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Abstract

Most risk variants for brain disorders identified by genome-wide association studies (GWAS) 

reside in non-coding genome, which makes deciphering biological mechanisms difficult. A 

commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest 

genes. Here, we developed a platform, Hi-C coupled MAGMA (H-MAGMA), that advances 

MAGMA by incorporating chromatin interaction profiles from human brain tissue across two 

developmental epochs and two brain cell types. By employing gene regulatory relationships in the 

disease-relevant tissue, H-MAGMA identifies neurobiologically-relevant target genes. We applied 

H-MAGMA to five psychiatric disorders and four neurodegenerative disorders to interrogate 

biological pathways, developmental windows, and cell types implicated for each disorder. 

Psychiatric disorder risk genes tended to be expressed during mid-gestation and in excitatory 
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neurons, whereas degenerative disorder risk genes showed increasing expression over time and 

more diverse cell-type specificities. H-MAGMA adds to existing analytic frameworks to help 

identify the neurobiological consequences of brain disorder genetics.

Introduction

Genome-wide association studies (GWAS) have provided insight into the genetic etiology of 

multiple brain disorders. However, extracting biological mechanisms from GWAS data is a 

challenge, largely because the majority of common risk variants reside in non-coding 

regions of the genome1.

Multi-marker Analysis of GenoMic Annotation (MAGMA) was initially developed to 

extract biological insights from GWAS by linking risk variants to their cognate genes2. It 

aggregates SNP associations to gene-level associations while correcting for confounding 

factors such as gene length, minor allele frequency, and gene density2. While MAGMA is a 

powerful tool and has been used broadly, there is room for improvement. MAGMA assigns 

SNPs to the nearest genes, which has two major pitfalls. First, it is becoming increasingly 

recognized that non-coding SNPs can regulate distal genes via long range (>10 kb) 

regulatory interactions, whereby distal enhancers are brought into contact with the gene 

promoter3,4. Second, MAGMA does not take into account tissue-specific regulatory 

relationships, whereas disease risk SNPs are enriched in regulatory elements of the disease-

relevant tissue5,6.

To overcome the limitations in MAGMA, we modified MAGMA approach to create Hi-C 
coupled MAGMA or H-MAGMA to assign non-coding SNPs to their cognate genes based 

on long range interactions in disease-relevant tissues measured by Hi-C. H-MAGMA 

advances conventional MAGMA (hereafter referred to as cMAGMA) by incorporating 

relevant functional genomics evidence and allowing developmental stage and cell-type 

specific gene mapping. H-MAGMA also differs from traditional Hi-C guided gene mapping, 

as it employs the genome-wide mapping capability of MAGMA. While traditional Hi-C 

guided gene mapping restricts its analysis to genome-wide significant (GWS) loci7, H-

MAGMA can leverage signals from sub-threshold loci that explain a significant proportion 

of heritability8.

H-MAGMA was constructed from four classes of brain-derived Hi-C datasets that include 

human cortical tissue across two developmental stages (prenatal and postnatal) and two 

brain cell types (neurons and astrocytes), enabling developmental and cell-type specific gene 

mapping. We applied H-MAGMA to five psychiatric disorders (Attention deficit 

hyperactivity disorders, ADHD; Autism spectrum disorders, ASD; Schizophrenia, SCZ; 

Bipolar disorder, BD; Major depressive disorders, MDD) and four neurodegenerative 

disorders (Amyotrophic lateral sclerosis, ALS, Multiple sclerosis, MS; Alzheimer’s disease, 

AD, and Parkinson’s disease, PD) to generate gene-level summary statistics (Fig. 1). By 

comparing H-MAGMA with cMAGMA, we found that non-coding SNPs often interact with 

distal genes, necessitating the use of functional genomic evidence in assigning SNPs to 

cognate genes. We also found a significant overlap between H-MAGMA and two widely 

used expression quantitative trait loci (eQTL)-based gene mapping tools, coloc9 and 
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TWAS10. Gene-level association statistics from H-MAGMA closely resembled genetic 

relationships among brain disorders, which enabled subsequent analyses to identify 

biological pathways, developmental windows, and cell types critical for each brain disorder.

Result

Hi-C coupled MAGMA

Since our primary goal is to identify neurobiological mechanisms underlying brain 

disorders, we leveraged two Hi-C datasets obtained from human brain tissue, one from the 

developing cortex4 and the other from the adult dorsolateral prefrontal cortex3 (DLPFC), to 

generate gene-SNP pairs that serve as an input file for MAGMA (Fig. 1a, Methods). Exonic 

and promoter SNPs were directly assigned to their target genes based on their genomic 

location, while intronic and intergenic SNPs were assigned to their cognate genes based on 

chromatin interactions (Fig. 1a). We also generated a cMAGMA input file that utilizes the 

same set of genes and SNPs as H-MAGMA whereby all intronic and intergenic SNPs were 

annotated by positional mapping with a generous gene definition that includes 35kb 

upstream and 10kb downstream of each gene.

The major source of discrepancy between H-MAGMA and cMAGMA is non-coding 

variants because promoter and exonic SNPs were assigned to the same genes in both 

frameworks. We therefore tested how often intronic and intergenic SNPs can be mapped to 

the nearest genes as predicted by cMAGMA. We found that only 20% of intronic SNPs and 

5% of intergenic SNPs interact with nearest genes based on Hi-C (Fig. 1b, Extended Data 

Fig. 1a, Methods). Because Hi-C based gene mapping cannot capture proximal interactions 

within 10kb4, we additionally used an eQTL resource from the human DLPFC3, from which 

we found 56% of intronic SNPs and 76% of intergenic SNPs did not show any association 

with nearest genes (Extended Data Fig. 1a, Methods). The majority of non-coding SNPs 

associated with nearest genes showed additional association with distal genes, as 80% of 

intronic SNPs and 87% of intergenic SNPs showed associations with distal genes (Fig. 1b). 

These results highlight the importance of using functional genomic evidence in assigning 

non-coding SNPs to genes.

We reasoned that H-MAGMA would provide neurobiologically relevant target genes for 

GWAS by accurately linking non-coding variants to their cognate genes via brain-derived 

chromatin interaction profiles. We therefore applied the framework to nine brain GWAS, 

including five neuropsychiatric disorders and four degenerative disorders (Fig. 1a). The 

number of brain disorder risk genes (FDR<0.05) was comparable between H-MAGMA and 

cMAGMA (Extended Data Fig. 1b, Supplementary Data 1–2), whereas the number of SNPs 

assigned per gene was three-fold higher for cMAGMA (~244 SNPs per gene) than H-

MAGMA (~73 SNPs per gene, Extended Data Fig. 1c). In total, cMAGMA and H-MAGMA 

linked 7.4M and 3.9M SNPs to genes, respectively (Extended Data Fig. 1d).

Up to 60% of disorder risk genes were H-MAGMA selective (genes identified by H-

MAGMA but not by cMAGMA), suggesting that functional genomics guided gene 

annotation can help identify novel genes and pathways (Extended Data Fig. 1b). H-

MAGMA selective genes were significantly enriched for heritability in all nine brain 
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disorders, demonstrating the increase in power of H-MAGMA (Fig. 1c, Extended Data Fig. 

1e, Methods).

