses and rhinoviruses. Virology. 1988;165:42–50. doi: 10.1016/0042-6822(88)90656-3. [DOI] [PubMed] [Google Scholar]
  271. Robertson B.H., Grubman M.J., Weddell G.N., Moore D.M., Welsh J.D., Fischer T., Dowbenko D.J., Yansura D.G., Small B., Kleid D.G. Nucleotide and amino acid sequence coding for polypeptides of foot-and-mouth disease virus type A12. J. Virol. 1985;54:651–660. doi: 10.1128/jvi.54.3.651-660.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Romanova L.I., Blinov V.M., Tolskaya E.A., Viktorova E.G., Kolesnikova M.S., Guseva E.A., Agol V.I. The primary structure of crossover regions of intertypic poliovirus recombinants: A model of recombination between RNA genomes. Virology. 1986;155:202–213. doi: 10.1016/0042-6822(86)90180-7. [DOI] [PubMed] [Google Scholar]
  273. Rose J.K., Trachsel H., Leong K., Baltimore D. Inhibition of transaltion by poliovirus: Inactivation of a specific initiation factor. Proc. Natl. Acad. Sci. U.S.A. 1978;75:2732–2736. doi: 10.1073/pnas.75.6.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Rosen H., Di Segni G., Kaempfer R. Translational control by messenger RNA competition for eukaryotic initiation factor 2. J. Biol. Chem. 1982;257:946–952. [PubMed] [Google Scholar]
  275. Ross B.C., Anderson B.N., Edwards P.C., Gust I.D. Nucleotide sequence of high passage hepatitis A virus strain HM175: Comparison with wild-type and cell culture-adapted strains. J. Gen. Virol. 1989;70:2805–2810. doi: 10.1099/0022-1317-70-10-2805. [DOI] [PubMed] [Google Scholar]
  276. Rothberg P.G., Harris T.J.R., Nomoto A., Wimmer E. O4-(5′-Uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc. Natl. Acad. Sci. U.S.A. 1978;75:4868–4872. doi: 10.1073/pnas.75.10.4868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Rouault T.A., Hentze M.W., Caughman S.W., Harford J.B., Klausner R.D. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science. 1988;241:1207–1210. doi: 10.1126/science.3413484. [DOI] [PubMed] [Google Scholar]
  278. Rouault T.A., Hentze M.W., Haile D.J., Harford J.B., Klausner R.D. The iron-responsive element binding protein: A method for the affinity purification of a regulatory RNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 1989;86:5768–5772. doi: 10.1073/pnas.86.15.5768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Roussou I., Thireos G., Hauge B.M. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol. Cell. Biol. 1988;8:2132–2139. doi: 10.1128/mcb.8.5.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Rowlands D.J., Harris T.J.R., Brown F. More precise location of the polycytidylic acid tract in foot and mouth disease virus RNA. J. Virol. 1978;26:335–343. doi: 10.1128/jvi.26.2.335-343.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Rueckert R.R. Picornaviruses and their replication. In: Fields B.N., editor. “Virology”. Raven; New York: 1985. pp. 705–738. [Google Scholar]
  282. Saito H., Hayday A.C., Wiman K., Hayward W.S., Tonegawa S. Activation of the c-myc gene by translocation: A model for translational control. Proc. Natl. Acad. Sci. U.S.A. 1983;80:7476–7480. doi: 10.1073/pnas.80.24.7476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Sangar D.V., Rowlands D.J., Harris T.J.R., Brown F. Protein covalently linked to foot-and-mouth disease virus RNA. Nature (London) 1977;268:648–650. doi: 10.1038/268648a0. [DOI] [PubMed] [Google Scholar]
  284. Sangar D.V., Newton S.E., Rowlands D.J., Clarke B.E. All foot and mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res. 1987;15:3305–3314. doi: 10.1093/nar/15.8.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Sarnow P. Translation of glucose-regulated protein 78/immunoglobulin heavychain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc. Natl. Acad. Sci. U.S.A. 1989;86:5795–5799. doi: 10.1073/pnas.86.15.5795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Sarre T.F. The phosphorylation of eukaryotic initiation factor 2: A principle of translational control in mammalian cells. BioSystems. 1989;22:311–325. doi: 10.1016/0303-2647(89)90053-1. [DOI] [PubMed] [Google Scholar]
