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a b s t r a c t

The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal
framework for developing novel approaches in the rational design of vaccines effective against viral epi-
zootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently
developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral
vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers
for understanding the nature of protective responses in different species, opening the possibility of
modulating or potentiating relevant immune mechanisms involved in protection.

© 2008 Elsevier Ltd. All rights reserved.
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. Introduction

Vaccination, besides early detection and warning systems,
emains the most cost-effective means to prevent the spread of viral
nfectious diseases. For many years considerable scientific effort
as been directed towards the development of novel vaccine tech-
ologies, mainly aimed at improving the performance and safety of
lassical vaccines, either inactivated or based on modified live virus.
any delivery systems provide powerful platforms to check the

mmunogenicity or to trigger specific immune responses against
arget antigens, as well as to unveil the immune mechanisms
nvolved in protection against disease. The current knowledge in
iral DNA and RNA vectors as carriers of foreign antigens, illustrates
any of the potential approaches for antigen delivery and devel-

pment of veterinary vaccines. Considerations for development of
eterinary vaccines differ from those for humans in some respects.
ne of the most important of these is the cost since, depending on

he species vaccinated, high cost may preclude the use of certain
ypes of vaccine. The requirement for vaccine boosts of course con-
ributes greatly to the cost. Of increasing importance in design of
eterinary vaccines is the ability to distinguish between infected
nd vaccinated animals (DIVA). This is particularly important in
radication campaigns since it enables countries to gain a disease
ree status more readily. Other considerations, particularly for dis-
ase outbreaks, are the time taken to induce protection and the
otential for environmental spread of the vaccine including in non-
arget species. Particular challenges for development of veterinary
accines are the limited fundamental knowledge and reagents to
tudy protective immune responses in veterinary species.

Interestingly, the first vaccine ever used became one of the most
idely used systems for vaccine antigen delivery, the poxvirus vec-

ors. Since then, many other DNA viruses, including adenoviruses,
erpesviruses and baculoviruses, have proven very useful in devel-
pment of vaccination approaches. More recently, the refinement of
everse genetics technologies allowed the rescue of attenuated RNA
iruses and their use as potential expression or delivery vectors.

This paper reviews those delivery systems based on viral vectors
hat are commonly used for basic and applied veterinary vaccine
esearch.

. Modified virus as antigen delivery systems

Live attenuated vaccines were the first form of vaccine and these
ave been successfully used for many years. These have targeted not
nly a number of the most economically important animal diseases
ut also companion animal diseases. The advances in molecular
iology in recent years have allowed some of the problems and con-
erns encountered in developing and using live attenuated vaccines
o be addressed.
A live attenuated virus vaccine is a live virus that has lost its
irulence while maintaining its ability to induce protective immu-
ity against the virulent virus. They have many advantages over

nactivated/killed virus or component vaccines and these include
he fact that most if not all of the virus proteins are expressed,
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resenting a broad spectrum of epitopes to the immune system.
oreover, since these virus proteins are expressed inside the cell,

hey are presented in association with MHC Class I molecules and
timulate a cytotoxic T cell response. In addition they can be admin-
strated through the natural route of infection, such as via nasal

ucosa (e.g. influenza) and mimic the infection at a local site.
hey are able to induce effective and long lasting, appropriate,
umoral and cell-mediated immune responses [1,2], as well as

nducing innate immune responses. Other advantages of live atten-
ated virus vaccines include their low reactivity, the induction of
systemic response, which leads to enhanced protection against
isease, their induction of a mucosal response and, importantly for
he pharmaceutical companies, they have relatively low manufac-
uring costs as they require only minimal downstream processing
nd require no adjuvants in the formulation. However, given all
hese advantages live attenuated vaccines cannot be considered an
deal vaccine due to their overall safety profiles [3] such as being
otentially genetically unstable, and they may cause problems in

mmunocompromised hosts or in pregnancy (e.g. Rubella). A recent
xample was the use of monovalent BTV16 vaccine in Italy, in 2004,
hich caused undesirable effects, attributed to inadequate attenu-

tion to European sheep [4].
Live attenuated virus vaccines are prepared either from a nat-

rally occurring virus from another species (e.g. Jenner’s cowpox)
r are artificially attenuated. The traditional methodology for pro-
ucing a live attenuated vaccine often involved the blind serial
assage of a virulent isolate in heterologous tissues (cell culture,
ggs or laboratory animals) until an attenuated mutant is produced.
ther methods for producing an attenuated virus are the generation
f mutants either by chemical treatment, heating or spontaneous
utagenesis (and subsequent clonal selection). The problem with
utational attenuation, in this way, is that it is an uncontrollable

nd random process, and often the induced mutation is not mapped
t the genomic level [5]. It is therefore very difficult to control the
evel of attenuation while maintaining the antigenicity. Although
ive attenuated vaccines are the most successful form of vaccine,
eversion to virulence or differences in virulence in different hosts
s always the single greatest risk associated with their use.

The first successful use of an attenuated vaccine was in 1796
hen Edward Jenner inoculated an 8-year-old boy with cowpox
hich subsequently protected the boy when he was challenged
ith Smallpox. The first artificially created attenuated vaccine was

gainst rabies, produced by Louis Pasteur in 1884, and a recent
eport [6] summarises the benefit to both humans and dogs of the
ass rabies vaccination program to domestic dogs in different parts

f the world.
One of the most successfully applied attenuated vaccines was

he Plowright vaccine strain used to combat rinderpest, a highly
athogenic and often fatal (up to 90% mortality) disease of cattle

nd buffalo [7]. This vaccine strain was derived by 90 serial passages
n cell culture of the highly pathogenic Kabete ‘O’ strain of rinder-
est virus. The Plowright vaccine has been instrumental in the near
radication of rinderpest. This particular attenuated vaccine meets
any of the requirements of a good vaccine. It stimulates a strong
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mmune response which confers lifelong immunity from a single
noculation. It is also highly unlikely to revert to a virulent form
s the attenuation is generated by several small changes located
hroughout the genome [8].

Less successful attenuated vaccines have been used against Rift
alley fever, African horse sickness and African swine fever, to name
few. Rift Valley fever is an insect borne, multi-species zoonotic

iral disease of livestock caused by Rift Valley fever virus. The atten-
ated vaccine is based on the Smithburn isolate which was derived
rom mosquitoes in 1944 and passaged 79–85 times by intracere-
ral inoculation of mice. This resulted in the loss of hepatotropism
nd the acquisition of neurotropism. This vaccine, when adminis-
ered parenterally can immunise sheep [9], and millions of doses
ave been widely used in Africa [10]. However, vaccines based
n the Smithburn isolate can induce abortions, teratology in the
oetuses of vaccinated animals, hydrops amnii and prolonged ges-
ation in a proportion of vaccinated dams [11]. Research is ongoing
nto finding a safer attenuated vaccine. One possible replacement
amed Clone 13 has been shown in trials to be highly efficacious in
oth sheep and cattle and does not induce abortions in sheep [12].

Problems due to insufficient attenuation of vaccine strains were
lso encountered with African horse sickness (AHS), a vector borne
iral disease of all equidae, which results in a high mortality in
usceptible horses [5] and with African swine fever virus, an acutely
atal haemorrhagic fever of domestic pigs [13].

The failure to develop effective live attenuated vaccines in the
bove mentioned examples is mainly due to the conventional
ethodology employed. In addition to this an increasing stringency

rom regulatory bodies has driven vaccine development to incor-
orate the latest advances in molecular biology, cell biology and

mmunology. The use of reverse genetics and recombination tech-
ology has allowed vaccines to be more carefully designed. It is
ow possible to have fully defined attenuating mutations clearly
apped on the virus genome. This logical design of vaccine strains

an help ensure that the risk arising from a reversion to virulence
s greatly minimised. The logical design of vaccines can also allow
or immunomodulatory genes to be removed from an attenuated
irus, while ensuring that protective antigens are not accidentally
emoved, hence increasing its efficacy in stimulating the immune
ystem of the vaccinated animal. A great advantage of a designed
accine is the ability to include their use in conjunction with epi-
emiological surveillance systems. In many cases, where a disease

s not endemic, vaccination has not been considered as a control
ption due to the inability to differentiate between an infected
nimal and one which has been vaccinated. The development of
accines which allow differentiation between infected and vacci-
ated animals (DIVA) enables virus free status to be more rapidly
ranted to countries which have suffered disease incursion.

With the introduction of exciting new vaccine technologies such
s peptides/recombinant antigens, DNA and viral vectors, attenu-
ted live vaccines have been out of fashion for awhile. However, the
evelopment of new molecular biological techniques is seeing the
eturn of attenuated vaccines to the forefront of disease control.
or example reverse genetics is being used to develop the latest
accines against H5N1 avian influenza virus and these have the
otential to be used in both the avian host and humans [14]. The use
f this technology has allowed the identification of virulence deter-
inants in the three envelope glycoproteins of classical swine fever

irus (CSFV) [15–19]. Several of the live attenuated CSFV mutants
enerated conferred complete protection to swine challenged with

escued virulent virus as early as 3 days post-vaccination [16–19].
imilar success has been experienced using molecular tools to
esign vaccines for disease caused by DNA viruses. Pseudorabies
Aujeszky’s disease) has been combated successfully using recom-
inant, gene deleted, attenuated vaccines. The first commercially
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vailable gene deleted live vaccine was a glycoprotein E (gE) deleted
accine used in the eradication programmes in both Europe and
merica. More recently a new generation of gE-gG-TK-gene deleted
accines has been developed [20]

. Viral-based vectors as antigen delivery systems

.1. DNA virus vectors

.1.1. Poxviruses
Poxviruses provide a number of advantages as antigen delivery

ystems. They are large viruses containing a DNA genome rang-
ng in size between 130 and 300 kb pairs. They can accommodate
arge amounts (over 25 kb) of extra DNA [21] thus several trans-
enes can be expressed simultaneously providing a multi-valent
accine approach [22–24]. Importantly, poxviruses replicate within
he cytoplasm of infected cells and do not integrate into the host
enome, thus eliminating the potential for insertional mutagenesis.
oxviruses have been used in two different approaches as vaccines.
he first approach relies on productive replication of an attenuated
train in a permissive host. The second approach relies on the fact
hat poxviruses may enter cells of non-permissive hosts and express

ost of the proteins encoded, including inserted transgenes, but
o not produce infectious virus. These replication-deficient viruses
rovide advantages in terms of their safety although a disad-
antage is that more than one inoculation may be required to
nduce a protective immune response. These approaches have been
sed both with vaccinia virus (VV), which has a very wide host
ropism and with different poxviruses with more restricted host
ropisms.

