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Abstract

Structural variant (SV) differences between human genomes can cause germline and mosaic 

disease as well as inter-individual variation. De-regulation of accurate DNA repair and genomic 

surveillance mechanisms results in a large number of SVs in cancer. Analysis of the DNA 

sequences at SV breakpoints can help identify pathways of mutagenesis and regions of the genome 

that are more susceptible to rearrangement. Large-scale SV analyses have been enabled by high 

throughput genome-level sequencing on humans in the past decade. These studies have shed light 

on mechanisms and prevalence of complex genomic rearrangements. Recent advancements in both 

sequencing and other mapping technologies as well as calling algorithms for detection of genomic 

rearrangements have helped propel SV detection into population-scale studies, however some 

regions of the genome are still inaccessible for the majority of methods. Here, we discuss the 

genomic organization of simple and complex SVs, the molecular mechanisms of their formation, 

and various ways to detect them. We also introduce methods for characterizing SVs and their 

consequences on human genomes.
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INTRODUCTION

The Human Genome Reference (HGR) sequence has come a long way in the almost two 

decades since its development (Lander et al. 2001), however the ability for this reference to 

convey differences common in the human population is still somewhat lacking. The current 

haploid nucleotide-level resolution HGR is approximately 3 billion nucleotides, and still 

contains unfinished gaps and repeat regions (Genome Reference Consortium Human Build 

38; GRCh38/hg38). Aligning regions between any human genome and the HGR yields 

alterations in the individual genome. If differences between individuals span more than 50 
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contiguous nucleotides or base pairs (bp) the change is considered a structural variant (SV) 

(Audano et al. 2019; Chaisson et al. 2019; Korbel et al. 2007; Sudmant et al. 2015). The 

mechanisms of SV formation are diverse, but these events are largely due to errors in DNA 

replication (polymerase slippage events), mobilization of transposable elements, or mis-

repair of DNA double strand or single-ended double strand breaks (DSBs) (Hastings et al. 

2009b; Scully et al. 2019; Weckselblatt and Rudd 2015). Even though shorter 

rearrangements such as indels (insertions and deletions shorter than 50 bp) and single 

nucleotide variants (1bp mismatches; SNVs) are more prevalent in human genomes (1000 

Genomes Project Consortium et al. 2010), SVs can have a larger impact on human genomes 

and phenotypes by the alteration of many nucleotides in a single event (Conrad et al. 2010; 

Iafrate et al. 2004; Lupski et al. 1992). SVs are more likely to affect coding regions, or even 

more than one gene (Stankiewicz and Lupski 2010).

With advancements in technology, cytogenetic techniques are used less often for 

ascertainment of SVs in favor of high throughput sequencing (HTS). HTS is used to call a 

variety of SV types, but importantly is also able to identify smaller genomic alterations and 

copy number neutral events (1000 Genomes Project Consortium et al. 2010; 1000 Genomes 

Project Consortium et al. 2015; Shendure and Ji 2008; Tattini et al. 2015). Understanding the 

different types of SV and their inherent complexities is critical for calling them in large-

scale datasets, and knowing the limitations of a given methodology for calling different 

types of variants (Table 1). Even though HTS techniques can identify most SV types, they 

often rely on computational tools to detect SVs with respect to the HGR. This can result in 

false positive or false negative errors because either the reads produced are shorter than the 

size of the SV (short-read techniques) or the reads have a higher error rate (long-read 

techniques). While sequencing techniques identify the bulk of SVs present in a genome, they 

often do not directly call breakpoint junctions at nucleotide-level precision, especially 

without de novo assembly (Cameron et al. 2017; Chaisson et al. 2015a; Wala et al. 2018). 

Identifying precise SV breakpoints allows the inference of mechanisms involved in 

rearrangements (Conrad et al. 2010). In addition to the identification of SVs, further work is 

required for the characterization of the cellular and organismal phenotypes resulting from a 

genomic rearrangement as well as the precise mechanisms underlying a given SV.

TYPES OF STRUCTURAL VARIANTS

Simple Chromosomal Rearrangements

SVs are classified as either simple or complex events. Simple SVs are comprised of 

rearrangements with two breakpoints and often one resultant junction. Simple SVs include 

Deletion (DEL), Insertion (INS), Duplication (DUP), Inversion (INV; two junctions) (Fig. 

1a), and Translocation (TRA; two junctions) events (Fig. 1b). A combination of two or more 

of these events (either of the same or different types) results in greater than two breakpoints 

and a complex genomic rearrangement. The mechanisms underlying both simple and 

complex SVs are numerous (Hastings et al. 2009b; Scully et al. 2019). These mechanisms 

include simple ligation reactions such as Non-Homologous End-Joining (NHEJ) (Shrivastav 

et al. 2008) or Microhomology Mediated End Joining (or Alt-NHEJ) (Nussenzweig and 

Nussenzweig 2007). Additionally, erroneous homologous recombination repair can result in 
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Non-Allelic Homologous Recombination (NAHR) between ectopic repeats during meiosis 

(Liu et al. 2011b) or Single Strand Annealing (SSA), and replication-based mechanisms 

such as Microhomology Mediated Break Induced Replication (MMBIR) (Hastings et al. 

2009a). Template switching and replication slippage (Lee et al. 2007; Sheen et al. 2007) can 

also lead to genomic rearrangements. Finally, transposon mobility can give rise to insertions 

in human genomes, and occasionally transposition is accompanied by further genomic 

alterations at the target site (Beck et al. 2010; Gardner et al. 2017; Gilbert et al. 2002; 

Kazazian et al. 1988).

Diploid human genomes have a standard copy number of two for each locus, and a loss 

(DEL: 0/1 copy) or gain (DUP: 3 copies, TRP: 4 copies, or higher amplification) of a 

genomic region is identified as a Copy Number Variant (CNV) (Conrad et al. 2010). CNVs 

and other SV types are determined with respect to the copy number and orientation of the 

HGR. Duplicated segments of the genome can be present next to the original content 

(tandem), or further away (interspersed). In addition to CNVs, other simple rearrangements 

are copy number neutral, including inversions and some translocations. When a segment of a 

chromosome is in the opposite orientation in comparison to the reference genome it 

represents an inversion (INV) in the individual. Translocations (TRA) occur when there is an 

exchange of genetic content between two chromosomes or distal regions within the same 

chromosome. Translocations can alter the genomic content (unbalanced) or result in a copy 

number neutral rearrangement (balanced). Robertsonian translocations are a sub-type that 

occurs when two acrocentric chromosomes fuse at the centromere, resulting in one fewer 

chromosome but maintenance of the net genomic content (Therman et al. 1989). Integration 

of genomic sequence into a region that was lacking this DNA in the reference is known as an 

insertion. Mobile elements, also known as transposons, insert pseudo-randomly across the 

genome (Flasch et al. 2019), leading to disruption of genes (McClintock 1950) and comprise 

approximately one fourth of the SVs differentially present in human genomes (Gardner et al. 

2017). Mobile Element Insertion (MEI) events can cause disease (Kazazian et al. 1988), and 

are generally caused by a subset of these elements that are still active in human genomes 

(Beck et al. 2010; Brouha et al. 2003). MEIs result in both deletions (absence of an insertion 

or empty site) and insertions of mobile elements with respect to the HGR.

Complex Genomic Rearrangements

Although a majority of rearrangements are simple, complex genomic rearrangements 

(CGRs) involve several stretches of DNA from one or more chromosomes, and therefore 

contain two or more genomic breakpoints (Quinlan and Hall 2012; Zhang et al. 2009a). 

CGRs can be formed as a result of a single mutational event. They are composed of a 

combination of simple SVs, and are often confounding for calling algorithms because there 

is not enough information available in the data to differentiate complex rearrangements from 

series of simple rearrangements (Quinlan and Hall 2012). Moreover, without knowledge of 

inheritance patterns of a given SV, it is hard to distinguish simple rearrangements occurring 

in close proximity from a complex rearrangement (Zhang et al. 2009a).

Complex SVs can contain multiple changes in copy number state. Some of the genomic 

patterns of CGRs are duplication-normal-duplication (DUP-NML-DUP) (Brand et al. 2015; 
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Gu et al. 2015), Triplication (TRP) (Liu et al. 2012), DUP–NML–INV/DUP (Fig. 1c) 

(Zhang et al. 2009b), and DUP-TRP/INV-DUP (Carvalho et al. 2011). These can occur 

through a variety of mechanisms such as FoSTeS or MMBIR (Zhang et al. 2009b) and are 

often accompanied by additional complexity at the junctions of the rearrangements, such as 

small insertions and deletions, polymerase slippage events and SNVs (Carvalho and Lupski 

2016; Carvalho et al. 2013; Conrad et al. 2010). Insertional TRAs result in a copy number 

alteration distal from the original location of the sequence, and are often accompanied by 

small complexities (Gu et al. 2016; Kang et al. 2010; Neill et al. 2011).

Chromoanagenesis encompasses massive chromosomal rearrangements, including 

chromothripsis, chromoplexy, and chromoanasynthesis, that occur due to a single 

catastrophic event (Holland and Cleveland 2012; Pellestor 2019). Chromothripsis involves 

the shattering of a portion of the genome into multiple pieces followed by the joining of 

those pieces into a novel order with either no loss of genomic content (balanced 

chromothripsis) or loss of genomic content (unbalanced chromothripsis) (Kloosterman et al. 

2011) (Fig. 1d). Chromothripsis primarily happens de novo and is more commonly observed 

in osteosarcoma, neuroblastoma and a few other types of cancer (Stephens et al. 2011). 

Chromothriptic events can involve hundreds of breakpoints confined to just one 

chromosome where the junctions are mated, signifying that they occur by NHEJ 

(Kloosterman et al. 2012). Chromoplexy is similar to chromothripsis in the sense of 

breakage and rearrangements of genomic segments, but involves more chromosomes and 

fewer breakpoints (Fig. 1e), and can occur multiple times during cancer evolution (Shen 

2013). Chromoanasynthesis involves multiple copy number alterations within a single 

chromosome arm that are likely mediated by replication-based mechanisms (Fig. 1d) (Liu et 

al. 2011a).

STRUCTURAL VARIANT IDENTIFICATION

Identification of SVs has significantly evolved over the past decade, from the use of light 

microscopy to detect large (> 3 Mbp) rearrangements from metaphase spreads to the modern 

era of computational calling of SVs using genomic sequencing techniques (all ranges of SV 

size are detectable). Even though advancements in technologies have helped to achieve cost-

effective and reliable whole genome SV analysis, it is difficult to capture all types of SVs 

with any one technology, especially at a reasonable cost. Moreover, the repetitive content of 

mammalian and plant genomes make it challenging to identify SVs. Some studies use a 

combination of more than one technique in predicting and validating variants. At present, 

chromosomal rearrangements are commonly detected by chromosomal banding, 

hybridization, or sequencing techniques, with the latter increasing in popularity and 

superseding other methodologies in recent years.

Chromosomal banding techniques

Karyotyping uses staining to form a unique banding pattern across chromosomes 

(Caspersson et al. 1968; Trask 2002). The intensity of dye incorporation depends on the 

DNA content of the chromosomal locus; giemsa dye incorporates readily in 

heterochromatic, A/T rich genomic regions, and less so in euchromatic, G/C rich regions. 
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Banded, condensed chromosomes from multiple metaphase cells are then imaged using a 

light microscope to identify insertions, deletions, and translocations, as well as aneuploidies 

(O’Connor 2008). The location of an SV is noted based on the affected bands and their 

relative locations within the condensed chromosomes. Due to its low-resolution, karyotyping 

is better suited at recognizing large (>3 Mbp) chromosomal alterations, and is especially 

powerful at identifying copy number neutral translocation events.

Hybridization and mapping techniques

Fluorescence in situ Hybridization (FISH) uses fluorescent probes that hybridize to 

complementary chromosomal DNA. After hybridization, metaphase-stage cells are imaged 

with a microscope to quantify the number of fluorescent signals present and to identify 

potential mis-localization of a signal (Hu et al. 2014). Standard FISH techniques can detect 

rearrangements with a resolution of 100 kbp and longer, and have high accuracy and low 

false positive rates when compared to other techniques (Cui et al. 2016). FISH techniques 

can detect rearrangements detected by banding techniques but with much higher resolution. 

Additionally, these techniques are especially useful in identifying translocations (Pinkel et 

al. 1988) and sub-telomeric rearrangements (Kallioniemi et al. 1992; Linardopoulou et al. 

2005). FISH has also been used to characterize chromothripsis events; multi-color FISH and 

multi-color banding FISH (Mackinnon and Campbell 2013) have resolutions as low as 1 

kbp. A new technique, termed Cas9-mediated FISH (Deng et al. 2015) is used in 

conjunction with fiber-FISH (Ersfeld 2004), and is capable of marking highly repetitive 

regions in the genome.

Comparative Genomic Hybridization (CGH) uses hybridization of genomic DNA from 

two individuals (patient vs. reference or tumor vs normal) to oligonucleotides or bacterial 

artificial chromosomes to identify the differences (CNVs) between them. The two genomes 

are fragmented and labeled with different fluorescent dyes and their corresponding signal 

ratio is measured and normalized. Based on the ratio (log2) of the fluorescence gains and 

losses of the genomic content between samples can be inferred (Kallioniemi et al. 1992). 

Array CGH (aCGH) now commonly uses an array of oligonucleotides to carry out large-

scale CGH at higher resolution (Conrad et al. 2010; Iafrate et al. 2004). With the help of 

computational algorithms, aCGH can be used to detect multiple CNVs in a single 

experiment, even examining the whole genome at an ~1 kbp resolution in a single 

experiment. aCGH cannot identify copy neutral SVs or loss of heterozygosity (LOH) events 

without additional SNP data (Wiszniewska et al. 2014).

Single Nucleotide Polymorphism arrays (SNP arrays) work in an analogous manner to 

aCGH, but use SNP-containing, allele-specific oligos in the hybridization array (Cooper et 

al. 2008). SNP arrays can also measure allele frequency, which allows the detection of 

certain copy neutral events like uniparental disomy or loss of heterozygosity that occurs due 

to consanguinity or during CNV in cancer. SNP arrays are predominantly used for 

genotyping, however they can be used to identify CNVs (Wang et al. 2007) and LOH 

(Carvalho et al. 2015) that accompany some complex SVs. SNP arrays lack the ability to 

identify inversions and translocations.
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High-throughput optical mapping (Bionano genomics) uses fluorescent labeling of 

nicking restriction enzyme sites along a long stretch of DNA (300 kbp – 3 Mbp) to create 

optical images (maps), which are then processed to extract the read information (Teague et 

al. 2010). The reads are de novo assembled locally and are then compared to a reference 

genome to identify regions containing genomic rearrangements (Chan et al. 2018). Bionano 

genomics have developed a platform for high throughput optical mapping. Bionano optical 

mapping can identify DELs (>500 bp), INS (>500 bp), DUP (>30 kbp), INV (30 kbp) and 

TRA (>50 kbp), however it does not resolve breakpoints at a nucleotide level. Bionano 

Access software contains informatic tools for identifying and visualizing simple SVs, yet 

has not been extended to complex SV events.

Hybridization techniques have difficulty quantifying higher-order copy number gains (3 or 4 

or 5 copies) and do not identify SV breakpoints at a base-pair level. Hybridization 

techniques have been used to conduct cost-effective CNV calling on hundreds of individuals, 

and are still effective tools for assessing CNVs. With advancements in sequencing 

technologies, large-scale discovery of SVs using whole genome sequencing (WGS) or HTS 

has become more feasible and cost effective. Thus, clinical and diagnostic settings are 

adapting to the use of HTS methods for SV/CNV calling.

Sequencing techniques

Advancements in HTS technologies have made it possible to identify various types of SVs 

across an individual genome in a single experiment. Genomic sequencing methodologies are 

commonly divided into either short-read or long-read techniques. Identifying SVs using 

HTS can involve either a comparison of sequence reads to a reference, or increasingly, a de 
novo assembly of a genome followed by comparison to a reference. For the former, the HTS 

analysis involves two-steps; the reads are first aligned or mapped to a reference genome and 

then based on evidence indicating the differences between the reference and the sample 

genome, SVs are inferred. Sequencing techniques can identify SVs with basepair-level 

resolution.

Short-read HTS generally begins with DNA is broken down into smaller fragments and 

size selected (library insert size). Both ends of the fragments are sequenced (paired-end) 

(Korbel et al. 2007). The paired-end reads are then computationally mapped against a 

reference. The change in insert size, along with the sequences and orientation of the reads 

and the depth of coverage of a locus, helps the algorithms to infer the type of SV that has 

occurred in the given locus. Illumina paired-end WGS with reads of 75–150 bp is the most 

commonly used approach for SV detection via short-read HTS. Short-read techniques 

primarily focus on four types of evidence for identifying genomic rearrangements; read pair 

based (SV present between the sequenced paired-end reads), split read based (SV present on 

the sequenced portion of the paired read), read depth based (number of reads mapping to a 

given locus in comparison to the broader genomic coverage) (Fig. 2b) and assembly based 

(contigs are produced from read and compared to the reference) (Guan and Sung 2016; 

Kosugi et al. 2019). SV calling tools use either one or a combination of the four methods 

mentioned above to detect SVs. Short-read techniques have the lowest error rate per 

basepair, however read lengths in the ~100 bp range make calling of some SVs challenging.
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Alignment tools—BWA MEM (Li 2013), Bowtie 2 (Langmead and Salzberg 2012), 

LAST (Kielbasa et al. 2011), Bowtie (Langmead et al. 2009)

Variant Calling tools—Pindel (Ye et al. 2018), SVABA (Wala et al. 2018), novoBreak 

(Chong and Chen 2018), GROM (Smith et al. 2017), MELT (Gardner et al. 2017), Manta 

(Chen et al. 2016), Genome STRiP (Handsaker et al. 2015), Lumpy (Layer et al. 2014), 

Breakdancer (Fan et al. 2014), Delly (Rausch et al. 2012), ForestSV (Michaelson and Sebat 

2012), Control-FREEC (Boeva et al. 2012), CREST (Wang et al. 2011), CNVnator (Abyzov 

et al. 2011)

Long-read HTS is currently used largely to overcome SV detection in challenging loci, 

such as highly repetitive genomic regions or lengthy segmental duplications (Sedlazeck et al. 

2018a). Short reads often lack the ability to span such regions. Long-read sequencing 

produces reads long enough to span the entire size of the majority of genomic SVs, and even 

enables the assembly of highly repetitive regions (Fig. 2c). Single-molecule real-time 

(SMRT) sequencing by Pacific Biosciences (PacBio) and Nanopore sequencing by Oxford 

Nanopore Technologies (ONT) are the two most commonly used long-read sequencing 

techniques. PacBio sequences the read with the help of fluorescence (Zero Mode 

Waveguides), whereas ONT uses fluctuation in current when the DNA passes through their 

specially designed nanopore. Long-read HTS data have error rates of ~5–15% per base. 

These errors are pseudorandom, however PacBio has a predilection for 1bp indels, and ONT 

has issues with correctly representing homopolymeric tracts of DNA. ONT and PacBio are 

both working towards reducing their technological error-rates, through pore modulation or 

through deriving consensus sequences from multiple passages around a zero-mode 

waveguide (Wenger et al. 2019). SV calling tools use split-reads, soft-clipped reads, 

clustering, and de novo assembly.

Alignment tools—NGMLR (Sedlazeck et al. 2018b), minimap2 (Li 2018), Canu 

(assembly) (Koren et al. 2017), BWA-MEM (Li 2013), LAST (Kielbasa et al. 2011)

Variant calling tools—Sniffles (Sedlazeck et al. 2018b), pbsv (https://github.com/

PacificBiosciences/pbsv), Picky (Gong et al. 2018), SMRT-SV (Chaisson et al. 2015a)

Linked reads (10X genomics) is useful both for haplotyping genomes and for situations 

with limited DNA to perform genome-wide sequencing (McTaggart et al. 2018). In 

particular, long-read sequencing requires a substantial input DNA. With 10X sequencing, a 

fraction of the fragmented DNA (300 genomic equivalents, or 1 nanogram of high molecular 

weight DNA) gets embedded into gel beads containing unique barcodes (Gel-bead in 

Emulsion; GEM). This significantly reduces the chance that GEMs contain DNA from same 

locus. Sequencing the barcoded short DNA sequences results in a linked-read that provides 

enough physical coverage with lower sequence coverage and can create long, haplotype 

specific contigs (Zheng et al. 2016). 10X genomics can identify DEL, DUP, INV and TRA 

events. Long Ranger is an in-house software suite that aligns reads and calls SVs using 10X 

genomics data. Long Ranger uses Lariat (https://github.com/10XGenomics/lariat) for 

aligning linked reads.
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Strand-seq, or single-cell DNA template strand sequencing, separates the two DNA strands 

(Watson strand and Crick strand) on each chromosome and then conducts Illumina paired-

end sequencing (Sanders et al. 2017). In a single cell, DNA replication is carried out in the 

presence of bromodeoxyuridine (BrdU) forming two daughter cells with BrdU incorporated 

in one of strands. UV photolysis causes nicking at BrdU incorporated sites. During PCR 

amplification for library formation after UV exposure, only the strand lacking incorporated 

BrdU (template strand) is amplified. Resulting libraries preserve the directionality of the 

template strand. Several single-cell libraries, are pooled and sequenced using Illumina 

paired-end sequencing (Falconer et al. 2012). Strand-seq can identify sister chromatid 

exchange events and misoriented contigs (Falconer and Lansdorp 2013), and has also been 

useful in the identification of inversions (Sanders et al. 2016). Bioinformatic Analysis of 

Inherited Templates (BAIT) software (Hills et al. 2013) is used to bin reads based on which 

strand in the reference they map to. The R Packages invertR and breakpointR (Porubsky et 

al. 2019) use Strand-seq data to identify inversions and other genomic perturbations based 

on the change in strand state.

Targeted sequencing methodologies

Whole Exome Sequencing (WES) is similar to whole-genome techniques, but focuses only 

on protein coding (~1.5%) regions of genomic DNA. After DNA extraction, exonic 

sequences are enriched prior to sequencing (Ku et al. 2012). WES is better at identifying 

SNVs and large CNVs present within the coding regions of the genome. Transcriptome 
Sequencing, also known as RNA-seq, queries reverse transcribed RNA or RNA directly, and 

can be used for the identification of SVs in coding regions. RNA-seq for SV analysis 

primarily focuses on identifying fusion genes and mutations within the transcript (Wang et 

al. 2009). Both WES and RNA-seq are widely used in cancer research (tumor-normal 

comparison) and for the identification of germline, non-somatic SVs, in particular fusion 

gene formation (Heyer et al. 2019; Schroder et al. 2019). Other targeting techniques 
include panel approaches, locus specific capture techniques (Wang et al. 2015), or PCR-free 

CRISPR/Cas9 targeted sequencing approaches (Gabrieli et al. 2017; Hoijer et al. 2018; Tsai 

et al. 2017) can be used for short or long-read sequencing specific to a location or loci in the 

genome. These approaches have been invaluable for performing long-read HTS for clinically 

relevant cases (Mantere et al. 2019).

WES tools—CN-Learn (Pounraja et al. 2019), XHMM (Fromer et al. 2012), CANOES 

(Backenroth et al. 2014), ADTEx (Amarasinghe et al. 2014), CONTRA (Li et al. 2012), 

ExomeCNV (Sathirapongsasuti et al. 2011), and VarScan2 (Koboldt et al. 2012)

Transcriptome sequencing tools—SQUID (Ma et al. 2018), Arriba (Uhrig et al. 2018), 

and CNVkit-RNA (Talevich and Shain 2018)

De novo assembly

The reads generated using HTS are shorter than a chromosome. In order to call variants 

between genomes with many of the previously mentioned approaches, reads from HTS 

aligned to the HGR, and discrepancies between the genomes are called as variants. While 

reference-based techniques are primarily used to call SVs from HTS data, they are not 
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without shortcomings (Nagarajan and Pop 2013). The current reference Genome (GRCh38) 

still contains gaps, unfinished centromeric and telomeric regions, and does not reflect 

population-level diversity. Additionally, more than half of the human genome is made up of 

repeats, which can cause mismapping of reads in highly repetitive regions (e.g. segmental 

duplications). The generation of reads that are longer than segmental duplications and that 

can stretch for hundreds of thousands of base pairs into centromeric regions can help 

overcome this limitation (Jain et al. 2018; Wenger et al. 2019). In order to build a genome 

without a reference sequence, the HTS data then need to be computationally assembled; this 

process is known as de novo assembly (Paszkiewicz and Studholme 2010; Sedlazeck et al. 

2018a). De novo assembly uses overlapping sequences (Overlap-Layout-Consensus) or 

graph-based approaches (De Bruijn or string graph) to construct contigs (contiguous reads 

stitched together) from HTS based on the similarity between reads (Nagarajan and Pop 

2013). The benefit of such approaches includes the resultant contigs from either unmapped 

or relatively low mappability reads that would not be utilized in traditional reference-based 

approaches (Chaisson et al. 2015b). Read length and coverage are key factors influencing 

the performance of de novo assembly (Nagarajan and Pop 2013). Long-read sequencing 

technologies are more effective for de novo assembly approaches, however they also are 

more expensive. De novo assembly using long-read HTS at higher depth of coverage may 

lead to a reference genome with few existing gaps, however additional technologies are 

currently needed for finishing the assembly (Bionano or 10x Genomics), and there are some 

chromosomal loci that may remain intractable to current methods, particularly in 

centromeric regions (Miga et al. 2019). Population specific variants are generally missed 

when a single reference is used globally (Popejoy and Fullerton 2016; Rosenfeld et al. 

2012). De novo assembly can reveal novel sequences in a population that are absent from 

current reference genomes, and these can include genic regions (Eisfeldt et al. 2019; Seo et 

al. 2016; Sherman et al. 2019; Shi et al. 2016). The ability to identify so many novel regions, 

particularly in non-European individuals, emphasizes the need for a reference genome that 

considers the diversity in human species or population specific reference genome.

Alignment tools—Flye (Kolmogorov et al. 2019), Peregrine (Chin and Khalak 2019), 

Wtdbg2 (Ruan and Li 2019), SGVar (Tian et al. 2018), Fermikit (Li 2015), MHap (Berlin et 

al. 2015), MaSuRCA (Zimin et al. 2013), SOAPdenovo2 (Luo et al. 2012), Cortex (Iqbal et 

al. 2012)

Ensemble approaches for SV identification

Performing a variety of HTS techniques on the same genome has shown that PacBio SMRT 

sequencing achieves a three-fold increase in the number of SV calls when compared with 

Illumina paired-end sequencing. PacBio SMRT sequencing also had a higher concordance 

with ONT sequencing (92% outside tandem repeats and 83% inside tandem repeats). In 

order to improve the sensitivity and accuracy of SV identification with short-read HTS, a 

multi-caller approach is often used (Becker et al. 2018; English et al. 2015; Jeffares et al. 

2017; Zarate et al. 2018). In a recent study detailing SV calling in three trios, the utility of 

multiple HTS and other genomic approaches were compared (Chaisson et al. 2019). They 

found that long-read data are better suited for the identification of long, intact transposon 

insertions, as well as SVs in segmental duplications and repetitive loci in the genome. For 
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simple CNVs longer than 50 kbp Bionano appeared to be the best strategy. Strand-seq 

technology has higher sensitivity and accuracy at identifying inversions longer than 50 kbp, 

whereas short-read and long-read HTS are better at identifying shorter inversions.

VALIDATION AND CHARACTERIZATION OF STRUCTURAL VARIANTS

Although SV detection has significantly advanced over the last two decades, the ability to 

accurately define precise breakpoint junctions for SVs has lagged behind. Discerning exact 

SV breakpoint junctions can pave the way for inferences about the underlying mechanisms 

producing the rearrangement, and understanding the erroneous repair mechanisms involved 

in formation of the variant (Carvalho and Lupski 2016; Conrad et al. 2010). To validate a 

given SV, the first step involves the verification of its presence, followed by identification of 

the precise locations of the its breakpoint junctions. The presence of an SV can be visualized 

using tools such as the Integrative Genomics Viewer (IGV), which allows examination of 

coverage and read support (paired-reads and split reads) to infer the presence of an SV from 

a single or multiple HTS datasets (Robinson et al. 2011). Other genomic information 

(repeats, segmental duplications, gaps, genic regions) present in a given locus can also to 

viewed to deduce potential effects of the SV.

Traditional PCR, karyotyping, or hybridization techniques can be used to confirm the 

presence of SVs identified by HTS (see identification section for more on these methods). 

Digital PCR measures the copy number state of a locus and accurately quantifies CNVs 

(Hindson et al. 2011). Partitioning of the sample into tens of thousands of droplets increases 

detection sensitivity for rare events. Sanger sequencing is still considered a gold standard for 

identifying precise breakpoint junctions of the SVs, however even PCR and Sanger 

sequencing can be error prone, and can be difficult in some repetitive regions of the genome. 

Designing unique primers to some genomic loci is difficult, and nested PCR or amplification 

in repetitive loci can result in false positive products (Ji et al. 1994).

Performing PCR and Sanger sequencing on every SV identified in a sample is labor 

intensive and expensive. Using orthogonal sequencing or genomic analysis methods can 

reduce the number of false positive SVs in a sample (Chaisson et al. 2019). Assembly-based 

variant calling tools such as SVABA (Wala et al. 2018), GRIDSS (Cameron et al. 2017), and 

SMRT-SV (Chaisson et al. 2015a), are more precise at locating breakpoint junctions, so the 

future for junction identification without extensive PCR analysis is bright.

In addition to the identification of SVs, the field is moving towards understanding the impact 

of SVs on gene expression and on what drives SV formation in germline events and 

oncogenesis. To this end, a few groups have started to probe the impact of SVs on gene 

expression (Chiang et al. 2017) and on GWAS (Goubert et al. 2019; Payer et al. 2017). The 

difficulty of performing these studies lies in both inadequate SV detection, and in the 

number of individual genomes for whom reliable SV calling has been performed. SVs 

additionally can affect TAD domains, leading to phenotypes in the individuals carrying them 

(Lupianez et al. 2015).
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Aside from their effects on the genomes and humans in which they reside, SVs can arise via 

diverse mechanisms. In cultured mammalian cells, assays to detect and mechanistically 

interrogate SV formation have only recently been developed. The use of drug resistance 

cassettes was superseded in 1999 with the use of recombination-reconstituted eGFP markers 

(Pierce et al. 1999) (Fig. 3a), and subsequently numerous assays utilizing similar cassettes 

have examined the role of DNA repair in generating genomic instability (Scully et al. 2019; 

Willis et al. 2014). Recently, the generation of breaks followed by sequencing at the site-

specific lesion has allowed thorough examination of class switching and translocation 

junctions (Chiarle et al. 2011; Frock et al. 2015). Furthermore, the mechanisms and 

prevalence of transposon mobility has been investigated extensively using both selectable 

marker and eGFP-based assays for retrotransposition (Fig. 3b) (Moran et al. 1996; Ostertag 

et al. 2000). Finally, cell culture and animal models of deletion and duplication events can 

lend credence to their impact on human genomes. Isogenic cell culture models with and 

without a given SV can be used to interrogate changes to gene expression. Mouse models of 

deletions and duplications can be used to establish genotype-phenotype associations with SV 

(Fig. 3c) (Kraft et al. 2015).

DISCUSSION

Advancements in HTS technologies over the past two decades have greatly improved the 

quantity and breadth of chromosomal rearrangements discovered. These improvements also 

decreased the cost and DNA input requirements for HTS methods. Long-read sequencing 

has several significant advantages over short-read methods, but the cost per base and the 

requirement of significantly larger quantities of DNA is restrictive for many research 

projects. In many clinical settings, having access to the amount of DNA needed might not be 

feasible (for instance, biopsy samples of tumors), and many of the samples are likely to 

consist of fragmented DNAs, leading to inadequate long-read sequencing data. As long-read 

sequencing moves to the fore and is performed on many more samples, examining the 

individual variation present in these currently “dark” regions of human genomes will be 

fascinating, some of the loci examined are likely to be of clinical interest. With short-read 

sequencing data, there are thousands and thousands of whole genome data sets available, and 

much still needs to be done to utilize this information more thoroughly. A comprehensive 

comparison of short- and long-read HTS as well as other genomic approaches allows the 

identification of regions that are called competently with Illumina sequencing and currently 

available SV calling tools, and can pinpoint loci to further refine short-read SV callers. Of 

particular importance is the use of ensemble approaches in conjunction with tools such as 

FUSOR SV (Becker et al. 2018), SURVIVOR (Jeffares et al. 2017), and BEDtools (Quinlan 

2014) to help merge information from multiple callers and improve the sensitivity of SV 

calls on large-scale datasets. With multiple WGS technologies available, development of 

algorithms that utilize data from orthogonal techniques in parallel to detect SVs could be 

highly valuable. Synergizing SNPs with SVs to infer haplotypes, inheritance of an SV, and 

LOH associated with a rearrangement would be helpful for mechanistic inferences. 

Furthermore, refinement of split-read de novo assembly tools (Pounraja et al. 2019; Wala et 

al. 2018) for breakpoint analysis will also aid in understanding the underlying mechanisms 

behind SV formation. Finally, a few studies have started to query whether linear reference 
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genomes without variation information hinder the progress of variant calling (Eisfeldt et al. 

2019; Sherman et al. 2019). Graph genomes may be able to overcome the failure of the latest 

reference genome to capture the diversity of the human population (Rakocevic et al. 2019).

With the increase in accuracy and length of sequencing techniques we are on the cusp of 

obtaining sequences spanning human genomic gaps, centromeres, and other large repeats, 

and completing high quality genomes for multiple individuals. Once we obtain finished 

genomic maps of diverse genomes, one of the next frontiers will likely be studying the 

implications of variation on the genomes and phenotypes of those that harbor them; some 

studies have already been focusing on the phenotypic effects of more common SVs. The 

next two decades of genomics research are likely to pave the way for a better understanding 

of both the mechanisms driving human structural mutations and also their consequences.
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ABBREVATIONS

GRCh38 Genome Reference Consortium Human Build 38

HGR Human Genome Reference

HTS High Throughput Sequencing

WGS Whole Genome Sequencing

SNV Single Nucleotide Variant (1 bp)

InDel Insertion and Deletion (2–49 bp)

SV Structural Variant (> 50 bp)

DSB Double Strand Break

CNV Copy Number Variant

bp Base Pair

DEL Deletion

INS Insertion

MEI Mobile Element Insertion

DUP Duplication

TRP Triplication

INV Inversion

TRA Translocation
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CGR Complex Genomic Rearrangement

LOH Loss of Heterozygosity

SNP Single Nucleotide Polymorphism

NHEJ Non-Homologous End Joining

NAHR Non-Allelic Homologous Recombination

FoSTeS Fork Stalling and Template Switching

MMBIR Microhomology Mediated Break Induced Replication

SSA Single Strand Annealing

FISH Fluorescence in Situ Hybridization

aCGH Array Comparative Genomic Hybridization

ONT Oxford Nanopore Technologies

SMRT Single Molecule Real Time

BrdU Bromodeoxyuridine

GEM Gel-bead in Emulsion

IGV Integrative Genomics Viewer
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Fig. 1. Classification of Structural Variants
The diagram portrays a sample genome containing the indicated structural variant (right) 

compared to the reference genome (left). Simple rearrangements can a. occur on a single 

chromosome (insertion, deletion, duplication, and inversion) or b. can involve two 

chromosomes (translocation). c. Complex SVs contain multiple rearrangements that arise 

from a single event. Duplication-Normal-Inversion/Duplication (DUP-NML-INV/DUP) 

events encompass two duplicated (green and gray) regions of a chromosome. One gray 

fragment is inverted on the sample genome. Chromoanagenesis involves numerous 

rearrangements occurring in a single event. d. Chromothripsis is caused by a single 

shattering event followed by fragment reassembly, with loss of few fragments (maroon). 
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Chromoanasynthesis results in multiple copy number changes and higher order genomic 

amplifications. e. Chromoplexy causes intra-chromosomal translocations involving multiple 

chromosomes, accompanied with fragment loss at few junctions (maroon and green).
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Fig. 2. Heterozygous deletion detection
A depiction of deletion detection by aCGH, short-read and long-read whole genome 

sequencing (WGS) technologies. a. In aCGH, colored dots represent the signal ratio between 

the reference and sample for hybridization to a probe at that locus. Normal signals are 

represented with yellow dots and loss in signal is represented with red. On a log scale, copy 

neutral regions are indicated as 0, heterozygous deletions are −1 and homozygous deletions 

are −2. b. Using short-read WGS data, deletion signatures are identified using paired-end 

reads (read spans the deletion), split-reads (read containing the deletion; breakpoint 

precision), and read-depth (number of reads around the deletion locus; better suited at 

differentiating zygosity) information. c. In long-read WGS data, reads can span the entire 

deletion or can extend into the deletion and therefore represent split reads events.
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Fig. 3. Characterization of structural variants.
a. A fluorescence and puromycin-dependent DNA double strand break (DSB) assay (Pierce 

et al. 1999). Direct Repeat-GFP (green fluorescent protein) containing cells contain an 

iSceGFP (modified GFP with an iSceI cut site instead of a BcgI site) and iGFP (5′ and 3′ 
truncated GFP) separated by puromycin-N-acetyltransferase gene (yellow). Expression of I-

SceI in SceGFP induces a DSB. Homologous repair by short track gene conversion restores 

GFP fluorescence, whereas repair by single strand annealing results in a truncated GFP (no 

fluorescence). b. LINE-1 retrotransposition assay (Moran et al. 1996). A model of a full-

length LINE-1 is illustrated. To test for activity, the element is cloned into a vector with an 

antisense retrotransposition indicator mneoI cassette (yellow; neomycin phosphotransferase 

gene with a separate promoter) inserted into the 3′ UTR, and a CMV promoter (black) 

driving transcription of the LINE-1 a. SD: splice donor site, SA: splice acceptor site. In cell 

culture, when the LINE-1 element on the vector is transcribed from the 5′ end, the intron is 

spliced out of the neo cassette, and upon retrotransposition and insertion into the genome the 

cells express the neo gene, and are therefore G418 resistant. c. In vivo modelling of SV in 
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mouse embryonic stem cells and resultant generation of mice using CRISPR/Cas. Cas9 

proteins and synthetic guide RNA target the locus of interest and induce a DNA DSB. 

Deletion, inversion, and duplication SVs are induced upon resolution of the DSB (Kraft et 

al. 2015).
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Table 1.

Summary of techniques for SV detection

TECHNIQUE Detectable SV types Resolution Key features

Karyotyping Large CNV, TRA, aneuploidies >3 Mbp Staining

FISH CNV, TRA, CGR 10 kbp Fluorescent probes

aCGH CNV, CGR 5–10 kbp hybridization

SNP Array CNV, LOH, CGR 100 bp SNP probes

Illumina short-read Sequencing Simple SVs, CGR bp Paired-end reads

WES Simple SVs >50 bp (generally more than 3 exons) Protein coding region

10X genomics Simple SVs bp Gel-bead in Emulsion

PacBio SMRT Sequencing Simple SVs, CGR bp CCS and CLR

Oxford Nanopore Sequencing Simple SVs, CGR bp Ultra-long reads

Bionano Optical mapping Simple SVs, CGR >500 bp Long contigs

Strand-seq INV, SCE bp Template strand

Transcriptome Sequencing TRA; Fusion genes bp RNA
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