  287. Schlicht H.J., Radziwill G., Schaller H. Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins. Cell. 1989;56:85–92. doi: 10.1016/0092-8674(89)90986-0. [DOI] [PubMed] [Google Scholar]
  288. Schultze M., Hahn T., Jiricny J. The reverse transcriptase gene of cauliflower mosaic virus is translated separately from the capsid gene. EMBO J. 1990;9:1177–1185. doi: 10.1002/j.1460-2075.1990.tb08225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Sedman S.A., Good P.J., Mertz J.E. Leader-encoded open reading frames modulate both the absolute and relative rates of synthesis of the virion proteins of simian virus 40. J. Virol. 1989;63:3884–3893. doi: 10.1128/jvi.63.9.3884-3893.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Sedman S.A., Gelembiuk G.W., Mertz J.E. Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5′ cap. J. Virol. 1990;64:453–457. doi: 10.1128/jvi.64.1.453-457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Seechurn P., Knowles N.J., McCauley J.W. The complete nucleotide sequence of a pathogenic swine vesicular disease virus. Virus Res. 1990;16:255–274. doi: 10.1016/0168-1702(90)90052-d. [DOI] [PubMed] [Google Scholar]
  292. Semler B.L., Johnson V.H., Tracy S. A chimeric plasmid from cDNA clones of poliovirus and coxsackievirus produces a recombinant virus that is temperature-sensitive. Proc. Natl. Acad. Sci. U.S.A. 1986;83:1777–1781. doi: 10.1073/pnas.83.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Shih D.S., Shih C.T., Kew O., Pallansch M., Rueckert R., Kaesberg P. Cell-free synthesis and processing of the proteins of poliovirus. Proc. Natl. Acad. Sci. U.S.A. 1978;75:5807–5811. doi: 10.1073/pnas.75.12.5807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Shih D.S., Park I.W., Evans C.L., Jaynes J.M., Palmenberg A.C. Effects of cDNA hybridization on translation of encephalomyocarditis virus RNA. J. Virol. 1987;61:2033–2037. doi: 10.1128/jvi.61.6.2033-2037.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Skern T., Sommergruber W., Blaas D., Druengler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. Human rhinovirus 2: Complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res. 1985;13:2111–2126. doi: 10.1093/nar/13.6.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Skinner M.A., Racaniello V.R., Dunn G., Cooper J., Minor P.D., Almond J.W. New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J. Mol. Biol. 1989;207:376–392. doi: 10.1016/0022-2836(89)90261-1. [DOI] [PubMed] [Google Scholar]
  297. Smith R.E., Clark J.M., Jr. Effect of capping upon the mRNA properties of satellite tobacco necrosis virus ribonucleic acid. Biochemistry. 1979;18:1366–1371. doi: 10.1021/bi00574a037. [DOI] [PubMed] [Google Scholar]
  298. Soe L.H., Shieh C.K., Baker S.C., Chang M.F., Lai M.M.C. Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. J. Virol. 1987;61:3968–3976. doi: 10.1128/jvi.61.12.3968-3976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Sonenberg N. Regulation of translation by poliovirus. Adv. Virus Res. 1987;33:175–204. doi: 10.1016/s0065-3527(08)60318-8. [DOI] [PubMed] [Google Scholar]
  300. Sonenberg N. Cap-binding proteins of eukaryotic messenger RNA: Functions in initiation and control of translation. Prog. Nucleic Acid Res. Mol. Biol. 1988;35:173–207. doi: 10.1016/s0079-6603(08)60614-5. [DOI] [PubMed] [Google Scholar]
  301. Sonenberg N. Poliovirus translation. Curr. Top. Microbiol. Immunol. 1990;161:23–47. doi: 10.1007/978-3-642-75602-3_2. [DOI] [PubMed] [Google Scholar]
  302. N. Sonenberg K. Meerovitch (1990). Internal initiation of translation on poliovirus RNA. Rinshoken Int. Conf., 5th p. 22.