Replicating poxvirus vectors can induce a long-lasting immu-
ity after a single injection and can activate both humoral and
ellular immunity depending upon the promoter controlling the
xpression of the immunogen. The possibility of using poxviruses
s vectors for foreign gene expression was initially demonstrated
n 1982 with VV [25,26]. The first recombinant VV to be used in the
eld was the Copenhagen strain expressing the rabies virus surface
lycoprotein [27]. A commercial version of this strain embedded in
aits (RABORAL V-RG®) was used in the eradication of fox rabies

n several Western Europe countries [28,29]. Since then numer-
us strains of VV have been engineered to express a variety of
ntigens from a number of pathogens in various animal species
Table 1).

Wild type VV strains may produce undesirable effects in
umans and therefore two highly attenuated vaccinia virus vec-
ors were developed. Both modified vaccinia Ankara (MVA) and
YVAC strains undergo very limited or no productive replication

n mammalian cells [30,31] although most of the virus proteins are
roduced including inserted transgenes. Therefore both humoral
nd cellular immunity can be induced against the transgene prod-
ct. The MVA strain has lost about 15% of the genome including host
ange and virulence genes, during passage in chick embryo fibrob-
asts [32]. The NYVAC strain was developed more recently from the
openhagen VV vaccine strain by the targeted deletion of 18 genes
31]. Both strains have been used successfully to induce protection
gainst animal pathogens (Table 1).

Other animal poxviruses have been attenuated and used
s replicating recombinant vaccines in permissive host species.
mong them, capripoxviruses were selected because they have a

estricted host range [33,34]. The attenuated KS1 strain was used as
ector to express both the H or F genes of rinderpest virus and these
ecombinant viruses conferred protection of cattle against both
inderpest and lumpy skin disease [35,36]. KS1 vaccine expressing
ither the H or F genes of peste des petits ruminants (PPR) protected
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Table 1
Examples of viral antigens expressed in different poxvirus vectors.

VV vectors Antigen Pathogen Species Commercially available References

Vaccinia virus H protein RPV Cattle [295–298]
H + F proteins
F, G, N BRSV Cattle [299]
G BEV Cattle [300]
P67 T. parva Cattle [301]
VP2, VP5 BTV Sheep [302]
Envelope protein BLV Sheep [303,304]
Env CA-EV Goat [305]
EO, E2 CSFV Pigs [306,307]
H5 AIV Chicken [308]

MVA strain F, G BRSV Cattle [309]
HA, NP Equine influenza Ponies [310]
Ag85A M. tub Cattle [311]

NYVAC strain H, F CDV Ferrets [62]
prM, E, NS1 JEV Pigs [312]
gB, gD ADV Pigs [313,314]

ALVAC strain gB, gC, gD EHV-I Horses [63]
Glycoprotein G NiV Pigs [315]
Fusion protein F
VP2 and VP5 BTV Sheep [66]
H5 AIV Cats [57]
F and H CDV Dogs and ferrets RECOMBITEK CDV PUREVAX FDV [61,62]
Env, gaga FeLV Cats PUREVAX FeLV [65,316,317]
prM and E WNV Horses RECOMBITEK equine WNV [318–320]
H3 Influenza H3N8 Foals PROTEQ-FLUTM [321]

Myxoma virus Capsid gene (F9 strain) FCV Cats [322]
Influenza hemaglutinin AIV Rabbits [44]
Vp60 RHDV Rabbits [45,46,323]

Swinepox Gp50 and gp63 ADV Pigs [47,48]

Capripoxvirus H and F (KS1 strain) RPV Cattle [35,36,324–326]
H and F (KS1 strain) PPRV Goats [37,67]
VP7 (KS1 strain) BTV Sheep [38,39]
VP2, VP7, NS1 and NS3 (serotype 2)
G glycoprotein (LSDV Neethling) RV Cattle [40]
G1 and G2 (LSDV Neethling) RVFV Mice [42]

Avipoxvirus H5 or H7 (+N1 gene) AIV Chickens TROVACTM-AIV-H5 [327–330]
Turkeys

HN, ±F NDV Chickens [331–334]
gB MDV Chickens [335]
env SNV Chickens [336]
VP2 IBDV Chickens [337]
F gene TRTPV Turkeys [338]
F gene (Pigeonpox) NDV Chickens [43]

Abbreviations: ADV: Aujezsky disease virus, AIV: Avian influenza virus, BEV: Bovine ephemeral virus, BHV-1: bovine herpesvirus 1, BHV-4: bovine herpesvirus 4, BLV: bovine
leukaemia virus, BRSV: bovine respiratory syncytial virus, BTV: bluetongue virus, BVDV: bovine viral diarrhoea virus, CDV: canine distemper virus, CHV: canine herpesvirus,
CSFV: classical swine fever virus, EHV-1: equine herpesvirus 1, FCV: feline calicivirus, FeLV: feline leukemia virus, FHV-1: feline herpesvirus 1, FMDV: foot-and-mouth disease
virus, IBDV: infectious bursal disease virus, JEV: Japanese encephalitis virus, LSDV: lumpy skin disease virus, M. tub: Mycobacterium tuberculosis, MDV: Marek’s disease virus,
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DV: Newcastle disease virus, NiV: Nipah virus, PPV: porcine parvovirus, PPRV: pest
RV: pseudorabies virus, RHDV: rabbit hemorraghic disease virus, RPV: rinderpest
heileria parva, WNV: West Nile virus, TRTPV: turkey rhinotracheitis pneumovirus.

oats against goatpox and PPR [37]. The KS1 vaccine strain was also
sed to express several antigens of bluetongue virus in sheep and
his provided partial to full protection against challenge with a vir-
lent strain [38,39]. Another attenuated capripoxvirus, the LSDV
eethling vaccine strain, has been used as a vector to deliver anti-
ens. A LSDV recombinant expressing the rabies virus glycoprotein
licited both humoral and cell-mediated immune responses in cat-
le [40]. Interestingly, the same recombinant LSDV strain did not
eplicate in mice and rabbits but still induced protective immune
esponses against rabies [41]. Another LSDV recombinant express-

ng the G1 and G2 glycoproteins of Rift Valley fever virus also
nduced protection against Rift Valley fever in mice [42].

Numerous recombinant avipoxviruses have been developed to
ontrol avian diseases. Some examples of fowlpox recombinant are
lso listed on Table 1. A pigeonpox virus expressing the F gene

v

p
v
u

etit ruminants virus, PRRSV: porcine reproductive and respiratory syndrome virus,
RV: rabies virus, RVFV: Rift Valley fever virus, SNV: spleen necrosis virus, T. parva:

f Newcastle disease virus was also safe and efficient in chickens
43].

Rabbits injected with an attenuated myxoma virus expressing
he influenza virus haemagglutinin developed a specific antibody
esponse to the foreign antigen, thus suggesting this myxoma
irus could be an efficient antigen delivery system for rabbits
44]. Shortly after, recombinant myxoma viruses were produced
o protect against both myxomatosis and rabbit viral haemorrhagic
isease [45,46]. In pigs, a recombinant swinepox virus was devel-
ped to protect against a virulent challenge with Aujezsky’s disease

irus [47,48].

These examples illustrate the use of replicating poxviruses in
ermissive host species for vaccination strategies. However, while
ery promising, to our knowledge only one recombinant, the atten-
ated fowlpox virus expressing the H5 gene of avian influenza virus
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TROVACTM-AIV-H5) has been used commercially [49]. This limited
se reflects the fact that these recombinants are genetically mod-

fied organisms that replicate in their natural host species, thus
ausing biosafety concerns. In addition, interfering pre-immunity
esulting from a previous “natural” infection or the transfer of
aternal antibodies in the young may reduce the capacity of the

ector to replicate and, thus, induce less effective immunity [50,51].
Poxviruses are known to generate a nearly lifelong immunity in

heir natural host species after the initial contact. This is an advan-
age when poxvirus vectors are to be used in naive animals but
ertainly a major constraint for repeated use in immune animals.
owever, recent work has opened new possibilities to circumvent

he problem of pre-existing immunity. The B5 protein is the pri-
ary target for the antibodies that neutralize the extracellular form

f VV. Mice primed with a replicating VV and then boosted with
recombinant VV lacking the ectodomain of this B5 protein had
stronger antibody response against the transgene product com-
ared to mice boosted with the wild type recombinant VV [52]. A
imilar strategy could be envisaged for other poxviruses used as
ectors in permissive host species.

An alternative strategy is the use of replication-deficient
oxvirus vectors in non-permissive host species. Indeed, it has
een shown in mice, that pre-existing immunity against the
on-replicating MVA is not strong enough to block a boosting vacci-
ation with the same virus [53]. The poxvirus vectors most studied
o far for antigen delivery in non-permissive host species are the
vipoxviruses used in mammals. Avipoxviruses replicate only in
vian cells or birds. In mammalian cells or mammals, they initi-
te an abortive infection but can express antigens and stimulate
oth humoral and cell-mediated immune responses against the
ransgene product [54,55]. Recombinant fowlpox viruses have been
uccessfully used to express antigens in guinea pigs [56], in cats
57] and in pigs [58]. Recombinant canarypox vectors are about 100
imes more efficient than comparable fowlpox vectors in inducing
rotective immunity [59]. The most studied avipoxvirus for anti-
en delivery in mammals is the ALVAC canarypox strain. This strain
as been used to induce protection against diverse pathogens in
arious species. Despite this extensive use in research, commercial
pplications are presently available only for companion animals
nd horses. ALVAC strains were developed to protect dogs and fer-
ets against rabies [60] or canine distemper virus [61,62]. Licensed
anarypox based vaccines are also listed in Table 1.

Non-replicative recombinant poxviruses offer several advan-
ages including added safety since they do not spread between
nimals. They also induce low immunity against the vector virus
sed, thus permitting repeated administrations, they can be used
or priming young animals with maternal antibodies when con-
entional attenuated live vaccines failed [63,64] and they can also
oost the immune response engendered by a killed virus vaccine
65]. However, compared to replicating poxviruses used in per-

issive host species, they generally require the administration of
igh titres with a boosting injection to achieve sufficient protec-
ion. For example, the immunisation of sheep against bluetongue
irus with a canarypox virus vaccine required two injections of
.3 × 108 particles 3 weeks apart [66], only one dose of 10–100 par-
icles of recombinant capripox virus was enough to protect goats
gainst peste des petits ruminants [37,67]. Finally, both replicat-
ng and replication-deficient recombinant poxvirus vaccines offer
he possibility to differentiate naturally infected from vaccinated
nimals since the recombinants express a single or a couple of
ntigens of the pathogens and other antigens remain available for

mmunological testing [49].

The virus type species Orf Virus (ORFV) from the genus Para-
oxviridae (PPV) has been proposed as a candidate for novel marker
ector vaccines [68]. The ORFV has a very restricted host range in

p
a
n
l
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ivo and in vitro (sheep and goats and occasionally man), a restricted
kin tropism and an absence of systemic infection [69]. Among dif-
erent ORFV vaccine strains, only the D1701 is a highly attenuated
train with a markedly reduced pathogenicity after subcutaneous
pplication. This strain presents several advantages for use as a
iral vector including its ability to be propagated on a cell line and
ts ability to induce a strong immune-stimulating and regulating
esponse in non-permissive hosts such as mice and swine [70,71].
n additional benefit of this vector is that only a short-term vector
pecific immunity, without the formation of neutralizing antibodies
gainst PPV, is induced even in the natural host sheep, thus avoid-
ng immune interference following repeated inoculations. This is

ainly linked to the action of the virus immunomodulatory pro-
eins interfering with the host immune response to avoid virus
limination [72,73]. In addition, the observed adjuvant properties
f ORFV, promote ORFV as a new safe poxvirus vector [69,74,75].
everal in vivo studies reported that a prophylactic administra-
ion of the inactivated D1701 (Baypamun, Bayer AG, Leverkusen,
ermany) reduced the susceptibility of different animal species to

nfectious diseases such as IBR virus in cattle [76], and Aujezsky’s
isease in swine [77]. More recently, the immunostimulatory prop-
rties of the D1701 was shown following immunisation with CSFV
lycoprotein E2 subunit vaccine in swine [78,79].

Studies on the genome of the highly attenuated ORFV strain
1701 led to the identification of some viral genes non-essential

or virus replication but with an influence on viral pathogenesis,
irulence and host immunity [80]. Thus, deletion of the vegf-
(mammalian vascular endothelial growth factor homologue)

ocus permits foreign genes to be expressed in vitro, even in the
bsence of productive virus replication in non-permissive cells,
eading to the induction of a specific immune response in the non-
ermissive host [81]. Several reports on the protective capacity
ollowing inoculation of different recombinant ORFV (strain D1701)
re summarised in Table 2. In conclusion, although more studies
re needed to understand the immunostimulatory properties of
RFV, the capability of ORFV recombinants to induce antigen spe-
ific memory immune responses and to control acute or persistent
nfections requiring different immune mechanisms demonstrates
heir potential as a promising new poxvirus delivery system

.1.2. Herpesvirus
The family Herpesviridae encompasses the subfamilies Alpha-,

eta-, and Gammaherpesvirinae each of which contains several gen-
ra [82]. The large genome size, which can be extended, presence of
irulence genes not essential for productive viral replication in vitro
nd in vivo, and the availability of efficient methods to manipulate
erpesviral genomes are significant advantages for using her-
esviruses as vaccine vectors. Several herpesviruses which cause
iseases in pets or in animal husbandry, resulting in high economic

osses, have been engineered to serve as vaccine vectors (Table 3).
ith the exception of BHV-4, all of them are alphaherpesviruses
hich reflects that members of this subfamily cause the majority

f herpesviral infections of significant veterinary relevance.
The first herpesviruses of farm animals engineered to express

eterologous antigens were bovine herpesvirus type 1 (BHV-1)
hich causes infectious bovine rhinotracheitis/infectious pustu-

ar balanoposthitis and pseudorabies virus (PRV), the cause of
ujeszky’s disease. In 1991 a BHV-1 virion surface display approach
sed a fusion protein between foot-and-mouth disease virus
FMDV) VP1 epitopes linked to the N-terminus of BHV-1 glycopro-
rotected from challenge with pathogenic BHV-1 and developed
protective antibody response against FMDV [83,84]. However,

o follow-up studies using a similar display approach were pub-
ished. Further developments with BHV-1 as a vector used genomic
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Table 2
ORF virus (strain D1701L) as a vector for veterinary vaccine antigens.

Antigen Pathogen Species Immunological consequences Reference
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C or gD ADV Mouse Strong anti-gC humo
40 BVDV Rats Induction of B-cells, p
C+gD ADV Pigs Balanced Th1/Th2 ra
2 CSFV Pigs Higher antibody titre

ntegration of expression cassettes coding for structural proteins
f bovine respiratory syncytial virus (BRSV), bovine viral diar-
hoea virus (BVDV), PRV, and Cryptosporidium parvum, a parasite
hich causes cryptosporidiosis, a zoonotic disease [85–93]. Inte-

ration of the expression cassettes into the BHV-1 genome resulted
n replacement or inactivation of pathogenicity-associated genes
ike the thymidine kinase gene [88–92] or genes encoding gly-
oproteins gC [92], gG [92,93], gE [86], or gI [85,87]. Analyses of
he immunogenic properties of the BHV-1 recombinants express-
ng PRV glycoproteins in mice revealed induction of a protective
mmune response against a lethal challenge with PRV. Thus, these
ecombinants might be beneficial in situations where maternal
ntibodies interfere with immunization of piglets with PRV-based
accines [91,92]. Recombinant herpesviruses expressing C. parvum
23 and BVDV E2 were inocculated into rabbits [93] or guinea

igs [89] and a specific antibody response against the appropriate
athogens was induced. To our knowledge, the only vaccina-
ion/challenge experiment in cattle was reported for the BRSV
ttachment protein G expressing BHV-1 vector which demon-

f
e
b
t

able 3
xamples of veterinary herpesvirus vectors for antigen delivery.

ector Target pathogen

HV-1 BRSV
BVDV
C. parvum
FMDV
PRV

HV-4 BVDV
BHV-1

HV Rabies virus
N. caninum

HV-1 BVDV
WNV

HV-1 FeLV
T. gondii

CV FIV

VT IBDV and MDV
LTV AIV

DV NDV
IBDV

RV CSFV
JEV
FMDV
PRRSV
TGEV
PCV2
FMDV + PPV
Rabies virus
Swine Flu virus

bbreviations: BHV-1: bovine herpesvirus 1, BHV-4: bovine herpesvirus 4, BRSV: bovine
esvirus, C. Parvum: Cryptosporidium parvum, CSFV: classical swine fever virus, EHV-1: equ
erpesvirus 1, FIV: feline immunodeficiency virus, FMDV: foot-and-mouth disease virus,

aryngotracheitis virus, JEV: Japanese encephalitis virus, MDV: Marek’s disease virus, NDV
RRSV: porcine reproductive and respiratory syndrome virus, PRV: pseudorabies virus, S
ondii: Toxoplasma gondii, WNV: West Nile virus.
ponse after single dose [339]
a cells and T cells [340]
owing DNA priming [341]
enhancement of frequency of IFN-gamma producing PBMCs [79]

trated that vaccinated calves were resistant to BRSV infection.
owever, in comparison to the control infection, virulence of the
RSV G expressing recombinant for calves was increased [86]. The
uitability of canine herpesvirus as a vector for immunization pur-
oses was evaluated using recombinants expressing the rabies
irus G protein [94] or the Neospora caninum surface protein NcSRS2
95]. Both vaccine candidates elicited specific antibodies against
he respective target antigens. Vaccination/challenge experiments,
owever, await publication.

Two studies reported vaccination against feline leukemia virus
FLV) using recombinant feline herpesvirus 1 (FHV-1). Efficient vac-
ination was achieved by immunization of cats with an FHV-1
ecombinant expressing only the env protein [96] whereas a pre-
ious vaccination/challenge experiment was only successful after
mmunization with FHV-1 recombinants expressing env and gag

ollowed by a booster immunization with baculovirus expressed
nv and gag [97]. The differences in vaccine efficacy might have
een due to the intrinsic characteristics of each recombinant of
he recombinants such as the insertion locus (ORF2 and TK locus,

Expressed target antigen References

BRSV attachment protein G [4,5,85,86]
Glycoprotein E2 [6–8,87–89]
Surface protein p23 [12,93]
VP1 [2,3,83,84]
Glycoproteins gB, gC, gD, gE, gI [9–11,90–92]

Glycoprotein E2 [43,122]
Glycoprotein D [44,123]

Glycoprotein [13,94]
Surface protein NcSRS2 [14,95]

Structural proteins C, Erns, E1, E2 [41,120]
Proteins E and prM [42,121]

env, gag, [15,16,96,97]
ROP2 antigen [17,98]

Capsid protein [18,99]
gag, env [19,20,100,101]

IBDV VP2 [23–25,104–106]
Haemagglutinin H5 and H7 [26,27,107,342]

Fusion protein F [21,102]
VP2 [22,103]

Glycoprotein E2 [28,29,108,343]
NS1 protein [30,109]
VP1 [31,110]
GP5 [32–34,111–113]
S1 protein [35,114]
Capsid protein [36,115]
P1-2A (FMDV) + VP2 (PPV) [37,116]
Glycoprotein [38,117]
Haemagglutinin H3 [39,118]

respiratory syncytial virus, BVDV: bovine viral diarrhoea virus, CHV: canine her-
ine herpesvirus 1, FCV: feline calicivirus, FeLV: feline leukemia virus, FHV-1: feline

HVT: herpesvirus of turkeys, IBDV: infectious bursal disease virus, ILTV: infectious
: Newcastle disease virus, N. caninum: Neospora caninum, PPV: porcine parvovirus,
wine Flu virus: Swine influenza virus, TGEV: transmissible gastroenteritis virus, T.
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espectively) or the promoters used to direct transcription (Rous
arcoma LTR promoter versus human cytomegalovirus immediate
arly promoter). Induction of a protective immune response was
lso reported for recombinant FHV-1 expressing the ROP2 protein
f Toxoplasma gondii. Immunization of cats with the recombinant
ollowed by a challenge infection with the parasite reduced the par-
site load in the brain and serum antibodies inhibited the in vitro
nvasion of tachyzoites [98]. Feline calicivirus neutralizing antibod-
es were induced in cats by a FVH-1 recombinant expressing the
apsid protein of feline calicivirus [99]. Only in-vitro expression
nalyses have been reported so far for FVH-1 vectors containing
ene cassettes for gag or env proteins from feline immunodefi-
iency virus [100,101]. These studies suggested that the resulting
ecombinants might be suitable vaccine candidates.

Marek’s disease virus (MDV), which causes a highly contagious
eoplastic disease in chickens, has been engineered to develop
olyvalent vaccines against Marek’s disease (MD) and Newcastle
isease [102] or MD and infectious bursal disease (IBD) [103]. Vac-
ination challenge experiments revealed good protection against
oth diseases targeted by the respective MDV recombinants which
as also achieved in the presence of maternal antibodies against
DV [103]. Herpesvirus of turkey (HVT) is apathogenic in chickens

nd has been used for a long time in vaccines for protection against
D. Bivalent vaccines against both MD and IBD based on HVT vec-

ors expressing VP2 of IBDV were shown to be efficacious and safe.
hey can be inoculated into embryonated eggs and 1-day chick-
ns and are effective in the presence of high titres of maternally
erived antibodies [104–106]. Remarkably, the resulting vaccine
axxitexRHVT + IBD is so far the only licensed and commercialised
nimal herpesvirus vector based product.

Further developments of vectored bivalent vaccines against
oultry diseases include expression of haemagglutinin genes
ncoding H5 and H7 of highly pathogenic avian influenza viruses
y deletion mutants of infectious laryngotracheitis virus [107]. As
entioned above, PRV was one of the first animal herpesvirus

uggested to be suitable as bivalent vaccine vector. Proof of con-
ept was achieved by showing that attenuated PRV expressing
nvelope glycoprotein E2 of classical swine fever virus consti-
utes an efficacious, safe and non-transmissible vaccine against
oth Aujeszky’s disease and classical swine fever [108]. Despite
he promising results, this vaccine was never commercialised.
he main reason may have been that use of a PRV-based vector
accine was not favoured by producers due to the concurrently
nitiated eradication programs for PRV. Consequently, develop-

ent of PRV-based vector vaccines was only recently resumed.
ublications originate mainly from research institutes in China
nd report PRV recombinants expressing antigens from Japanese
ncephalitis virus (JEV) [109], FMDV [110] porcine reproductive and
espiratory syndrome virus (PRRSV) [111–113], transmissible gas-
roenteritis virus (TGEV) [114], porcine circovirus 2 (PCV2) [115],
MDV plus porcine parvovirus (PPV) [116], rabies virus [117] and
3N2 swine influenza virus [118]. Data on vaccination/challenge
xperiments of these potential vaccine candidates are available
or the recombinants expressing NS1 of JEV [109] VP1 of FMDV
110], GP5 of PRRSV [111–113], and haemagglutinin H3 of swine
nfluenza virus [118]. They all induced specific immune responses
gainst PRV and the target pathogens which, however, in all
ases need to be improved. It will be interesting to see which of
hese PRV vector constructs will find the way into field applica-
ions.
The recombinant herpesviruses described above were all gen-
rated using the classical recombination in cultured cells of
ammalian or avian origin. In the last years, cloning and main-

aining of entire, infectious herpesviral genomes in Escherichia coli,
o-called bacterial artificial chromosomes (BAC), and development

b
P
m
o
p
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f techniques to manipulate these genomes in bacteria significantly
ased construction and recovery of recombinants [119]. The BAC
echnique was applied for generation of equine herpesvirus 1 (EHV-
) recombinants expressing BVDV structural proteins [120] or West
ile virus (WNV) prM and E proteins. The latter induced WNV neu-

ralizing antibodies after immunization of horses [121]. Vaccination
f cattle with the EHV-1/BVDV recombinant resulted in BVDV-
pecific, neutralizing antibodies and reduction of viraemia levels
nd nasal virus shedding after a BVDV challenge infection. This
hows that EHV-1 vectors are suitable for vaccination of cattle and
ay find application in cases where existing antibodies preclude

se of live vector vaccines derived from bovine viruses, like the
ecombinant BHV-4 viruses reported recently which express BVDV
lycoprotein E2 or BHV-1 gD [122,123]. Inoculation of the recombi-
ants into rabbits or sheep induced neutralizing antibodies against
he respective target pathogens. However, vaccination/challenge
xperiments in cattle are needed to elucidate whether BHV-4, a
ammaherpesvirus which is regarded as apathogenic or of low
athogenicity in cattle, may become a suitable live vector for vac-
ination against bovine diseases.

With regard to commercialisation, animal herpesvirus vector
accines are far from being a success story. However their devel-
pment and testing in animal models and target animal species
ignificantly contributed to the understanding of the biology of
elevant veterinary diseases and will help in the rationale design
f future developments to improve efficacy which might include
oexpression of immunostimulatory proteins like cytokines or
hemokines and/or ligands for activation of specific signal trans-
uction pathways. These approaches will be facilitated by the BAC
echnology.

.1.3. Adenovirus
Adenoviruses (Ad) have been isolated from humans and many

nimals, including bovine, ovine, porcine, canine and avian species.
uman Ad are by far the best characterised, and the vast majority
f gene transfer studies involving Ad, whether for therapeutic or
accinal purposes, have been carried out with vectors derived from
erotype 5 of Ad (Ad5). Adenovirus-based vectors are very attractive
andidates for vaccine development, as in mammalian hosts they
licit potent humoral and cell-mediated immune responses (IR),
oth systemically and at local sites, against the antigens encoded
y the inserted foreign genes [124]. Different strategies of con-
truction have been employed, depending upon whether the aim
as to obtain replicative vectors (Ad-R+), capable of multiplying in
atural or permissive hosts, or rather non-replicative vectors, inca-
able of multiplying in the host (Ad-R−). Numerous vaccination
rials have been conducted using Ad-R+ or Ad-R− vectors, and have
ed to the conclusion that Ad-R+ are quantitatively (diminution of
he required dose) and qualitatively (induction of mucosal immu-
ity) more effective. Nevertheless, Ad-R+ vectors present a major
rawback; that is, their use in permissive hosts gives rise to the
roduction of infectious particles that can be released into the envi-
onment. In view of the legislation governing the use of genetically
odified organisms, the use of Ad-R+ is in practice only conceivable

or strains of Ad whose innocuity has been firmly established.
When different vectors expressing the same heterologous

ntigen have been compared, Ad5-based vectors have proven
articularly immunogenic, and notably as regards induction of
ntigen-specific CD8+ T cells [125,126]. The qualities of Ad5 that
nderpin such immunogenicity are not as yet fully elucidated,

ut include its capacity to elicit strong innate immunity [127].
arenteral administration of Ad5 in mice induces an intense inflam-
atory response, characterised by the secretion of high levels

f proinflammatory cytokines and the induction of a maturation
rocess in immature dendritic cells. Cytokine secretion does not
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Table 4
Examples of animal adenovirus (Ad) vectors used in veterinary species.

Vector Target pathogen Expressed antigen Species Reference

Porcine Adenovirus CSFV gp55 Pigs [149,167]
Porcine Adenovirus PRV gD Pigs [151]
Ovine Adenovirus MHV NS3 Mouse [152]
Bovine Adenovirus BHV1 gD Cattle [153]
Canine Ad serotype 2 (Cav2) Rabies virus Glycoprotein Mouse, dogs, cats [154–156]
Cav2 Feline panleukopenia virus VP2 Cats [157]
Cav2 FMDV VP1 Pigs [158]
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ELO virus (avian adenovirus) IBDV
orcine Adenovirus TGEV
owl adenovirus Avian infectious bronchitis virus

nitially require viral gene expression, but rather, is induced by the
iral particles themselves [128–131]. Indeed, one viral structural
rotein, the hexon, has been described to behave as an intrinsic
djuvant [132]. The presence of high levels of proinflammatory
ytokines and mature dendritic cells is presumed to create con-
itions conducive to the induction of antigen-specific adaptive

mmunity.
As regards adaptive immunity, the memory response elicited

y Ad5 has been observed to be protracted, both in murine and
imian studies, in relation to what is typical of acute viral infections
133–135]. In particular, the antigen-specific CD8+ T-cell popula-
ion elicited by Ad5 has been observed to maintain an effector
henotype for a prolonged period of time [136]. The protracted
emory response may be related to prolonged exposure to anti-

en, as recent studies have shown that while high level antigen
xpression was maintained for only 1 week after parenteral admin-
stration [136,137], antigen remained available to prime naïve T
ells for at least 30 days after immunisation [137]. Long-term low
evel antigen presentation has been linked to the persistence of
ow levels of transcriptionally active Ad5 genomes at the site of
noculation, in liver and lymphatic tissues [138].

Vectors derived from human Ad have been extensively eval-
ated as vaccines in murine and nonhuman primate models
139–141]. Less data are generally available for veterinary species
142] although a remarkable success have been achieved in pro-
ection of swine and cattle against FMDV by means of a single
noculation of an Ad5-vectored subunit vaccine [143,144]. Data are
urrently being accumulated for nonhuman Ad, not only in murine
nd nonhuman primate species, but also in target animal species,
hether they represent natural hosts or not [145,146]. If necessary,
re-existing immunity against one adenovirus can be circumvented
y the use of another adenovirus [147,148]. The review focused on
onhuman Ad, except vaccination by the oral route, for which data
btained with human Ad is highly instructive.

Vectors derived from several animal adenoviruses have been
valuated as vaccines delivered by parenteral routes (Table 4). Vec-
ors derived from porcine Ad (Pav) have been used to vaccinate
wine against CSFV and pseudorabies virus. In one study, a single
ose of Pav expressing the gp55 (Pav-gp55) of CSFV induced protec-
ion against virulent challenge [149]. In a second study, Pav-gp55
as administered after DNA priming and improved protection as

egards two doses of DNA or a single dose of Pav-gp55 [150]. Like-
ise, administration of a Pav vector expressing the glycoprotein
of pseudorabies virus protected pigs against disease after vir-

lent challenge [151]. Vectors derived from ovine Ad (Oav) have
een evaluated in murine models and one such vector express-
ng the non-structural protein 3 (NS3) of the hepatitis virus was
hown to elicit NS3-specific IFN-� secreting T cells in mice [152].
ectors derived from bovine Ad (Bav) expressing the glycoprotein
D of bovine herpesvirus-1 (BHV1) induced protective immune
esponses in calves [153]. Regarding vectors derived from canine
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VP2 Chickens/in ovo [160]
Spike protein Swine [169]
Spike subunit Chickens [171]

d serotype 2 (Cav2), a single administration by intramuscular or
ntranasal routes of a Cav2 vector expressing the glycoprotein of
abies virus (Cav2-G) induced protective immunity in mice [154].
n dogs, subcutaneous inoculation of replication-competent Cav2-

elicited antibodies neutralising infectivity of rabies virus and
rotected against lethal challenge [155]. Similarly, intramuscular

noculation of Cav2-G in cats elicited rabies–virus-specific neu-
ralising antibodies (NA) and protection [156]. Administration of
Cav2-derived vector expressing the VP2 protein of the feline pan-

eukopenia virus elicited neutralising antibodies (NA) in all cats and
rotected from infection and disease [157]. A Cav2 vector express-

ng the VP1 protein of foot-and-mouth disease virus gave rise to
humoral response, including the induction of NA, in pigs [158].

ubcutaneous vaccination with Cav2 vectors expressing canine dis-
emper virus (CDV) antigens afforded solid protective immunity
n puppies born to CDV and Cav2 immune dams. Administration

ith Cav2 vectors may thus be an efficient strategy for overcoming
aternal-derived immunity [159]. Vectors derived from CELO virus

avian adenovirus) have been evaluated in chickens, and a CELO
ector expressing the VP2 antigen of the infectious bursal disease
irus induced protection upon injection in chickens or in ovo [160].

Orally delivered vaccines against animal diseases are sought
or their ease of administration. They represent the only means of
mmunising wildlife, whose major role as a reservoir of pathogenic
gents was underscored in an in-depth analysis of the origin of
merging human diseases [161]. Just as importantly, oral vacci-
ation holds the promise of eliciting immune responses not only
ystemically, but also at mucosal surfaces, which represent the
ajor sites of pathogen entry. Such responses are poorly elicited

y most injected vaccines. Certain observations suggest that effec-
ive oral vaccines might well be derived from Ad. In particular, an
rally delivered Ad-based vaccine against acute respiratory disease
ARD) of adenoviral origin was administered to military person-
el in the USA over a period of 25 years, beginning in the 1970s.
his vaccine, composed of replication-competent Ad4 and Ad7 in
he form of enteric coated tablets, was well-tolerated and afforded a
ignificant level of protection against ARD [162–164]. While vaccine
roduction was discontinued in 1996, a similar Ad-derived vaccine
gainst ARD is in the process of being relicensed [165].

Regarding oral delivery of human Ad expressing a heterolo-
ous antigen, many experimental vaccines have been evaluated
n diverse species. Upon oral administration of an Ad5-based vec-
or expressing the glycoprotein of the rabies virus in foxes, most
accinees developed NA against the rabies virus, while in dogs
mmune responses were not detected after oral administration and
ven after endoscopic deposition in the small intestine [166]. As

egards oral delivery of Ad of non-primate origin, antigen-specific
mmune responses have been elicited against the transgene prod-
ct in rodent models as well as in veterinary species, including pigs
nd dogs. Upon oral delivery of Pav-gp55, 60% of pigs were pro-
ected after oral challenge, although antibodies that neutralised
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SFV infectivity had not been detected [167]. Pigs that received
wo oral doses, but not one, of Pav-gp55 were protected against
isease after contact challenge [168], despite the absence of serum
A. While a similar percentage of pigs that had been vaccinated by

he subcutaneous route were protected, CSFV antigen was found in
he spleens of surviving orally-vaccinated but not subcutaneously-
accinated pigs. Oral administration of a Pav vector expressing the
ransmissible gastroenteritis virus (TGEV) spike protein induced
GEV-specific virus-neutralising antibodies in swine. Moreover,
oronavirus-specific secretory IgA was detected in the small intes-
ine and lungs of immunised animals [169]. Bav-derived vectors
ave been shown to elicit mucosal immunity and induce protec-
ion against BHV1 in a natural host (cattle), even in animals with
re-existing antibodies to the vector [170]. A Cav-2 vector express-

ng the glycoprotein of the rabies virus (Cav-2-G) was administered
o cats by parenteral and local routes: intramuscular but neither
ntranasal nor oral administration elicited NA and afforded protec-
ion against lethal challenge [156]. By contrast, oral vaccination of
ogs with baits containing Cav2-G elicited virus NA and afforded

ong-lasting protection against fatal disease upon challenge with
abies virus [156]. Chickens were protected against challenge fol-
owing oral vaccination with a Fowl adenovirus expressing the spike
ubunit of the avian infectious bronchitis virus [171].

In order to develop effective orally-delivered vaccines, sev-
ral objectives must be met. These include stability in the highly
egradative gastrointestinal milieu, efficacy of antigen delivery
cross mucosal barriers to gut-associated immune-inductive tis-
ue, and induction of immunity despite a local immunological
ontext biased towards immunological tolerance. Given these
nherent obstacles to oral administration, it is perhaps not sur-
rising that at present oral delivery of Ad has not proven entirely
atisfactory. Antigen-specific immune responses have been elicited
n rodent [172] and primate models [173], as well as in feral and vet-
rinary species, including foxes, dogs, cats and pigs. Nevertheless,
mmune responses have been considered to be weak, particu-
arly in large animals [174]. When different routes of infection
ave been compared, higher doses have been required in general
o achieve detectable systemic humoral responses and protection
y oral administration [175]. At present, the relative contribu-
ion of the various obstacles to oral vaccination is unknown, but

ust be appreciated to improve upon current Ad vectors and oral
elivery strategies. Suboptimal transduction secondary to ineffi-
ient breaching is likely to be a major factor. Indeed low amounts
f genomic Ad DNA were detected in stomach, small intestine
nd Peyer’s patches as compared with high amounts in the oral
avity [176]. Whether such low level expression is due to inac-
ivation of Ad vector in the gastrointestinal milieu or to mucosal
arriers is not unknown. It is unlikely, however, that gastric inac-
ivation represents the only obstacle, as when the stomach has
een bypassed by direct enteric administration in sheep or endo-
copic deposition in the small intestine of dogs, adaptive immune
esponses were weak [177] or undetectable [166], respectively. Nev-
rtheless, gastro-protection of Ad-based vaccines is being actively
xplored [173,178]. Finally, poor immunological context in the gas-
rointestinal milieu would seem to be a factor, as oral adjuvants,
nd in particular double stranded RNA or its analogs), gave rise
o improved adaptive IR [179]. Not only the magnitude but also
he quality of immune responses generated by oral administra-
ion of Ad has come under scrutiny. In particular, oral delivery
f Ad in mice gives rise to systemic rather than intestinal cell-

ediated immunity [180,181]. Upon oral delivery of hAd in mice,

trong immune responses were elicited against the transgene prod-
ct in CD8+ T lymphocytes in the spleen, but only extremely limited

mmune responses in Peyer’s patches [181]. Similarly, after oral
elivery of Ad of chimpanzee origin in mice, weak responses were

t
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n
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licited in CD8+ T lymphocytes in the spleen, but not in Peyer’s
atches and mesenteric lymph nodes [180]. At present it is unclear
hy oral delivery of Ad should elicit local humoral but not local

ell-mediated immune responses, despite eliciting systemic, albeit
eak, cell-mediated immune responses.

Nevertheless, in view of the powerful proof of principle provided
y the Ad4/Ad7 vaccine, it is likely that solutions will be found to
ptimise adenoviral vaccines for oral administration.

.1.4. Baculovirus
Baculoviruses, members of the family Baculoviridae with the

enera Granulovirus and Nucleopolyhedrovirus, are large enveloped
iruses with double-stranded, circular DNA genomes of about
0–180 kbp in size. So far, baculoviruses were found only in arthro-
ods [182] and their restricted host range made some baculoviruses
ttractive as biological agents for insect pest control [183]. The
est studied baculovirus is Autographa californica multicapsid nucle-
polyhedrovirus (AcMNPV). The ∼134 kbp AcMNPV genomic DNA
hich is infectious, is packaged in a rod-shaped nucleocapsid
hose length is proportional to the genome size [182] enabling

nsertion of large foreign DNA segments.
AcMNPV has been extensively used for production of recom-

inant proteins in insect cells since the early 1980s [184]. Since
hat time the methods for generation and isolation of recombinant
aculoviruses were continuously improved. In the mid-1990s Hof-
ann et al. [185,186] and Boyce and Bucher [187] demonstrated that

cMNPV recombinants carrying mammalian cell-active expression
assettes, so-called BacMam viruses [188] were suitable vectors for
ene delivery into hepatic cells. Successful transduction not only
f a large number of primary mammalian cells and established cell
ines by BacMam virus has now been reported (for examples see
ost and Condrey [189] but also efficient gene transfer into cells of
vian [190,191] and piscine origin [192,193] has been demonstrated.
hus, it appears that uptake of AcMNPV by vertebrate cells is a com-
on event. It has been shown that the viral envelope glycoprotein

p64 is essential for virus attachment and subsequent release of
he nucleocapsids from endosomes [194]. The exact mechanism of
ntry into non-insect cells, however, needs to be clarified.

During the last years an increasing number of BacMam virus
pplications have been published confirming that advantages of the
acMam technology for gene delivery into vertebrate cells are:(1)
acMam viruses are easy to generate, (2) they have a broad cell type
ange, (3) there is no detectable gene expression driven by AcMNPV
romoters and they do not replicate in vertebrate cells, (4) there is

ittle to no microscopically observable cytopathic effect in trans-
uced cell cultures, (5) they are applicable for transient and stable
xpression and (6) their application is cost-effective in comparison
o chemical transfection procedures [195].

Initially, in vivo transduction was negative for transgene expres-
ion due to inactivation of the virus in presence of native serum and
t was shown that the complement system mediated neutraliza-
ion by both the classical and alternative pathways [186,196,197]. To
vercome this problem, complement resistant viruses were gener-
ted by displaying the human decay accelerating factor on the viral
nvelope [197]. This modification resulted in enhanced gene trans-
er efficiency in neonatal rats. As an alternative, BacMam viruses
ere pseudotyped with the G protein of vesicular stomatitis virus

VSV-G) and it was demonstrated that the resulting viruses were
ore resistant to inactivation by animal sera than unmodified Bac-
am viruses [198]. Recombinants displaying VSV-G proteins on
heir envelope proved to be suitable for in vivo gene transfer into
he cerebral cortex and testis of mice [198], mouse skeletal muscle
199], rat brain and rabbit muscle [200].

So far reports dealing with the application of the BacMam tech-
ology for induction of immune responses against viral pathogens
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Table 5
Negative sense RNA viruses rescued using reverse genetics technologya.

Family Subfamily Genus Species Abbreviation

Rhabdoviridae Vesiculovirus Vesicular stomatitis virus VSV
Lyssavirus Rabies virus RV

Paramyxoviridae Paramyxovirinae Morbillivirus Measles virus MeV
Rinderpest virus RPV
Canine distemper virus CDV

Respirovirus Sendai virus SeV
Human parainfuenza virus type 3 hPIV3

Rubulavirus Bovine parainfuenza virus type 3 bPIV3
Simian virus type 5 SV5/PIV5
Mumps virus MuV
Human parainfuenza virus type 2 hPIV2
Newcastle disease virus NDV

Henipavirus Nipah virus NiV

Pneumovirinae Pneumovirus Human respiratory syncytial virus hRSV
Bovine respiratory syncytial virus bRSV

Filoviridae Ebola-like viruses Ebola virus EboV

Bunyaviridae Bunyavirus Bunyamwera virus BUNV
LaCrosse virus LACV

Phlebovirus Rift Valley fever virus RVFV
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rthomyxoviridae Influenzaviru
Thogotovirus

a Adapted from Neumann et al. (2002) J. Gen. Virol. 83, 2635–2662.

re limited. Aoki et al. [201] inoculated mice intramuscularly or
ntranasally with an AcMNPV recombinant expressing pseudora-
ies virus glycoprotein B (gB). Intramuscular inoculation yielded
igher gB-specific antibody titres in sera but mucosal antibod-

es were only found after intranasal inoculation. Strauss et al.
202] injected mice intramuscularly with a series of AcMNPV
ecombinants which displayed the Plasmodium falciparum cir-
umsporozoite (CS) protein in the viral envelope or contained a
ammalian cell-active CS protein expression cassette or displayed

nd expressed the CS protein. The latter induced higher CS protein-
pecific antibody titres and a greater amount of antigen specific
nterferon-� producing T cells than the viruses which only dis-
layed or expressed the CS protein. The CS display/expression
acMam virus also performed better in inducing CS protein-specific
D4+ and CD8+ T-cell responses in vitro. This study also revealed
hat splenocytes from AcMNPV infected mice produced a number
f non-specific IFN-� producing cells, leading to the assumption
hat the vector itself induced a generalized activation of lympho-
ytes. This interpretation is in line with previous reports which
howed that AcMNPV induced antiviral activity in mammalian cells
nd conferred protection against lethal encephalomyocarditis virus
203] and influenza virus infections [204] in mice. In addition, a
ecent study [205] demonstrated that AcMNPV is a strong adju-
ant also for adaptive immune responses in mice where effective
umoral and T-cell adaptive responses against coinjected antigens
ere induced.

As mentioned above, pseudotyping BacMam viruses with VSV-
improved in vivo gene transfer by conferring resistance to

omplement-mediated neutralization. Improvement in induction
f antigen-specific immune responses by pseudotyped viruses was
ddressed by Facciabene et al. [206] who compared the immuno-
enic properties of conventional and VSV-G displaying BacMam
iruses expressing the hepatitis C virus E2 glycoprotein. In contrast
o the E2-specific antibody response which was comparable for

he different viruses, 10-fold less pseudotyped virus was needed as

inimal dose for induction of a specific cellular immune response.
evertheless, both viruses induced CD8+ cells with antigen spe-
ific effector function. Pseudotyped BacMam virus was also used to
ompare induction of PRRSV neutralizing antibodies in mice after

s
a
i
d
v

Influenza A virus
Thogoto virus

noculation of a recombinant virus coexpressing the PRRSV GP5 and
proteins, or DNA immunization with purified DNA encoding the

ame antigens [207]. This study showed that PRRSV neutralizing
ntibodies were raised in a dose dependant manner and, aston-
shingly, twofold inoculation of 108 plaque forming units of the
acMam virus elicited significantly higher neutralizing antibody
itres than dual injection of 100 �g purified plasmid DNA.

The field and examples for application for BacMam viruses are
apidly growing and the development of next generation BacMam
ectors for vaccination purposes. Improvements to enhance the
ransduction efficacies in vivo include display of specific ligands
n the surface of BacMam virions [208–212] and augmentation of
ransgene expression by vertebrate cell-active transcriptional and
ost-transcriptional regulatory elements [213].

.2. RNA virus vectors

.2.1. Paramyxovirus
Viruses classified in the family Paramyxoviridae [214] are

nveloped, single-stranded, negative-sense RNA viruses that
nclude highly prevalent human pathogens, such as respiratory syn-
ytial virus (RSV) and measles virus (MV), as well as viruses that
ave major economic impacts on the poultry and livestock indus-
ries [e.g. Newcastle Disease virus (NDV), rinderpest virus (RPV)
nd peste des petits ruminants (PPRV)]. Extraordinary progress has
een made in the past 10 years in the genetic engineering of these
NA viruses and this has provided an opportunity which allows the
esign of new vaccines expressing foreign epitopes with the poten-
ial to combat these and other pathogens. This major breakthrough
ccurred when reverse genetics systems, the ability to rescue an
NA virus from a complete DNA copy of its genome, were estab-

ished for the negative-sense RNA viruses. The first such virus to
e rescued from a copy of its genome was rabies virus in 1994
215]. This was quickly followed by the rescue of other negative

ense RNA viruses [216–219] (Table 5). The ability to specifically
lter the genome at any chosen site has led to a better understand-
ng of virus protein functions and interactions and has enabled the
evelopment of live attenuated virus vaccines; in particular marker
accines. These, when used in association with companion diagnos-
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ic tests, can be used to identify vaccinated as opposed to naturally
nfected animals. Another application is the use of these virus vac-
ines as vectors to deliver immunogens from other pathogenic
gents

The family Paramyxoviridae is divided into two subfami-
ies, Paramyxovirinae (containing the morbillivirus, respirovirus,
ubulavirus and two new genera, henipavirus and avulavirus)
nd Pneumovirinae (containing the pneumovirus and metapneu-
ovirus genera) [220,221]. Paramyxoviruses have non-segmented
egative-sense RNA genomes of between 15 and 19 kb in length
222]. One characteristic of this virus family, and other negative-
trand RNA viruses, is that naked RNA when transfected into cells
s not infectious in contrast to the full-length genome RNAs of
ositive-sense RNA viruses. The minimum protein requirement for
NA transcription and initiation of infection is the association of the
ucleoprotein (N), the phosphoprotein (P), and the polymerase (L)
ith the RNA genome which are the components of the functionally

ctive ribonucleoprotein complex (RNP). The current technique for
he recovery of virus from an infectious clone by reverse genet-
cs involves co-transfection into permissive eukaryotic cells of
lasmids expressing the mRNAs of the viral RNP proteins and a
ull-length genome RNA. The expression of these RNAs is gener-
lly controlled by phage T7 promoters and the T7 polymerase is
upplied to the cell by prior infection with a recombinant poxvirus
xpressing this protein.

Live attenuated strains of these viruses are extraordinarily good
nducers of humoral immune responses and cellular immunity.

ost importantly, in the case of NDV, MV and PPRV or RPV vac-
ines, individuals are completely protected from homologous virus
hallenges and display no virus shedding or signs of disease. They
lso induce a life-long protection after either a single or two-dose
dministration. Moreover, they can be produced in large scale in
ost countries and can be distributed at low cost. NDV vaccines

re administered through drinking water or spraying flocks, mak-
ng feasible the vaccination of large populations of poultry in the
eld at very low cost. Paramyxovirus genomes can accommodate
dditional genetic information, enabling the expression of at least
ne foreign antigen, and the inserted genes are stably maintained
uring serial passage in cell culture. Because of these desirable
haracteristics, Paramyxoviridae vaccines are being engineered to
evelop recombinant vector vaccines able to express high levels
f foreign proteins which can then be used to immunise against
nfections by both the homologous virus and other infectious
gents.

To explore the potential of the Paramyxoviridae as vaccine vec-
ors, a number of investigators have generated recombinants of
iruses of major scientific, human and veterinary importance. The
easibility of this approach was first demonstrated by introducing
eporter genes into the genomes of the human RSV, the proto-
ype member of the genus pneumovirus [223], and the Sendai
irus [224]. Subsequently a number of research groups used other
aramyxoviruses to express foreign proteins. These include the
oot-and-mouth disease virus polymerase (3Dpol) and part of the
apsid protein from the RPV vaccine strain [225]; the green fluo-
escent protein (GFP) from SV5 [226,227]; the G glycoprotein from
SV substituting for the reading frames both envelope glycopro-

eins (haemagglutinin (H) and fusion (F)) of MV [228] proteins from
est Nile virus and other flaviviruses from the MV vaccine strain

DNA [229].
Development of maker vaccines for DIVA strategies is very
mportant for veterinary vaccines [230]. For example, vaccination
ith the live attenuated vaccine to combat Newcastle disease is
ighly effective but vaccinated poultry cannot be distinguished

rom those infected by wild-type virus, thus making it difficult
o detect wild type viruses that may be circulating. In order to

e
(
v
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a
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vercome this problem, a recombinant virus was generated that
xpressed the NDV F protein and a chimeric haemagglutinin (HN)
rotein whose immunogenic globular head was replaced by that of
vian paramyxovirus type 4 (APMV4) [231]. Protective neutralizing
ntibodies against the NDV F protein are produced on vaccina-
ion, while those produced against the APMV4 HN protein allow
serological distinction of vaccines from wild-type NDV infections

231]. In another study deletion of a B-cell immunodominant epi-
ope in the C-terminal region of the N protein from NDV generated
n efficient negative-marker vaccine [232]. This successful result
ndicated that it is possible to find a sequence in the N protein that
s highly immunogenic but dispensable for virus growth. The dele-
ion of this sequence does not affect the efficacy of the recovered
DV vaccine since an N-specific immune response is not absolutely

equired for the protection of poultry against a lethal challenge
233,234].

The pandemic spread of highly pathogenic avian influenza virus
HPAIV) is of special importance since it poses a significant threat to
oth animal and human health. A number of studies have explored
he possibility of creating safe recombinant viruses expressing the
rotective proteins of the H5N1 strain. This would overcome the
afety limitations that hinder the production and widespread use
f the current influenza vaccines in the field. Haemagglutinin (HA)
f the H5 subtype HPAIV was expressed from recombinant vaccine
trains of NDV and this virus has been used successfully to vaccinate
arge numbers of animals. In a recent study [235] both a wild-type
nd a mutated HA open reading frame of an HPAIV derived from a
ild bird isolate, were inserted into the intergenic region between

he P and matrix (M) genes of the LaSota NDV vaccine strain. A single
ose of the recombinant viruses in chickens induced both NDV- and
IV H5-specific antibodies and completely protected chickens from
hallenge with a lethal dose of both velogenic NDV and homologous
nd heterologous H5N1 HPAIV.

In an approach similar to that of the NDV B-cell epitope dele-
ion, the N protein gene of rinderpest was replaced by that of PPRV.
his exchange deletes rinderpest-specific epitopes in the N protein
nd this chimeric virus can act as an effective marker vaccine for
PV [236]. Another promising approach to marker vaccine develop-
ent is the exchange of glycoproteins between members of related

aramyxoviridae. Since these proteins are immunogenic and pro-
ective, their replacement with the corresponding gene(s), or part
f a gene, from another virus can give rise to a new and viable
himeric virus [237,238]. Glycoproteins were exchanged between
espirovirus and pneumovirus genera [239] as a first step on the
ay to developing an attenuated bivalent live vaccine against the

wo most important viral pathogens in the bovine respiratory tract,
RSV and BPIV-3. BRSV gycoproteins (G and F) were replaced by
he HN and F proteins of bovine PIV3 (bPIV3). Similarly, the enve-
ope proteins have been exchanged within the morbillivirus genus.
he M, the F and H protein genes of rinderpest virus were replaced
y those of PPRV using the RPV vaccine as the backbone. Goats
ere protected against virulent PPR challenge with the resulting

himeric PPR marker vaccine [240]. The widespread use of such
accines, along with the diagnostic tests to identify their serolog-
cal signature, would greatly improve the surveillance capabilities
or disease preparedness and emergency prevention procedures.

.2.2. Rhabdovirus
Among the Rhabdoviridae family are the causative agents

f three very different and important diseases: rabies, bovine

phemeral fever, and vesicular stomatitis. In particular, rabies virus
RV) and vesicular stomatitis virus (VS) have been used as viral
ectors and as vaccine vehicles [241]. Employing reverse genetics,
he viral non-segmented negative stranded RNA genomes became
ccessible to genetic manipulation [242–244].
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RV and VSV accept additional transcriptional units and maintain
n unexpected genetic stability of the modified genome [245–247].
ue to the life cycle of members of Rhabdoviridae, recombina-

ion, reversion, and integration of viral genome into the host
enome does not occur. Many foreign genes have been inserted
nto and expressed by rhabdovirus-based vectors [248,249]. While
SV expresses foreign proteins at a high level and is highly
ytopathogenic to infected cells, RV is non-cytopathic to infected
ells and expresses modest to high levels of foreign proteins. Both
iruses and viral vectors derived from these viruses are highly
mmunogenic and elicit humoral, cellular, and innate immune
ffector pathways. Additionally, other mechanisms such as viral
nterference [248] and efficiency of viral-vector spread [250] might
ontribute to successful vaccination using rhabdoviral vectors.
pplication of this kind of vectors is further eased due to almost
omplete absence of seropositivity in humans and animals.

As for all biological vectors, safety concerns exist and have been
ddressed. For both viruses attenuated strains have been generated
hrough molecular and virological manipulations [251]. A major
ocus of attenuation is the viral glycoprotein, which can be mod-
fied, substituted with other glycoproteins, or deleted. Other viral
ene products contributing to virulence such as the phophospro-
ein have also been targeted for modifications. Another method to
chieve attenuation of RV and VSV was rearranging the gene order
ithin the genome [252]. This approach appears to shift the balance

etween viral gene expression and viral replication more towards
xpression.

.2.3. Bunyavirus
The Bunyaviridae family is the largest known family of animal

NA viruses, representing important human and animal arthropod
nd rodent-borne pathogens. The Bunyaviridae are tri-segmented
egative sense RNA viruses. Reverse genetics systems have been
escribed for some members of the genus Bunyavirus [253,254].
ery recently foreign gene expression has been demonstrated for

he first time in any bunyavirus by means of a Rift Valley fever
irus, T7-RNApol driven, reverse genetic system [255]. Deletion of
he viral interferon antagonist gene NSs highly attenuates the virus
nd provides room for insertion of foreign sequences. The attenu-
ted virus can still be propagated in type I-IFN-deficient cell lines
nd remain highly immunogenic, eliciting very efficient neutraliz-
ng antibody responses. The ability of bunyavirus to infect many
ertebrate cells makes them attractive candidates for future devel-
pments as viral vectors.

.2.4. Alphavirus
Other viral vectors and potential antigen delivery strategies in

eterinary species can be found in studies dealing with human
athogens. Good examples are expression strategies relying on the
se of replication-deficient alphavirus, modified for expressing for-
ign antigens. These have been used as candidate vaccines, and in
nti-cancer and gene therapy strategies. Alphaviruses belong to the
ogaviridae family and contain a 12 kb ssRNA(+) genome with two
RFs, the first one encoding 4 non-structural proteins and the sec-
nd one encoding 4 structural proteins controlled by a subgenomic
romoter. The three prototype viruses are Sindbis (SIN), Semliki
orest Virus (SFV) and Venezuelan equine encephalitis virus (VEE).
hree types of vector systems have being engineered, replication-
eficient viral particles (replicon particles), replication-competent
iral particles and DNA/RNA-based vectors. Most vaccine studies

ave been addressed in mouse models [256] with a few exam-
les related with animal diseases. VEE replicon vectors expressing
he two major envelope proteins (GP5 and M) of equine arteritis
irus (EAV) have been used for horse vaccination against a viru-
ent EAV challenge [257]. This study, together with others in human
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athogens, demonstrates the ability of alphaviruses to induce pro-
ective mucosal responses in horses after intranasal or intrauterine
AV challenge. Therefore, an interesting aspect of the alphavirus
eplicon particle is the potential ability to induce mucosal immu-
ity as also shown for SIN [258] and SFV [259]. In addition the
bility of VEE and SIN glycoprotein E2 to target dendritic cells has
een reported in mice [260] and humans [261]. The use of self-
eplicating alphavirus DNA vectors containing RNApol II promoters
ay provide an alternative to increase the immune stimulation. At

east in mice, antigen specific immune responses can be obtained
ith lower DNA doses with compared to conventional plasmids

262,263]. SIN-based DNA vectors were used to prime immune
esponses against Aujezsky’s disease in pigs [264] or to decrease
trongly the quantity of plasmids needed [265].

.2.5. Coronavirus
Coronavirus based-vectors are emerging with high potential for

accine development. Coronaviruses (CoVs) have several advan-
ages as viral vectors: (i) CoVs are single-stranded, positive-sense
NA viruses that replicate in the cytoplasm without a DNA inter-
ediary, making integration of the virus genome into the host cell

enome unlikely [266]; (ii) these viruses have the largest RNA virus
enome and, in principle, have room for the insertion of large for-
ign genes [267]; (iii) a pleiotropic secretory immune response is
est induced by the stimulation of gut-associated lymphoid tissues.
ince CoVs, in general, infect the mucosal surfaces (both respira-
ory and enteric), CoVs may be used to target the antigen to the
nteric and respiratory areas to induce a strong secretory immune
esponse; (iv) the tropism of CoVs may be engineered by modi-
ying the S gene [268]; (v) non-pathogenic CoVs strains infecting

ost species of interest (human, porcine, bovine, canine, feline, and
vian) are available and therefore suitable to develop safe virus vec-
ors; and (vi) infectious CoV cDNA clones are available to design
xpression systems.

Reverse genetics for CoVs was first achieved by targeted recom-
ination [269]. Soon after, the first CoV infectious cDNA clones were
onstructed for transmissible gastroenteritis CoV (TGEV) [270,271].
hese achievements were followed by the development of infec-
ious cDNA clones for human coronavirus (HCoV) 229E [272] and
CoV-OC43 [273], severe and acute respiratory syndrome coron-
virus (SARS-CoV) [274], mouse hepatitis virus (MHV) [275], and
or avian coronavirus [276].

Using the TGEV infectious cDNA maintained as a BAC, the
reen fluorescent protein (GFP) gene was successfully expressed by
eplacing the non-essential 3a and 3b genes by sequences encod-
ng GFP. The engineered genome was very stable (>30 passages
n cultured cells) and led to the production of high protein levels
50 �g/106cells) [277]. Using this vector the bicistronic expression
f two surface proteins of porcine respiratory and reproductive syn-
rome virus (PRRSV) virus (Gp5 and M proteins) has been shown.
fter more than ten passages in tissue culture 80% and 100% of
irus infected cells expressed Gp5 and M proteins, respectively (L.
njuanes, personal communication). This vector was also used for
icistronic expression of rotavirus VP2 and VP6. These viral proteins
elf aggregated leading to the formation of rotavirus like parti-
les (VLPs) in the cytoplasm of infected cells (J. Ceriani, J. Buesa,
. Enjuanes, Javier Ortego, unpublished results). Therefore, expres-
ion levels using these vectors are similar to those described with
ectors derived from other positive strand RNA viruses such as Sind-
is virus [278]. Using TGEV-derived vectors expressing GFP, the
nduction of lactogenic immunity has been demonstrated [277].
ecombinant TGEVs have also been assembled by in vitro junction
f six cDNA fragments encoding a full-length genome. Using these
ystems, GFP gene replaced ORF3a, leading to the production of a
GEV that grew to titres of 108 pfu/ml and expressed GFP in a high
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roportion of cells [279]. Finally, CoV-derived virus vectors have
een engineered for infectious bronchitis virus (IBV). GFP protein
as expressed replacing the non-essential gene 5a. The recombi-
ant virus grew to a titre 10-fold lower than that of the wild type
irus, and GFP expression was lost at a very early passage [280].

Propagation-deficient CoV-derived vectors have also been gen-
rated based on replicons derived from TGEV and HCoV-229E. The
dvantages of these systems are; (i) an increased room for the inser-
ion of foreign genes when compared with full-length infectious
DNAs, as the structural genes were deleted, (ii) the possibility
f engineering multigene expression vectors due to the transcrip-
ional strategy of CoVs and, (iii) an increased level of safety as
he replicons are non-infectious. TGEV-derived replicons have been
enerated from the infectious cDNA. GFP protein was successfully
xpressed from these replicons, with high expression levels in 80%
f the transfected cells [281]. Replicons derived from HCoV-229E
xpressing GFP were also generated (0.1% of cells) [282]. These
evels were increased up to 3% by co-transfection of N protein

RNA [283]. A multigene vector based on HCoV-229E replicon has
lso been constructed that expressed GFP, chloranphenicol acetyl-
ransferase (CAT), and firefly luciferase (LUC). Heterologous gene
xpression levels were up to 3% GFP-positive cells, CAT levels of
.46 ng/106 cells, and LUC activity of around 25.0 relative light

6
nits/10 cells [284]. Human CoV-based vector RNA can be packed
nto propagation-deficient pseudovirions that, in turn, can be used
o transduce immature and mature human dendritic cells.

Safe replication-competent propagation-deficient virus vectors,
ased on TGEV genomes deficient in the essential gene E (obtained

t
a
W
l
m

able 6
dvantages and disadvantages of different antigen delivery systems.

elivery system Advantages

odified live vaccines (MLV) Strong cellular and humoral immune respon

NA viral vectors Large capacity for extra genes; multivalent v
Poxvirus Replicative poxvirus: cytoplasm replication;

after single injection; activation of cell and h
responses; easy to produce; low cost; therm
immunogenic by various routes
Non-replicative poxvirus: limited spread; lo
vector; priming young animals with matern
vaccination; require high doses; DIVA

Herpesvirus Large genome size; availability of methods t
the genome

Adenovirus Potent humoral and cell-mediated immune
adjuvant properties, long-term low level ant
effective oral vaccines

Baculovirus Insertion of large foreing DNA fragments; tra
lines and primary cells; do not replicate in v
transduced cells; adjuvant properties

NA(−) viral vectors RNA not infectious; stability after serial pass
Paramyxo Good humoral and cellular immune inductio

protection without virus shedding, low cost
chimeric marker vaccines possible

Rhabdovirus Genetic stability; high level expression of fo
immunogenic (humoral, cellular and innate
activated); complete absence of preexisting
animals/humans

NA(+) viral vectors
Alphavirus Inductors of mucosal immunity

Target dendritic cells (E2); replicons allow h
Coronavirus High capacity among RNA vectors (Coronavi

response; modifiable tropism; non-pathogen
interest

Retrovirus Good inducers of protective CTL responses; t
cells; genetic stability; long-lasting expressi

Flaviviruses Possible interchanging of genes, generating
(2008) 6508–6528

y using E+ packaging cell lines), have also been developed [285].
wo types of cell lines were constructed, expressing transiently or
tably the E protein from TGEV. Virus titres were directly related
o E protein expression levels that were higher in the transiently
xpressing cell lines. In the absence of E protein immature TGEV
articles of a size slightly larger than the mature viruses were
ormed. These particles were not released to the supernatants of
nfected cultures, whereas infectious viruses were assembled in
ackaging cell lines providing the E protein in trans [286]. The abil-

ty to generate TGEV-�E mutants that are replication-competent
ut propagation-deficient by complementation in packaging cell

ines, supports the potential use of coronavirus as vaccine vectors.

.2.6. Retrovirus
Among the Retroviridae family, the foamy viruses (subfamily

pumavirinae) and Lentiviruses (subfamily lentivirinae) constitute
otential delivery ssRNA(+) viral vectors. Lentiviral vectors can
e considered promising vaccination vectors since they are good

nducers of protective CTL responses [287,288] and efficiently trans-
uce dendritic cells [289], therefore ensuring the induction of Th
ell responses and correct development of antibody responses.
mong the common advantages of lentiviral vectors are genetic
tability and the expression of the vaccine antigen over a period of

ime, favouring the triggering of immune responses. More recently
lentiviral vector (TRIP/sEWNV) expressing a soluble form of the
NV glycoprotein E (strain IS-98-ST1) induced a strong and long-

asting neutralizing antibody response after a single i.p. dose in 129
ice [290]. This antibody response correlated with the full protec-

Disadvantages

ses; lifelong protection Reversion to virulence; teratogenicity
in pregnant animals

accines
long-lasting immunity
umoral immune
o resistance;

Immunity against the vector after
repeated use (pre-existing immunity)

w immunity against the
al Abs; boost the IR after

o manipulate Reversion to virulence; integration in
the host genome

responses; intrinsic
igen presentation;

Potential release as GMOs
Limited capacity of adenovirus for
insertion of foreign genetic material

nsduction of many cell
ertebrate cells; no cpe in

Virus inactivated by complement
proteins; few data/studies on
immunization

ages
n; complete and lifelong
vaccination procedures;

GMO release

reing proteins; highly
effector mechanisms
immunity in

GMO release

GMO release
igh level expression
rus); secretory immune
ic infect most species of

Preexisting immunity against the
vector

ransduction of dendritic
on of antigens;

Integration in host’s genome

chimeras GMO release
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ion observed in the mice after lethal WNV challenge. In addition to
his, the potential of replication-competent feline foamy virus (FFV)
ased vaccine vectors for vaccination purposes has been inves-
igated [291]. FFV vectors expressing neutralizing epitopes from
eline calicivirus (FCV) capsid protein induced humoral responses
gainst both the vector proteins and the heterologous capsid anti-
en. After challenge of cats with homologous FCV virus shedding
nd disease specific clinical signs were significantly reduced. Other
ectors derived from the bovine lentivirus Jembrana disease virus
JDV) have been developed [292] by means of the generation of
icistronic transfer vectors. The JDV-based vector could be pseudo-
yped with VSV-G protein and exhibited a broad tropism, useful for
urther vaccine developments.

.2.7. Flavivirus
New emerging vectors may also provide opportunities for the

eneration of novel delivery systems. Novel viral-vectors based
n the prototype of a live attenuated vaccine for yellow fever
YF17D) are being used as a vector system in developing vac-
ines against other flaviviruses including West Nile virus [293].
he approach of interchanging of genes encoding coat proteins of
F with those corresponding to the other flaviviruses, generating
himeric viruses, has been also used successfully for the generation
f chimeric viruses as novel vaccines for pestiviruses [294]. As for
F based vectors, the possibility of using CSFV attenuated vectors

or expression of heterologous genes in swine should be explored
urther.

. Conclusions

A large number of different strategies for vaccine antigen deliv-
ry are available, many of them offering considerable advantages
ver classical vaccines (Table 6). However we cannot yet predict
he most appropriate delivery technology to make an effective
accine. We still do not know why certain antigens appear to
ork better than others using the same delivery system. The

eductionistic vaccine approach seeks to look for a single anti-
en or antigenic determinant to be delivered by itself or using
heterologous expression system. This may have clear advan-

ages including safety and ease of production but may compromise
he immunogenicity and therefore the vaccine efficiency. A non-
eductionistic vaccine approach aims to find ways to rationally
ttenuate the virulence of each specific pathogen. Based on the
xamples found in the literature this approach renders the most
ffective vaccines however raising more safety concerns. Between
hese extremes is a plethora of different strategies which pro-
ide a good compromise between safety and efficiency but as
et lack data regarding field performance. Whether a vaccine is
o be applied for livestock species, the pet industry or to avoid
he spread of a pathogen in a non-endemic location will depend

ore on biosafety considerations than on the experimental data.
n spite of all the advances in the field, few strategies reach final
alidation for field use. Animal health policy requirements for
mproved vaccines usually delays or precludes their implemen-
ation in the field. In contrast, the experimental vaccines have
hed more light to understand the immune mechanisms elicited
n the host that are able to confer protection against disease. From
his point of view, delivery systems are essential tools for vaccine
evelopment.
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