Using SCZ GWAS as a representative example, we next compared H-MAGMA with eQTL-

based gene annotation tools, coloc and TWAS (Methods). Coloc tests whether GWAS SNPs 

and eQTLs in a certain GWS locus share the same causal variant9, whereas TWAS imputes 

the genotype-expression relationship based on the eQTL association statistics and derives 

expression-trait associations by correlating the imputed gene expression to the trait11. We 

found that a significant proportion of genes identified by eQTL-based gene mapping were 

also detected by H-MAGMA (Fig. 1d, 74.9% of coloc genes, Fisher’s exact test, OR=4.34, 

95% CI=3.22–5.90, P=1.76x10–26; 72.6% of TWAS genes, Fisher’s exact test, OR=12.14, 

95% CI=10.20–14.49, P=3.94x10–206). H-MAGMA detected a much larger number of genes 

to be associated with SCZ, which explained a significant proportion of heritability (4.7% of 

SNPs explained 38.93% of heritability, Enrichment = 8.23, Enrichment P= 7.17x10–53, 

Methods).

Psychiatric disorders exhibit neurodevelopmental origin, while degenerative disorders 
exhibit adult origin.

Since 3D chromatin loops are highly tissue-specific4, it is important to decide which Hi-C 

datasets are appropriate to identify target genes for each disorder. To address this, we first 

measured the heritability enrichment of each disorder using tissue-specific regulatory 

elements (Methods). Consistent with the previous findings6, psychiatric disorders showed 

strong enrichment in brain tissues, while degenerative disorders lacked brain-specific 

enrichment (Extended Data Fig. 2). Within brain tissue, psychiatric disorders showed 

stronger heritability enrichment in the fetal brain than in the adult brain, highlighting their 

neurodevelopmental origin (Fig. 2a). Fetal enrichment was more robust in 

neurodevelopmental disorders such as ADHD and ASD than in adult onset disorders 

including BD, SCZ, and MDD.

To confirm this result based entirely on regulatory enrichment, we also used an alternative 

gene-centric approach. Genes associated with each brain disorder were identified based on 

fetal and adult brain H-MAGMA, and their expression values were compared between 

prenatal and postnatal stages. There was a clear distinction between psychiatric and 

degenerative disorders. Genes associated with psychiatric disorders were highly expressed 

during prenatal stages, while genes associated with degenerative disorders were highly 

expressed postnatally (Fig. 2b–c, see Supplementary Data 3 for statistics). The only 

exception was MS, which displayed prenatal enrichment. This distinction between 

psychiatric and degenerative disorders was less clear in cMAGMA: ASD- and BD-

associated genes were postnatally enriched, AD-associated genes did not display postnatal 

enrichment, and ALS-associated genes were prenatally enriched (Extended Data Fig. 3, 

Supplementary Data 3).

Next, we plotted the developmental expression trajectories of brain disorder risk genes (Fig. 

2b–c). ASD-, SCZ-, and MDD-associated genes showed remarkedly similar expression 

patterns with a peak at the developmental stage 5 (16–19 PCW). BD- and ADHD-associated 

genes were gradually increased during the prenatal stage with a peak at the developmental 
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stage 6 (19–22 PCW). Developmental stages 5 and 6 represent mid-gestation, the period 

during which upper layer neurons are generated and neuronal differentiation including 

axonogenesis and dendritic arborization takes place12,13. This result highlights mid-gestation 

as a critical window during neurodevelopment that may confer risk to multiple psychiatric 

disorders, consistent with recent results from cross-disorder GWAS14,15. On the contrary, 

degenerative disorders showed distinct expression trajectories. Genes associated with 

degenerative disorders except MS constantly and gradually increased during both prenatal 

and postnatal stages, suggesting that these genes may become more susceptible upon aging. 

This result is consistent with a strong neurodevelopmental predisposition for psychiatric 

disorders, in contrast with degenerative disorders which have a postnatal origin.

Pathways implicated for brain disorders.

To identify biological pathways underlying psychiatric and degenerative disorder risk, we 

conducted a gene ontology (GO) analysis on gene-level association statistics from H-

MAGMA. We ranked genes based on Z-scores so that genes with higher Z-scores (more 

significantly associated with a given disorder) are located at the top of the list. We then 

tested whether a given gene set is over-represented at the top of the list by performing an 

incremental enrichment analysis (Methods, see Supplementary Data 4–5 for a full GO 

result). This approach allows us to (1) identify biological pathways associated with a given 

trait regardless of the power of GWAS, and (2) characterize the biological pathways 

reflecting the gene set as a whole rather than using arbitrarily defined genes with a specific 

P-value threshold.

All brain disorders showed enrichment for pathways involved in transcriptional and 

translational regulation (e.g. transcriptional regulators, RNA splicing, and DNA damage and 

repair pathways; Table 1). This is in line with the previous finding that transcriptional 

dysregulation may mediate risk for brain disorders16. Neuronal differentiation and neuronal 

apoptotic pathways were also enriched in all brain disorders. Neurogenesis was enriched in 

the majority of disorders except ASD and BD, consistent with an increasing number of 

studies elucidating the role of neurogenesis, differentiation, and neuronal apoptosis in brain 

disorders17,18. Not surprisingly, neurotransmitter and synaptic pathways were implicated in 

multiple brain disorders, supporting decades of studies highlighting the importance of 

synaptic function in psychiatric disorders19.

There were interesting distinctions among brain disorders. For example, all brain disorders 

showed postsynaptic associations, while a selected set of disorders (ADHD, SCZ, MDD, and 

MS) also exhibited presynaptic associations. Further, while the majority of brain disorders 

displayed enrichment in glutamatergic signaling, ASD, SCZ, and ALS displayed enrichment 

in GABAergic signaling. ASD-associated genes were enriched for acetylcholinergic and 

serotonergic signaling, reflecting known biology of ASD20,21. SCZ and BD-associated genes 

were also enriched for acetylcholinergic signaling, supporting previous studies that altered 

cholinergic signaling contributes to SCZ and BD pathogenesis4,22. MS-associated genes 

were enriched for dopaminergic signaling, disruption of which has been associated with 

immune malfunction in MS23. These results collectively highlight synaptic dysfunction in 
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brain disorders, albeit we could detect distinctions among disorders based on 

neurotransmitters and pre/post synaptic associations.

We observed pronounced immune related processes for degenerative disorders in contrast to 

psychiatric disorders. In support of this finding, multiple aspects of glial development were 

also associated with brain disorders, with stronger enrichment in degenerative disorders 

(Table 1). Moreover, all degenerative disorders showed associations with genes involved in 

myelination and oligodendrocyte function, suggesting a potential role of oligodendrocytes in 

neurodegeneration. In line with this, single cell transcriptomic profiles in AD postmortem 

brains suggested altered molecular profiles in oligodendrocytes24. Together with heritability 

enrichment, this finding of enriched immune response in degenerative, but less so in 

psychiatric disorders hints a possible explanation for genetic distinctions between 

psychiatric and degenerative disorders25.

Additional interesting findings include amyloid beta enrichment for AD and PD, and tau 

enrichment for MS and PD (Table 1), supporting amyloid beta and tau pathology in 

degenerative disorders26,27. We also observed Wnt/β-catenin pathway enrichment for a 

number of brain disorders including ASD, SCZ, MDD, PD, MS and ALS. Wnt/β-catenin 

signaling is a key pathway for neurogenesis and cortical pattern specification, and its 

dysregulation has been observed in several psychiatric disorders28. Notably, genes involved 

in vocalization were associated with ASD, diagnostic criteria of which include impairment 

in vocalization29. We also identified brain regions (e.g. cortex, hippocampus, substantia 

nigra, and hypothalamus) associated with multiple brain disorders. This is intriguing as we 

used cortical Hi-C data.

Cell-type specificity

Brain disorders often exhibit different cellular signatures and vulnerability, highlighting the 

need to identify critical cell types for brain disorders to develop proper therapeutic 

strategies. For example, ASD postmortem brains exhibit cell-type specific gene expression 

signatures such as upregulation of glial genes and downregulation of neuronal genes30. 

Common variation in SCZ maps onto specific groups of cells including pyramidal neurons 

and medium spiny neurons31. Microglia are increasingly recognized as a central cell type 

contributing to the etiology of AD32.

To address central cell types mediating risk for brain disorders, we next assessed cell-type 

specific expression profiles of brain disorder risk genes (Methods). One striking difference 

between psychiatric and degenerative disorders was that psychiatric disorder-associated 

genes coalesced in neurons, while degenerative disorder-associated genes were highly 

expressed in glia (microglia for AD and MS, astrocytes for ALS and PD, Extended Data Fig. 

4a). Since psychiatric disorders showed neurodevelopmental origin, we also measured cell-

type specific expression profiles of psychiatric disorder-associated genes in the developing 

cortex and found convergence onto outer radial glia and excitatory neurons (Extended Data 

Fig. 4b). This selective enrichment in excitatory neurons prevailed across development, as 

adult neuronal expression profiles for psychiatric disorder-associated genes also indicated 

excitatory neuronal enrichment (Extended Data Fig. 4b).
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While cMAGMA gave a similar result to H-MAGMA, there were important discrepancies, 

which include astrocytic expression of ASD-associated genes, lack of astrocytic expression 

of PD- and ALS-associated genes, and lack of endothelial expression of MS-associated 

genes (Extended Data Fig. 4). Given the growing evidence of astrocyte-mediated 

neurodegeneration in ALS and PD33,34, the emerging role of blood-brain barrier in MS35, 

and lack of genetic association signals of an astrocytic co-expression network in ASD36, this 

result indicates that H-MAGMA can provide cellular etiology that can be missed by 

cMAGMA.

Cell-type specific gene mapping

As we detected a remarkable cellular specificity for both psychiatric and degenerative 

disorders, we next sought to identify disorder risk genes in a cell-type specific manner. To 

this end, we built H-MAGMA framework based on Hi-C interactions from iPSC-derived 

neurons and astrocytes37. Neuronal and astrocytic H-MAGMA were subsequently used to 

decode psychiatric and degenerative disorder GWAS, respectively (Fig. 3a). We found that a 

significant proportion of genes (20–40%) were detected in a cell-type specific fashion 

(Extended Data Fig. 5).

Cell-type specific H-MAGMA recapitulated biological processes, cell-type specificities, and 

developmental trajectories of brain homogenate H-MAGMA. For example, brain disorder 

risk genes derived from cell-type specific H-MAGMA were involved in transcriptional 

regulation, neurogenesis, and synaptic transmission (Supplementary Data 6). Degenerative 

disorder risk genes showed pronounced enrichment for glial development and inflammatory 

responses.

Cell-type specific H-MAGMA further recapitulated cellular expression profiles of disease 

risk genes. For example, we observed excitatory neuronal expression of psychiatric disorder 

risk genes, microglial expression of AD- and MS-associated genes, and astrocytic expression 

of PD- and ALS-associated genes (Fig. 3a). As astrocytes gain inflammatory profiles with 

aging38, we further assessed age-associated astrocytic expression of degenerative disorder 

risk genes derived from astrocytic H-MAGMA. We found that AD- and PD-associated genes 

were expressed in mature astrocytes, while ALS-associated genes were highly expressed in 

fetal astrocytes. MS-associated genes were highly expressed in glioblastoma, consistent with 

the emerging view that astrocyte-mediated neuroinflammation is a key contributor to the MS 

pathogenesis39. Further, psychiatric disorder-associated genes showed prenatal enrichment 

with a peak during mid-gestation, while degenerative disorder-associated genes were 

postnatally enriched with a gradual increase in expression across a lifespan (Fig. 3b–c). One 

remarkable difference between cell-type specific and brain homogenate H-MAGMA was 

postnatal expression of MS-associated genes from astrocytic H-MAGMA, which was not 

detected in brain homogenate.

Functional impact of genetic risk factors in transcriptomic signatures

We next hypothesized that brain disorder-associated genes are dysregulated in corresponding 

disorders. Therefore, we assessed whether brain disorder-associated genes are differentially 

regulated in postmortem brains with brain disorders (Methods)2.
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We first compared our gene association statistics with postmortem brain gene expression 

profiles from individuals with three psychiatric disorders (ASD, BD, SCZ)40. We found a 

significant overlap between common variation affected genes and differentially expressed 

genes (DEG) in SCZ (Extended Data Fig. 6a). SCZ-associated genes were also enriched for 

ASD DEG. In addition, ADHD-associated genes were enriched for ASD DEGs, 

recapitulating a shared genetic relationship between these two neurodevelopmental 

disorders41.

Since gene co-expression networks may capture additional disease-associated signatures to 

DEG, we compared gene association statistics with gene co-expression modules in three 

psychiatric disorders (Extended Data Fig. 6b). We found that an interneuronal module 

(geneM23) downregulated in ASD were enriched for ADHD-associated genes. Further, 

SCZ-associated genes were enriched for a synaptic module (geneM7) upregulated in BD and 

SCZ. MDD-associated genes were enriched for a neurodevelopmental module (geneM16) 

upregulated in BD and SCZ.

However, the overlap between DEG and gene association statistics was nominal (beta=0–

0.04), and ASD- and BD-associated genes were neither differentially regulated in 

psychiatric disorders nor enriched for any disease-associated co-expression modules 

(Extended Data Fig. 6). This can be due to multiple reasons. First, ASD and BD GWAS have 

relatively limited power compared to SCZ and MDD, hence a more comprehensive picture 

may arise once we obtain better powered GWAS. Second, transcriptomic signatures do not 

necessarily reflect early events in the disease process that are directly impacted by genetic 

risk factors, but result from complex gene-environment interactions throughout the disease 

progression. Third, given that brain disorder-associated genes show cell-type specific 

enrichment (Fig. 3, Extended Data Fig. 4), they may affect gene regulation in a specific cell 

type(s) that may be missed by the bulk expression datasets. To test the third hypothesis, we 

compared gene association statistics with cell-type specific molecular signatures in AD 

pathology24. We found that AD-associated genes were significantly enriched for DEGs in 

microglia and oligodendrocytes, but not in neurons (Fig. 4a). While we cannot completely 

rule out the first and second hypotheses, this result suggests that the cellular context in 

which risk variants influence gene expression needs to be carefully considered in 

understanding the molecular complexity of brain disorders.

Interplay between common and rare variation

Not only common but also rare variation plays a role in brain disorders, highlighting the 

importance of studying risk variants across the allele frequency spectrum. Our previous 

work suggests a potential interplay between common and rare variation in the genetic 

architecture of brain disorders42. Therefore, we assessed how rare and common variation in 

brain disorders crosstalk with each other at a gene level (Fig. 4b, Methods).

We found that the same set of genes, including synaptic genes (DLG2, SYNGAP1, 

SHANK1) and genes that encode transcriptional regulators (SETD1A, SMARCC2), are 

affected by both common and rare variation in SCZ. Common and rare variation in ASD 

also converge onto the same set of genes. MDD-associated genes overlap with genes that 

harbor rare de novo variation in ASD and developmental disorders (DD), suggesting that a 
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recently reported genetic correlation between MDD and ASD GWAS43 may also apply for 

rare variation. ADHD-associated genes also overlap with genes with rare de novo variation 

in ASD, supporting the shared genetic basis of neurodevelopmental disorders. These results 

collectively suggest that rare and common variation may impact same biological 

pathways42.

Shared genetic architecture among brain disorders

We next assessed whether the gene-level association statistics obtained from H-MAGMA 

can be used to elucidate the shared genetic architecture among brain disorders. Since the 

number of genes significantly associated with a given disorder differs based on the sample 

size and power of GWAS, we used a rank-rank hypergeometric test of overlap (RRHO), 

which is a threshold-free algorithm for comparing two genomic datasets44. Genes were 

ranked based on Z-scores from the H-MAGMA output, and ranked lists between two 

disorders were compared to identify the gene-level overlap between two disorders 

(Methods). We then compared this gene-level overlap with genetic correlations calculated by 

linkage disequilibrium score regression (LDSC)45.

Gene-level overlaps recapitulated the previously reported genetic architecture of brain 

disorders25: psychiatric disorders exhibited strong overlaps in their ranked gene lists, 

whereas degenerative disorders did not display significant overlaps (Extended Data Fig. 7a). 

Among psychiatric disorders, neurodevelopmental disorders (ADHD and ASD) and adult-

onset psychiatric disorders (BD, SCZ, and MDD) showed strong overlaps, indicating shared 

neurobiological bases. The correlation between RRHO and genetic correlation was 0.79 

(Extended Data Fig. 7b, P-value=8.08x10–9), demonstrating that gene-level association 

statistics from H-MAGMA reflect shared genetic architecture, and hence can be further used 

to decipher the biological mechanisms underlying shared genetic architecture among 

psychiatric disorders.

Biological pathways underlying pleiotropy

Cross-disorder GWAS of eight psychiatric disorders recently identified more than a hundred 

GWS loci increasing risk for multiple disorders, further providing evidence of widespread 

pleiotropy among psychiatric disorders14. Shared genetic etiology across psychiatric 

disorders may underlie concerted developmental expression trajectories and cellular 

expression profiles of psychiatric disorder-associated genes (Fig. 2–3). Therefore, we next 

examined genes shared in multiple psychiatric disorders (n≥4) to identify common 

molecular mechanisms of psychiatric disorders (see Methods for gene selection).

In total, we found 1,841 genes (hereby referred to as pleiotropic genes) that are shared in 

more than four psychiatric disorders (Supplementary Data 7). Notably, pleiotropic genes 

showed higher enrichment for genes mapped to pleiotropic cross-disorder GWS loci than 

those mapped to non-pleiotropic (disease-specific) GWS loci14 (Fig. 5a).

Pleiotropic genes were involved in gene regulation, synaptic function, and neuronal and 

dendritic development (Fig. 5b). They showed a distinct peak at mid-gestation, consistent 

with the overall developmental expression patterns of psychiatric disorder-associated genes 

(Fig. 5c). Finally, pleiotropic genes showed strong excitatory neuronal enrichment for 
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cortical projection neurons in cortical layers 2/3 (excitatory neuronal subtypes 1) and 

corticothalamic projection neurons in cortical layers 5/6 (excitatory neuronal subtype 7) 

(Fig. 5d).

Discussion

Here we present a refined framework for gene pathway analysis, H-MAGMA, that 

aggregates SNP-level summary statistics into the gene-level association statistics. Compared 

with cMAGMA, H-MAGMA (1) links non-coding SNPs to their target genes based on 

functional genomic evidence, and (2) adds relevant cellular context to gene mapping by 

using chromatin interaction data from disease-relevant tissue and cell types. While the basic 

concept of mapping SNPs to genes using functional genomic resources is similar to FUMA7, 

H-MAGMA leverages the MAGMA framework to obtain gene-level association statistics in 

a genome-wide fashion, while FUMA maps a selected set of genomic loci to target genes. 

Therefore, H-MAGMA can provide an attractive framework to identify genes and biological 

pathways for low powered GWAS. It also allows comparing different GWAS to elucidate 

shared biological pathways.

H-MAGMA can be expanded into many different forms. For example, while we decided to 

use MAGMA among many other tools as it is most widely used, this framework is 

applicable to any other tools that convert SNP-level P-values into gene-level association 

statistics16. Moreover, H-MAGMA can be built on Hi-C datasets from multiple tissue- and 

cell-types to distill biological mechanisms of any GWAS (e.g. Hi-C datasets from immune 

cells for rheumatoid arthritis GWAS). Finally, while we primarily used Hi-C datasets to link 

SNPs to target genes, other functional genomics tools such as chromatin accessibility 

correlations and machine learning-based enhancer-promoter predictions can be used to 

generate SNP-gene pairs. In fact, a similar approach using eQTLs (eMAGMA) has been 

recently reported46.

To further examine the interrelationship between Hi-C and eQTLs, we compared H-

MAGMA-derived outputs with two eQTL-based gene mapping tools, coloc and TWAS. 

Consistent with the previous finding3,11, we detected a substantial overlap. While eQTL-

based gene mapping is in no doubt a powerful approach, H-MAGMA can provide a 

complementary platform to understand the mechanism of GWAS for the following reasons. 

First, Hi-C can provide comprehensive genome-wide maps for tissues or cell-types with 

limited access. One example is Hi-C datasets from iPSC-derived neurons and astrocytes that 

allow GWAS annotation in a cell-type specific manner37, which is currently not available 

with eQTL. Second, it has been recently shown that the variants associated with chromatin 

accessibility capture stimulus-sensitive signals and explain a significant proportion of 

heritability, even more so than eQTLs47,48. Supporting this claim, we found that H-

MAGMA derived genes explain a significant proportion of heritability in addition to eQTL 

derived genes. These results collectively suggest that chromatin architecture such as Hi-C 

and chromatin accessibility may provide complementary regulatory phenotypes that can be 

missed by eQTLs. It is of note that H-MAGMA also has its shortcoming, as it does not 

capture gene regulatory mechanisms such as altered RNA splicing or the allelic effect (Hi-C 

cannot predict whether the SNPs will downregulate or upregulate the cognate genes). 
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Leveraging multiple genomic resources, such as eQTL, spliceQTLs, caQTLs, and Hi-C, is 

therefore critical for annotating and interpreting GWAS.

An application of H-MAGMA to nine brain disorder GWAS enabled systematic delineation 

of pathogenic mechanisms of brain disorders. For example, one important question in 

psychiatry is whether a critical window exists for treatment of psychiatric disorders. 

Moreover, there is an ongoing debate whether adult onset disorders such as schizophrenia 

and depression have a neurodevelopmental origin. By comparing prenatal and postnatal 

expression trajectories, we found that genes associated with psychiatric disorders show 

remarkable developmental convergence onto mid-gestation, while genes associated with 

degenerative disorders were gradually increased across the life span, reflecting their 

increased burden upon aging.

Another layer of convergence among psychiatric disorders was hinted by cellular expression 

profiles. Psychiatric disorder-associated genes were selectively expressed in excitatory 

neurons, while degenerative disorder-associated genes show more diverse cellular 

enrichment profiles. Similar cell-type specificity was reported by the interactome study, 

demonstrating the robustness of the result using an orthogonal approach49.

These results demonstrate that the shared genetic basis of psychiatric disorders translates 

into shared neurobiological mechanisms. To further identify shared neurobiological basis 

among psychiatric disorders, we defined a set of pleiotropic genes that are associated with 

more than four psychiatric disorders. Pleiotropic genes were associated with neuronal 

development and synaptic plasticity, suggesting that inappropriate neuronal activity and 

regulation may act as key components in the pathogenesis of psychiatric disorders. 

Pleiotropic genes also displayed mid-gestational and excitatory neuronal enrichment, 

summarizing the overall pattern of psychiatric disorder-associated genes. Importantly, this 

characteristic was also observed for pleiotropic genes identified by meta-analysis of eight 

psychiatric disorders14.

Finally, we found intricate relationships among genes impacted by common and rare 

variation. For example, common and rare variation in SCZ and ASD coalesce to the same set 

of genes, highlighting the importance of studying risk variation across the allele frequency 

spectrum to comprehensively understand the complex interplay between common and rare 

variation in psychiatric disorders.

Accession codes

Hi-C data from the developing cortex is available through dbGaP under the accession 

number phs001190.v1.p1; Hi-C data from the adult DLPFC is available through the 

PsychENCODE resource site (resource.psychencode.org); Hi-C data from neuron and 

astrocyte is available through PsychENCODE knowledge portal under the accession number 

syn4921369.
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Methods

Hi-C

Fetal brain Hi-C data was obtained from the paracentral cortex of three individuals of 

gestation week (GW) 17–184. Adult brain Hi-C data was obtained from the dorsolateral 

prefrontal cortex (DLPFC) of three individuals (36, 44, 64 years)3. Neuronal and astrocytic 

Hi-C data were derived from human induced pluripotent stem cells (hiPSC) obtained from 

two individuals (15 and 31 years)37.

GWAS

We used the following GWAS summary datasets: attention deficit/hyperactivity disorder 

(ADHD) (n = 20,183 cases; 35,191 controls) 50, autism spectrum disorder (ASD) (n = 

18,381 cases; 27,969 controls)41, bipolar disorder (BD) (n = 20,352 cases; 31,538 

controls)51, schizophrenia (SCZ) (n = 11,260; 24,542 controls)52, major depressive disorder 

(MDD) (n = 246,363 cases; 561,190 controls)53, Alzheimer’s disease (AD) (n = 71,880 

cases; 383,378 controls)54, Parkinson’s disease (PD) (n= 37,700 cases; 1,400,000 

controls)55, multiple sclerosis (MS) (n = 4,888; 10,395 controls)56, amyotrophic lateral 

sclerosis (ALS) (n = 12,577; 23,475 controls)57. Since we used publicly available GWAS 

summary statistics, (1) no data points were excluded from analysis, (2) no statistical 

methods were used to pre-determine the sample size, and (3) data collection and analysis 

were not performed blind to the conditions of the experiments.

Development of Hi-C coupled MAGMA (H-MAGMA)

Exonic and promoter SNPs were directly assigned to their target genes based on their 

genomic location using a gene model Gencode v26 https://www.gencodegenes.org/human/

release_26lift37.html), and promoter definition as 2kb upstream of transcription start sites 

(TSS) of each gene isoform. Intronic and intergenic SNPs were assigned to their cognate 

genes based on chromatin interactions with promoters and exons as previously described3,4. 

Briefly, we generated a background Hi-C interaction profile by pooling 9 million imputed 

SNPs from schizophrenia GWAS summary statistics58. Using this background Hi-C 

interaction profile, we fit the distribution of Hi-C contacts at each distance from each 

chromosome using the fitdistrplus package (https://cran.r-project.org/web/packages/

fitdistrplus/index.html). Significance for a given Hi-C contact was calculated as the 

probability of observing a stronger contact under the fitted Weibull distribution matched by 

chromosome and distance. Hi-C contacts with FDR<0.01 were selected as significant 

interactions. Significant Hi-C interacting regions were overlapped with Gencode v26 exon 

and promoter coordinates to identify exon- and promoter-based interactions. We used exon- 

and promoter-based interactions, because our previous study comparing Hi-C data with 

eQTLs have demonstrated the gene regulatory potential of exon-level interactions3. Hi-C 

data from brain homogenate (fetal and adult human brain) and brain cells (hiPSC-derived 

neurons and astrocytes) were used to generate MAGMA input files that describe gene-SNP 

pairs. Input files can be found in the github repository: https://github.com/thewonlab/H-

MAGMA.
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Gene annotation for conventional MAGMA (cMAGMA)

We generated an input file for cMAGMA that is comparable to H-MAGMA. We used the 

same gene model (Gencode v26) and a SNP list used for H-MAGMA, and allowed a 

window of 35kb upstream and 10kb downstream of each gene as previously described16,52. 

Subsequently, any intronic and nearby intergenic SNPs were assigned to the genes based on 

positional mapping. This input file can be found in the github repository: https://github.com/

thewonlab/H-MAGMA.

Non-coding SNP annotation

We first grouped non-coding SNPs into intronic and intergenic SNPs. Proximal genes were 

defined by positional mapping: for intronic SNPs, genes in which SNPs are located were 

defined as proximal genes; for intergenic SNPs, nearest genes were defined as proximal 

genes. Intronic and intergenic SNPs were then overlapped with the SNPs annotated by Hi-C 

(Hi-C non-coding SNPs: SNPs that interact with gene promoters and exons) and eQTLs 

(eQTL non-coding SNPs: SNPs that have associations with gene expression). For Hi-C non-

coding SNPs, we compared proximal genes with genes that physically interact with the 

SNPs. For eQTL non-coding SNPs, we compared proximal genes with e-genes (genes that 

show eQTL associations). We assessed how often (1) physically interacting genes and/or e-

genes for a given SNP contain proximal (nearest) genes (Extended Data Fig. 1a), and (2) 

SNPs show any interactions/associations with distal (non-nearest) genes (Fig. 1b).

Running MAGMA

For both H-MAGMA and cMAGMA, we used the MAGMA analysis pipeline as the default 

setting:

magma_v1.07b/magma --bfile g1000_eur –pval <GWAS summary statistics> 

use=rsid,p ncol=N --gene-annot <MAGMA input annotation file> --out <output 

file>

Here, g1000_eur denotes the reference data file for European ancestry population. This file 

can be downloaded from: https://ctg.cncr.nl/software/magma. Detailed instructions can be 

found in the github repository: https://github.com/thewonlab.

Comparison between H-MAGMA and cMAGMA

We compared disorder risk genes identified by H-MAGMA with those identified by 

cMAGMA using a Vennerable package in r. We reported the proportion of H-MAGMA 

selective genes by calculating the number of genes only identified by H-MAGMA divided 

by the total number of genes identified by H-MAGMA. Since H-MAGMA results were 

available from the fetal and adult brain Hi-C data, we used genes that are significantly 

associated in either fetal or adult dataset using a union function in R (hereby referred to as 

union disorder risk genes).

We next obtained SNPs mapped to H-MAGMA selective genes using H-MAGMA input 

files from the fetal and adult brain (H-MAGMA SNPs) and the cMAGMA input file 

(cMAGMA SNPs). We also obtained H-MAGMA selective SNPs by excluding cMAGMA 
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SNPs from H-MAGMA SNPs to ensure that heritability enrichment we observed is not due 

to the exonal and promoter SNPs that are shared between H-MAGMA and cMAGMA. We 

then measured heritability explained by H-MAGMA SNPs and H-MAGMA selective SNPs 

using stratified linkage disequilibrium score regression with the baseline-LD model (S-

LDSC)6.

Comparison between H-MAGMA and eQTL-based gene mapping algorithms

To compare H-MAGMA with eQTL-based tools, we used previously reported schizophrenia 

(SCZ) risk genes obtained through the transcriptome-wide association study (TWAS)40 and 

coloc3. Both TWAS and coloc were performed on SCZ GWAS52 using the largest eQTL 

resource obtained from the adult human DLPFC3. We restricted our H-MAGMA results to 

those derived from the adult brain so that we can match the developmental period (adult) and 

brain region (DLPFC) with the eQTL database. TWAS identified 708 SCZ-associated genes 

(TWAS SCZ genes) whose imputed expression values are correlated with SCZ (FDR<0.05). 

Coloc identified 255 SCZ-associated genes (coloc SCZ genes) whose eQTLs co-localize 

with SCZ genome-wide significant (GWS) loci (PP4>(PP0+PP1+PP2+PP3)).

While H-MAGMA uses the whole genome as genetic background, coloc and TWAS require 

a more carefully defined background. Because coloc is a GWS loci-centric approach, e-

genes within GWS loci ± 1Mb were considered as background (3,632 genes). On the other 

hand, TWAS is a genome-wide approach and uses cis-heritable genes as background (13,396 

genes). We therefore intersected H-MAGMA SCZ association results with coloc and TWAS 

background, from which 1,576 and 2,801 H-MAGMA SCZ genes (FDR<0.05) were 

selected and compared with coloc and TWAS SCZ genes, respectively. By comparing H-

MAGMA SCZ genes and coloc/TWAS SCZ genes, we obtained 3,004 H-MAGMA selective 

genes (genes identified by H-MAGMA but not by TWAS and/or coloc). SNPs mapped to H-

MAGMA selective genes were subsequently identified via H-MAGMA input file from the 

adult brain (H-MAGMA SNPs). Finally, heritability enrichment of H-MAGMA SNPs was 

calculated by S-LDSC to demonstrate that H-MAGMA genes without eQTL support still 

explain a significant proportion of heritability.

Heritability enrichment for tissue-specific regulatory elements

To measure heritability enrichment of eight brain disorder GWAS in active genomic regions 

in each cell/tissue-type, we used S-LDSC6 with chromHMM-defined chromatin states5. 

Since chromatin profiling hasn’t been performed in all cell/tissue-types (e.g. DNase 

hypersensitivity was missing for fetal brains, while H3K27ac ChIP-seq was not performed in 

the adult DLPFC), we instead used genomic regions that are active in each cell/tissue type 

using chromatin states defined by chromHMM59. We defined active genomic elements by 

the regions marked as Active transcription start sites (TSS, state 1), Flanking active TSS 

(state 2), Genic enhancers (state 6), and Enhancers (state 7), and repressive genomic 

elements marked as Heterochromatin (state 9), Repressed polycomb (state 13), Weak 

repressed polybcomb (state 14), and Quiescent (state 15) in the core 15-state model (https://

egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). To further assess 

developmental stage specific heritability enrichment in the human brain tissue, we defined 

fetal active elements (elements that are active in the fetal brain and become repressive in the 
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adult brain) and adult active elements (elements that are repressive in the fetal brain then 

become active in the adult brain). The SNP annotation file can be downloaded from the 

github repository: https://github.com/thewonlab/H-MAGMA. Heritability enrichment values 

in different cell/tissue types resulting from S-LDSC were then scaled to allow tissue-level 

comparison of enrichment values.

Gene selection

For assessing (1) developmental expression profiles, (2) cell-type specific expression 

profiles, and (3) gene ontology enrichment of disorder-associated genes, we used following 

strategies to select genes. We restricted our analysis only on protein-coding genes, because 

(1) the majority of genes detected in the spatiotemporal transcriptomic atlas12, single cell 

expression datasets60–62, and gene ontologies were protein-coding genes, and (2) non-coding 

genes have much lower expression values compared with protein-coding genes, which can 

dilute the signals. We also excluded genes within the MHC region due to the complexity of 

LD, which can override the overall pattern. Finally, we removed genes within chromosome 

X (chrX), as only a subset of GWAS had association statistics available in chrX.

Developmental and Cellular Expression Profiles

Analyzing developmental and cell-type specific expression levels required selection of 

significantly associated genes for each disorder. We calculated adjusted P-values based on 

the Benjamini and Hochberg (BH) procedure using p.adjust function in R. We then 

selected genes with two FDR thresholds (FDR<0.01 for GWAS with >20 GWS hits, SCZ, 

BD, MDD, AD; FDR<0.1 for GWAS with < 20 GWS hits, ADHD, ASD, PD, MS, ALS) for 

as significantly associated brain disorder genes.

Spatiotemporal transcriptomic atlas from Kang et al., 201112 was used to obtain cortical 

expression profiles across multiple developmental stages. Developmental stages were 

defined as follows: stage 1, 4 PCW ≤ Age < 8 PCW; stage 2, 8 PCW ≤ Age < 10 PCW; stage 

3, 10 PCW ≤ Age < 13 PCW; stage 4, 13 PCW ≤ Age < 16 PCW; stage 5, 16 PCW ≤ Age < 

19 PCW; stage 6, 19 PCW ≤ Age < 24 PCW; stage 7, 24 PCW ≤ Age < Birth; stage 8, Birth 

≤ Age < 6 M; stage 9, 6M ≤ Age < 1 Y; stage 10, 1 Y ≤ Age < 6 Y; stage 11, 6 Y ≤ Age < 12 

Y; stage 12, 12 Y ≤ Age < 20 Y; stage 13, 20 Y ≤ Age < 60 Y; stage 14, Age > 60 Y.

Log-transformed expression values were centered to the mean expression level per sample 

using a scale(center=T, scale=F) function in R. Genes associated with brain disorders 

were selected for each brain sample and their average centered expression values were 

calculated for each brain sample. To ensure that developmental expression trajectories are 

not dictated by the developmental stage from which Hi-C data was obtained, we used union 

disorder risk genes. To further verify the developmental trajectories in a cell-type specific 

fashion, we used neuronal Hi-C for psychiatric disorders and astrocytic Hi-C for 

degenerative disorders. Prenatal versus postnatal expression values were compared using lm 

function in R (e.g. for a given disorder, lm(Expression values ~ stages)).

We also used single cell transcriptomic data from the adult brain60,62 and fetal brains61 to 

identify cell-type specific expression profiles of brain disorder-associated genes. To measure 
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astrocytic expression profiles across developmental stages, we used transcriptomic data from 

purified human astrocytes63. H-MAGMA results derived from fetal and adult brain Hi-C 

were used to assess cell-type specific expression values in the fetal and adult brain, 

respectively. Furthermore, neuronal H-MAGMA was used to assess cell-type and neuronal 

subtype enrichment of psychiatric disorder risk genes, whereas astrocytic H-MAGMA was 

used to assess cellular expression profiles and age-associated expression changes in 

astrocytes for degenerative disorders. We processed log-transformed expression values per 

cell or sample using a scale(center=T, scale=F) function in R. Average centered 

expression values of genes associated with brain disorders were calculated for each cell type.

Gene ontology analysis

We used an R package gProfileR (https://biit.cs.ut.ee/gprofiler/gost) for running gene 

ontology analysis, as it allows a ranked gene list, which resembles Gene Set Enrichment 

Analysis (GSEA). Because it does not require a P-value threshold to select significantly 

associated genes, it allows comparing gene ontologies for differently powered GWAS in a 

non-bias fashion. After ranking genes based on Z-scores generated by H-MAGMA, we ran 

gene ontology analysis using this command line:

gprofiler(<Ranked gene list>, organism=“hsapiens”, ordered_query=T, 

significant=T, max_p_value=0.05, min_set_size=15, max_set_size=600, 

min_isect_size=5, correction_method=“fdr”, hier_filtering=“moderate”, 

custom_bg=background gene set, include_graph=T, src_filter=“GO”)

Gene-set analysis

Genes that harbor de novo protein disrupting variation in developmental disorders (DD) 

were obtained from the Deciphering Developmental Disorders Study (93 DD risk genes with 

genome-wide significance)64. We also obtained 102 ASD risk genes (rare variation burden, 

FDR<0.1) from the Autism Sequencing Consortium (ASC) study65. Schizophrenia risk 

genes with elevated burden of rare variation were obtained from Singh et al., 201666 (110 

genes with FDR<0.3). Differentially expressed genes (DEG) in postmortem brains with 

psychiatric disorders were obtained from Gandal et al., 201840 (FDR<0.05). Cell-type 

specific DEG in AD postmortem brains was obtained from Mathys et al., 201924.

Since different brain disorders have different numbers of significantly associated genes, we 

tried to avoid selecting genes based on a P-value threshold. In comparing H-MAGMA 

outputs with DEG, we used the gene-set analysis embedded in MAGMA, which utilizes the 

whole gene-level association statistics while controlling for covariates such as gene size and 

LD2. In comparing H-MAGMA outputs (common variation) with the gene lists that harbor 

protein disrupting variation (rare variation), we used a generalized linear model controlling 

for the exome length (controlling for rare variation) and the number of SNPs mapped to each 

gene (controlling for common variation).

glm(<MAGMA Z-scores> ~ <Rare variation annotation file> + <Exome length> + 

<The number of SNPs mapped to genes>)
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We took this alternative approach than using MAGMA gene-set analysis because protein 

disrupting variation in brain disorders was detected by exome-sequencing and is dependent 

on the exon, but not gene length.

Rank-rank hypergeometric overlap (RRHO)

We assessed genetic relationship between two disorders (rg) by using genetic correlation 

analysis of LDSC45. To provide similar metrics based on gene-level association statistics, we 

compared ranks between two datasets (e.g. H-MAGMA outcomes from two disorders) using 

an R package RRHO (https://www.bioconductor.org/packages/release/bioc/html/RRHO.html) 

with the following command line:

RRHO(<Ranked gene list 1>, <Ranked gene list 2>, outputdir=<output 

directory>, alternative=“enrichment”, BY=TRUE, log10.ind=TRUE)

To compare gene-level overlaps (RRHO output) with genetic correlations (calculated by 

LDSC), P-values from RRHO was converted into Z-scores using the following command 

line:

Zscore = qnorm(10^(-Pvalues), lower.tail=FALSE)

We then compared resulting RRHO Z-scores with rg values from the genetic correlation 

analysis using Pearson’s correlation. This correlation coefficient provides a metric to 

compare a genetic relationship between two disorders measured at the SNP level (rg) vs. 

gene-level (RRHO Z).

Identification of pleiotropic genes

RRHO outputs two gene sets consisting of most up and downregulated genes, with most 

upregulated genes referring to a list of genes that are associated with both conditions, and 

most downregulated genes referring to a list of genes that are not associated with both 

conditions. Therefore, we employed most upregulated genes as a gene list that is shared 

between two disorders, hence representing pleiotropic genes. We then generated pleiotropic 

genes shared in at least four disorders by intersecting RRHO most upregulated genes 

between the following disorder pairs (ADHD vs. ASD/BD/SCZ/MDD; ASD vs. BD/SCZ/

MDD; BD vs. SCZ/MDD; and SCZ vs. MDD). Since psychiatric disorder-associated genes 

showed neurodevelopmental and neuronal enrichment, we used fetal brain and neuronal H-

MAGMA results. We merged the gene sets by a union function in R and obtained uniquely 

identified genes. The code is provided in the github repository: https://github.com/

thewonlab/H-MAGMA. In the end, we obtained 1,841 genes that are shared in more than 

four disorders, and defined them as pleiotropic genes. These genes were compared with the 

genes mapped to pleiotropic versus non-pleiotropic GWS loci from the meta-analysis of 8 

psychiatric disorders14. We next performed the gene ontology, developmental expression, 

and cell-type expression analyses on the pleiotropic genes as described above.
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Data availability

All GWAS summary statistics used in this study are publicly available. We deposited (1) H-

MAGMA input files derived from the fetal and adult brain, and neuronal and astrocytic Hi-C 

data, and (2) H-MAGMA output files for nine brain disorders in the github repository 

https://github.com/thewonlab/H-MAGMA.

Code availability

Codes used in this study are provided in the github repository: https://github.com/

thewonlab/H-MAGMA.

Extended Data
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Extended Data Fig. 1. Comparison between H-MAGMA and cMAGMA
a. The number and proportion of intronic and intergenic SNPs annotated to proximal and 

distal genes. SNPs mapped to proximal genes may also have distal associations, while SNPs 

mapped to distal genes do not have any association with proximal genes. b. The number of 

brain disorder risk genes (genes that are significantly associated with each brain disorder at a 

threshold of FDR<0.05) predicted by H-MAGMA and cMAGMA. % H-MAGMA denotes 

the percentage of H-MAGMA selective genes (genes that were identified by H-MAGMA but 

not by cMAGMA). c. The number of SNPs assigned to each gene for H-MAGMA and 

cMAGMA. Center, median; box=1st-3rd quartiles (Q); minima, Q1 – 1.5 x interquartile 

range (IQR); maxima, Q3 + 1.5 x IQR. d. The number and proportion of SNPs annotated to 

the cognate genes by H-MAGMA and cMAGMA. e. H-MAGMA selective SNPs (SNPs 

assigned to H-MAGMA selective genes in H-MAGMA – SNPs assigned to H-MAGMA 

selective genes in cMAGMA) explain a significant proportion of heritability. Top graph: 

Heritability enrichment ± standard error; enrichment denotes proportion of heritability/

proportion of SNPs; red dotted line, enrichment=1. Bottom graph: false discovery rate 

(FDR) of heritability enrichment: red dotted line, FDR=0.05.
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Extended Data Fig. 2. Heritability enrichment of brain disorders in active regulatory elements of 
multiple tissue/cell types.
(Top) Scaled enrichment values. (Bottom) Significance of heritability enrichment (P-values). 

ESC, embryonic stem cells. ESDR, embryonic stem cell derived cell lines.
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Extended Data Fig. 3. Developmental expression trajectories of brain disorder risk genes derived 
from cMAGMA
PCW, post-conception week; M, month; Y, year. (Left) N = 410 and 453 for prenatal and 

postnatal samples, respectively. Center, median; box=Q1-Q3; lower whisker, Q1 – 1.5 x 

IQR; upper whisker, Q3 + 1.5 x IQR. (Right) LOESS smooth curve with 95% confidence 

bands.
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Extended Data Fig. 4. Cellular expression profiles of brain disorder risk genes.
a. Cellular expression profiles of brain disorder risk genes derived from H-MAGMA and 

cMAGMA. Psychiatric disorder-associated genes are highly expressed in neurons, while 

neurogenerative disorder-associated genes show glial signatures. Astro, astrocytes; Micro, 

microglia; Endo, endothelial cells; Oligo, oligodendrocytes; OPC, oligodendrocytes 

progenitor cells. b. Psychiatric disorder-associated genes are highly expressed in radial glia 

and excitatory neurons in the developing cortex. RG, radial glia, vRG; ventricular RG; oRG, 

outer RG; tRG, truncated RG; IPC, intermediate progenitor cells; Ex, excitatory neurons; In, 

inhibitory neurons; nEx/nIn, newly born excitatory/inhibitor neurons; PFC, prefrontal 

cortex; V1, visual cortex; CGE, caudal ganglionic eminence; MGE, medial ganglionic 

eminence.
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Extended Data Fig. 5. Overlap between brain disorder risk genes derived from neuronal and 
astrocytic H-MAGMA
Brain disorder risk genes (FDR<0.05) were compared between neuronal and astrocytic H-

MAGMA results.
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Extended Data Fig. 6. Psychiatric disorder risk genes predicted by H-MAGMA are dysregulated 
in postmortem brains of individuals with psychiatric disorders.
a. Overlap between common variation associated genes and genes differentially expressed 

(DEG) in postmortem brains with psychiatric disorders. b. Overlap between common 

variation associated genes and co-expression (co-exp) modules differentially regulated in 

psychiatric disorders. Down, modules are downregulated in disorders; Up, modules are 

upregulated in disorders.
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Extended Data Fig. 7. Genetic relationships among brain disorders.
a. Psychiatric disorders show strong genetic relationships both at the level of genetic 

correlations (bottom left, rg) and gene-level overlaps (top right, RRHO). BY FDR, P-values 

adjusted by the Benjamini and Yekutieli procedure. b. Genetic correlations measured with 

Pearson’s correlation (rg) and gene-level overlaps (RRHO Z) are highly correlated, 

indicating that gene-level overlaps obtained by H-MAGMA recapitulate genetic correlations. 

Brain disorders that show strong genetic correlations (rg > 0.2) and gene-level overlaps 

(RRHO Z > 15) are marked in blue. Linear regression line with 95% confidence bands.
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Fig. 1. Schematics of H-MAGMA approach.
a. H-MAGMA leverages chromatin interaction profiles (Hi-C) to assign intergenic and 

intronic SNPs to cognate genes. We have applied this framework to five psychiatric 

disorders and four degenerative disorders using Hi-C datasets from the fetal and adult brain. 

In return, H-MAGMA provides gene-level association statistics, which can be used to 

elucidate biological mechanisms underlying brain disorders. b. Intronic and intergenic SNPs 

are often annotated to distal genes. c. SNPs mapped to H-MAGMA selective genes explain a 

significant proportion of heritability. Top graph: Heritability enrichment ± standard error; 

enrichment denotes proportion of heritability/proportion of SNPs; red dotted line, 

enrichment=1. Bottom graph: false discovery rate (FDR) of heritability enrichment; red 

dotted line, FDR=0.05. d. Overlap between SCZ-associated genes identified by H-MAGMA, 

TWAS, and coloc.
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Fig. 2. Spatiotemporal dynamics of brain disorder risk genes.
a. Heritability enrichment of brain disorders in active regulatory elements of the fetal and 

adult brain. Enrichment ± standard error (circle) and significance of heritability enrichment 

(triangle) are depicted. b-c. Developmental expression trajectories of brain disorder risk 

genes. PCW, post-conception week; M, month; Y, year. (Left) N = 410 and 453 for prenatal 

and postnatal samples, respectively. Center, median; box = 1st-3rd quartiles (Q); minima, Q1 

– 1.5 x interquartile range (IQR); maxima, Q3 + 1.5 x IQR. (Right) LOESS smooth curve 

with 95% confidence bands.
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Fig. 3. Cellular expression profiles of brain disorder risk genes.
a. We used neuronal and astrocytic H-MAGMA to annotate psychiatric disorder and 

degenerative disorder GWAS, respectively. Psychiatric disorder-associated genes are highly 

expressed in neurons, while neurogenerative disorder-associated genes exhibit glial 

signatures. Astro, astrocytes; Micro, microglia; Endo, endothelial cells; Oligo, 

oligodendrocytes; OPC, oligodendrocytes progenitor cells; Ex, excitatory neurons; In, 

inhibitory neurons; GBM, glioblastoma multiforme tumor. b-c. Developmental expression 

trajectories of psychiatric disorder-associated genes (b) and degenerative disorder-associated 

genes (c). PCW, post-conception week; M, month; Y, year. (Left) N = 410 and 453 for 

prenatal and postnatal samples, respectively. Center, median; box=Q1-Q3; minima, Q1 – 1.5 

x IQR; maxima, Q3 + 1.5 x IQR. (Right) LOESS smooth curve with 95% confidence bands.
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Fig. 4. Characteristics of brain disorder risk genes.
a. AD-associated genes are dysregulated in oligodendrocytes and microglia from AD 

postmortem brains (single-cell RNA-seq DEG). b. Comparison of brain disorder risk genes 

with common and rare variation. Only significant associations (FDR<0.1) were depicted.
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Fig. 5. Pleiotropic genes reveal shared molecular mechanisms of psychiatric disorders.
a. Comparison between pleiotropic genes and genes mapped to non-pleiotropic and 

pleiotropic GWS loci. Odds ratio (OR) and 95% confidence intervals (CI). b. Gene ontology 

enrichment of pleiotropic genes. c. A developmental expression trajectory of pleiotropic 

genes. LOESS smooth curve with 95% confidence bands. d. Cell-type specific expression 

profiles of pleiotropic genes.
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