  303. Sonenberg N., Pelletier J. Poliovirus translation: A paradigm for a novel initiation mechanism. BioEssays. 1989;11:128–132. doi: 10.1002/bies.950110504. [DOI] [PubMed] [Google Scholar]
  304. Sonenberg N., Guertin D., Lee K.A.W. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells. Mol. Cell. Biol. 1982;2:1633–1638. doi: 10.1128/mcb.2.12.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Stanway G., Cann A.J., Hauptmann R., Hughes P., Clarke L.D., Mountford R.C., Minor P.D., Schild G.C., Almond J.W. The nucleotide sequence of poliovirus type 3 Leon 12 a1b: Comparison with poliovirus type 1. Nucleic Acids Res. 1983;11:5629–5643. doi: 10.1093/nar/11.16.5629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Stanway G., Hughes P.J., Mountford R.C., Reeve P., Minor P.D., Schild G.C., Almond J.W. Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/Leon 12a1b. Proc. Natl. Acad. Sci. U.S.A. 1984;81:1539–1543. doi: 10.1073/pnas.81.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Stanway G., Hughes P.J., Mountford R.C., Minor P.D., Almond J.W. The complete nucleotide sequence of a common cold virus: Human rhinovirus 14. Nucleic Acids Res. 1984;12:7859–7875. doi: 10.1093/nar/12.20.7859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Strick C.A., Fox T.D. Saccharomyces cerevisiae positive regulatory gene PET111 encodes a mitochondrial protein that is translated from an mRNA with a long 5′ leader. Mol. Cell. Biol. 1987;7:2728–2734. doi: 10.1128/mcb.7.8.2728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Stroeher V.L., Jorgensen E.M., Garber R.L. Multiple transcripts from the Antennapedia gene of Drosophila melanogaster. Mol. Cell. Biol. 1986;6:4667–4675. doi: 10.1128/mcb.6.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Svitkin Y.V., Krupp G., Gross H.J. Discontinuity of the poly(C) tract of encephalomyocarditis virus RNA. Bioorgan. Khim. 1983;9:1638–1643. [PubMed] [Google Scholar]
  311. Svitkin Y.V., Maslova S.V., Agol V.I. The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology. 1985;147:243–252. doi: 10.1016/0042-6822(85)90127-8. [DOI] [PubMed] [Google Scholar]
  312. Svitkin Y.V., Lyapustin V.N., Lashkevich V.A., Agol V.I. Synthesis and membrane-dependent processing of a precursor of the structural proteins of tick-borne encephalitis virus (flavivirus) in cell-free system. Mol. Biol. (Moscow) 1986;20:1251–1263. [PubMed] [Google Scholar]
  313. Svitkin Y.V., Pestova T.V., Maslova S.V., Agol V.I. Point mutations modify the response of poliovirus RNA to a translation initiation factor: A comparison of neurovirulent and attenuated strains. Virology. 1988;166:394–404. doi: 10.1016/0042-6822(88)90510-7. [DOI] [PubMed] [Google Scholar]
  314. Svitkin Y.V., Cammack N., Minor P.D., Almond J.W. Translation deficiency of the Sabin type 3 poliovirus genome: Association with an attenuating mutation C472U. Virology. 1990;175:103–109. doi: 10.1016/0042-6822(90)90190-3. [DOI] [PubMed] [Google Scholar]
  315. Tahara S.M., Morgan M.A., Shatkin A.J. Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 1981;256:7691–7694. [PubMed] [Google Scholar]
  316. Theil E.C. Storage and translation of ferritin messenger RNA. In: Ilan J., editor. “Translational Regulation of Gene Expression”. Plenum; New York: 1987. pp. 141–163. [Google Scholar]
  317. Thireos G., Penn M.D., Greer H. 5′ Untranslated sequences are required for the translational control of a yeast regulatory gene. Proc. Natl. Acad. Sci. U.S.A. 1984;81:5096–5100. doi: 10.1073/pnas.81.16.5096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Ting J., Lee A.S. Human gene encoding the 78,000 dalton glucose-regulated protein and its pseudogene: Structure, conservation, and regulation. DNA. 1988;7:275–286. doi: 10.1089/dna.1988.7.275. [DOI] [PubMed] [Google Scholar]
  319. Toyoda H., Kohara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. Complete nucleotide sequences of all three poliovirus serotype genomes. Implications for genetic relationship, gene function and antigenic determinants. J. Mol. Biol. 1984;174:561–585. doi: 10.1016/0022-2836(84)90084-6. [DOI] [PubMed] [Google Scholar]
  320. Tracy S., Liu H.L., Chapman N.M. Coxsackievirus B3: Primary structure of the 5′ non-coding and capsid protein-coding regions of the genome. Virus Res. 1985;3:263–270. doi: 10.1016/0168-1702(85)90050-4. [DOI] [PubMed] [Google Scholar]
  321. Trono D., Andino R., Baltimore D. An RNA sequence of hundreds of nucleotides at the 5′ end of poliovirus RNA is involved in allowing viral protein synthesis. J. Virol. 1988;62:2292–2299. doi: 10.1128/jvi.62.7.2291-2299.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Trono D., Pelletier J., Sonenberg N., Baltimore D. Translation in mammalian cells of a gene linked to the poliovirus 5′ noncoding region. Science. 1988;241:445–448. doi: 10.1126/science.2839901. [DOI] [PubMed] [Google Scholar]
  323. Tzamarias D., Thireos G. Evidence that the GCN2 protein kinase regulates reinitiation by yeast ribosomes. EMBO J. 1988;7:3547–3551. doi: 10.1002/j.1460-2075.1988.tb03231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Tzamarias D., Roussou I., Thireos G. Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell. 1989;57:947–954. doi: 10.1016/0092-8674(89)90333-4. [DOI] [PubMed] [Google Scholar]
  325. van Duijn L.P., Holsappel S., Kasperaitis M., Bunschoten H., Konings D., Voorma H.O. Secondary structure and expression in vivo of messenger RNAs into which upstream AUG codons have been inserted. Eur. J. Biochem. 1988;172:59–66. doi: 10.1111/j.1432-1033.1988.tb13855.x. [DOI] [PubMed] [Google Scholar]
  326. Vartapetian A.B., Bogdanov A.A. Proteins covalently linked to viral genomes. Prog. Nucleic Acid Res. Mol. Biol. 1987;34:209–251. doi: 10.1016/s0079-6603(08)60497-3. [DOI] [PubMed] [Google Scholar]
  327. Vartapetian A.B., Drygin Y.F., Chumakov K.M., Bogdanov A.A. The structure of the covalent linkage between proteins and RNA in encephalomyocarditis virus. Nucleic Acids Res. 1980;8:3729–3742. doi: 10.1093/nar/8.16.3729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Vartapetian A.B., Mankin A.S., Skripkin E.A., Chumakov K.M., Smirnov V.D., Bogdanov A.A. The primary and secondary structure of the 5′-end region of encephalomyocarditis virus RNA. A novel approach to sequencing long RNA molecules. Gene. 1983;26:189–195. doi: 10.1016/0378-1119(83)90189-0. [DOI] [PubMed] [Google Scholar]
  329. Walden W.E., Daniels-McQueen S., Brown P.H., Gaffield L., Russell D.A., Bielser D., Bailey L.C., Thach R.E. Translational repression in eukaryotes: Partial purification and characterization of a repressor of ferritin mRNA translation. Proc. Natl. Acad. Sci. U.S.A. 1988;85:9503–9507. doi: 10.1073/pnas.85.24.9503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  330. Walden W.E., Patino M.M., Gaffield L. Purification of a specific repressor of ferritin mRNA translation from rabbit liver. J. Biol. Chem. 1989;264:13765–13769. [PubMed] [Google Scholar]
  331. Watt R., Stanton L.W., Marcu K.B., Gallo R.C., Croce C.M., Rovera G. Nucleotide sequence of cloned cDNA of human c-myc oncogene. Nature (London) 1983;303:725–728. doi: 10.1038/303725a0. [DOI] [PubMed] [Google Scholar]
  332. Wek R.C., Jackson B.M., Hinnebusch A.G. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. U.S.A. 1989;86:4579–4583. doi: 10.1073/pnas.86.12.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Westrop G.D., Wareham K.A., Evans D.M.A., Dunn G., Minor P.D., Magrath D.I., Taffs F., Marsden S., Skinner M.A., Schild G.C., Almond J.W. Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J. Virol. 1989;63:1338–1344. doi: 10.1128/jvi.63.3.1338-1344.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. Williams M.A., Lamb R.A. Effect of mutations and deletions in a bicistronic mRNA on the synthesis of influenza B virus NB and NA glycoproteins. J. Virol. 1989;63:28–35. doi: 10.1128/jvi.63.1.28-35.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Williams N.P., Mueller P.P., Hinnebusch A.G. The positive regulatory function of the 5′-proximal open reading frames in GCN4 mRNA can be mimicked by heterologous, short coding sequence. Mol. Cell. Biol. 1988;8:3827–3836. doi: 10.1128/mcb.8.9.3827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Wimmer E. Genome-linked proteins of viruses. Cell. 1982;28:199–201. doi: 10.1016/0092-8674(82)90335-x. [DOI] [PubMed] [Google Scholar]
  337. Wimmer E., Chang A.Y., Clark J.M., Jr., Reichmann M.E. Sequence studies of satellite tobacco necrosis virus RNA. J. Mol. Biol. 1968;38:59–73. doi: 10.1016/0022-2836(68)90128-9. [DOI] [PubMed] [Google Scholar]
  338. Woese C.R., Gutell R.R. Evidence for several higher order structural elements in ribosomal RNA. Proc. Natl. Acad. Sci. U.S.A. 1989;86:3119–3122. doi: 10.1073/pnas.86.9.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  339. Zhang Y., Dolph P.J., Schneider R.J. Secondary structure analysis of adenovirus tripartite leader. J. Biol. Chem. 1989;264:10679–10684. [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES