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1  | INTRODUC TION

Diabetes mellitus (DM) is one of the most prevalent systemic met-
abolic diseases, which can damage many organs in body.1 In world-
wide, more than 415 million adults with DM, including 6 million new 

cases, were counted annually.2,3 Many complications caused by di-
abetes have become the focus of widespread attention. A growing 
body of evidence suggests that both type 1 diabetes (T1DM) and 
type 2 diabetes (T2DM) patients exhibit a variety of neuropatho-
logical and neurobehavioural changes, including cerebrovascular 
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Abstract
Epidemiological studies have found that diabetes and cognitive dysfunction are 
closely related. Quercetin has been certified with the effect on improving diabetes 
mellitus (DM) and cognitive impairment. However, the effect and related mecha-
nism of quercetin on diabetic encephalopathy (DE) are still ambiguous. In this study, 
we used the db/db mice (diabetic model) to discover whether quercetin could im-
prove DE through the Sirtuin1/NLRP3 (NOD-, LRR- and pyrin domain-containing 3) 
pathway. Behavioural results (Morris water maze and new object recognition tests) 
showed that quercetin (70 mg/kg) improved the learning and memory. Furthermore, 
quercetin alleviated insulin resistance and the level of fasting blood glucose. Besides, 
Western blot analysis also showed that quercetin increased the protein expressions 
of nerve- and synapse-related protein, including postsynapticdensity 93 (PSD93), 
postsynapticdensity 95 (PSD95), brain-derived neurotrophic factor (BDNF) and 
nerve growth factor (NGF) in the brain of db/db mice. Quercetin also increased the 
protein expression of SIRT1 and decreased the expression of NLRP3 inflammation-
related proteins, including NLRP3, the adaptor protein ASC and cleaved Caspase-1, 
the pro-inflammatory cytokines IL-1β and IL-18. In conclusion, the present results 
indicate that the SIRT1/NLRP3 pathway may be a crucial mechanism for the neuro-
protective effect of quercetin against DE.
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changes,4 insulin signalling systems impairments in cerebral,5 poor 
visual space construction, planning and visual memory injury.6,7 
Diabetic encephalopathy (DE) is a series of neuropathological 
changes caused by diabetes, which common symptoms are paraes-
thesia, numbness and impaired cognition.8 The pathogenesis of DE 
is not completely clear. Persistent inflammation caused by the large 
secretion of pro-inflammatory factors is a possible mechanism for 
DE.9 In addition, the insulin signalling pathway is another potential 
mechanism of DE, which is not only involved in the deposition of 
amyloid in the brain, but also a neurotrophic factor of nerve cells.10 
DE has become an important direction in the current research and 
prevention of diabetes. However, it is still unclear about effective 
treatment methods and drugs of DE. Therefore, it is urgent to study 
the pathogenesis of DE and explore new drugs.

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a typical repre-
sentative flavonoid. Quercetin widely exists in various fruits, vege-
tables and traditional Chinese medicine plants6,11,12; and whose daily 
intake is about 3-38  mg/d.13 To be a therapeutic agent, quercetin 
is used to alleviate various diseases, including hepatotoxicity, car-
diotoxicity, neurotoxicity and nephrotoxicity.14,15 The great effects 
of quercetin are attributed to its antioxidant16 and anti-inflamma-
tory capacity.17 Recently, the combination of dasatinib and querce-
tin is reported to extend the lives of older people.18 Quercetin is 
an SIRT1 activator.19-21 Studies have found that quercetin increases 
monoamine synthesis in aged rats by activating SIRT1 and improves 
cognitive function in aged rats.19 In a diabetic rat model, quercetin 
can activate SIRT1 and promote glucose and lipid metabolism.22 Can 
quercetin relieve DE through SIRT1? These experimental results pro-
vide a reasonable basis for the assumptions of our experiments.19,22

SIRT1 (Sirtuin type 1), one of the main members of the sirtuin fam-
ily, is a deacetylase that targets and regulates the function and activity 
of the corresponding protein by deacetylation.21,22 SIRT1 is thought 
to play a major role in cell proliferation, differentiation, senescence 
and apoptosis.23,24 Many researches have shown that SIRT1 inhibits 
the occurrence of inflammatory responses by negatively regulating the 
NLRP3 inflammasome in vascular endothelial cells.25,26 In C57BL/6 
mice, quercetin rutin alleviates acute endotoxin-induced renal in-
jury by inhibiting inflammation and up-regulating the expression of 
SIRT1.27 In addition, our previous findings suggest that SIRT1 may be 
the key to improving cognitive function in diabetic mice.7 However, 
whether NLRP3 participates in SIRT1 to improve cognitive function in 
diabetic encephalopathy mice remains to be further studied.

The nucleotide-binding domain-like receptor protein 3 (NLRP3) 
inflammasome is a multiprotein complex, and it includes the oligo-
merization of NLRP3, ASC (adaptor protein) and caspase-1.28 And it 
also plays a very important role in many diseases, including autolo-
gous inflammatory disease (CAPS),29 multiple sclerosis and lupus,30,31 
diabetes, acute kidney injury, chronic kidney disease.32,33 NLRP3 
catalyzes the transformation from inactive pro-caspase-1 protein to 
active caspase-1protein, and then pro-IL-1β and pro-IL-18 mature 
and secrete IL-1β and IL-18 under the action of activated caspase-1 
protein.34 NLRP3 inflammasome promotes diabetes-induced endo-
thelial inflammation and atherosclerosis.35 Studies have reported that 

quercetin inhibits NLRP3 inflammatory activation in a rat spinal cord 
injury model.36 Targeting adjustment of the NLRP3 inflammasome 
protect the nerve damage in spinal cord injury rats.37 Previous studies 
have demonstrated that quercetin can up-regulate SIRT1 leading to 
neuroprotection and improve glycolipid metabolism.19,22 However, in 
the DE model, what is the mechanism of action of quercetin? Whether 
it is related to SIRT1/NLRP3 remains to be verified.

In our study, the db/db mice, a model of T2DM,7 were used for 
study. We explored whether quercetin could improve cognitive dys-
function through NLRP3 signal pathway in db/db mice. We treated 
our mice with two different doses (35 and 70 mg/kg/d) of quercetin. 
We finally found the potential mechanism of quercetin of alleviating 
DE might be through SIRT1/NLRP3 signal pathway.

2  | MATERIAL S AND METHODS

2.1 | Chemical reagents

Quercetin (98%, Figure 1A) was purchased from Sigma-Aldrich. 
Primary antibodies including Postsynapticdensity 93 (PSD93), 
Postsynapticdensity 95 (PSD95), Nerve growth factor (NGF), SIRT1, 
ASC, NLRP3 and IL-1β were purchased from Cell Signaling Technology, 
Inc. Anti–brain-derived neurotrophic factor (BDNF), anti-NLRP3, 
anti–β-actin were purchased from Abcam, Inc. Anti–IL-18 and anti–
cysteinyl-aspartate-specific proteinase-1 (Cleaved Caspase-1) were 
purchased from Affinity Biosciences. Secondary antibodies (antimouse 
IgG and anti-rabbit IgG) were also from CST, Inc.

2.2 | Animals and treatment

The db/db mice and age-matched wild-type C57BL/6J-db/m mice 
were purchased from Nanjing Biomedical Research Institute of Nanjing 
University, Nanjing, China (8 weeks, female). Animals were maintained 
in SPF animal room, where was provided a 12-hour light-12-hour dark 
cycle with a relative humidity of 40%-60% and temperature 22 ± 2°C. 
The animals were all fed with standard pellet food and freshwater. The 
animals were randomly arranged into four groups: db/m (0.9% saline, 
n = 8), db/db (0.9% saline, n = 8), db/db + low dosage of quercetin (QL, 
35 mg/kg/d, n = 8) and db/db + high dosage of quercetin (QH, 70 mg/
kg/d, n = 8). The treatment cycle is 12 weeks by gavage. The experi-
mental methods applied in our study were conformed to the guide 
which was promulgated and adopted by the NIH.

2.3 | Morris water maze test

After 12 weeks of drug treatment, the spatial memory was detected 
by the Morris water maze test (similar to Morris).7,38 Experimental 
equipment consisted of a black platform, a black circular pool and 
a record system. The circular pool with a diameter of 120 cm and 
filled with white and opaque water (30 cm in depth; temperature: 
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22-26°C). Furthermore, the pool was divided into 4 symmetrical 
quadrants. And the escape platform was placed in the central area of 
appointed quadrant. Animals were conducted an orientation naviga-
tion tests for five successive days, and all mice were trained to look 
for the centre platform before the test.

Furthermore, there were four training trials a day, and the drop 
location would be changed randomly, recording the time for find-
ing the platform. In this phase, we set up the platform in quadrant 
IV. The test of time was set as 60 seconds for each trial. When the 
mouse failed to find the target, it would be there for 10  seconds. 
Hence, escape latency would be 60 seconds. After the acquisition 
phase, the centre platform was removed subsequently and mice 
could swim allodially for 60 seconds to seek for the platform. In this 
phase, the times of crossing through the centre platform position 
and all the time spent in the target quadrant suggested the ability of 
memory retention after learning.

2.4 | Novel object recognition test

Novel object recognition test was a method for learning and mem-
ory test, based on the principle that animals have instinct to explore 
new objects.39 The experimental method was composed of three 
stages: adaptive phase, orientation phase and finally test phase. The 
experimental installation was composed of rectangular white box 
(50 × 25 × 50 cm) and three objects (named A, B and C), of which A was 
same to B, while the object of C was completely diverse (shape, colour) 
from the A and B. The test is based on a previous research with minor 
modification.40 On the day 1, the stage of familiarity, mice were ac-
climated to our test zone (including A and B) for 10 min, then returned 
to mouse cage. After 24 hours, the mice were placed in the empty box 
together with the objects of A and B and they would explore for 5 min-
utes in the test zone. After 24 hours, the B was replaced with C, and 
animals were also placed back to the box for 5 minutes. In addition, the 

F I G U R E  1   Quercetin ameliorates 
diabetes-induced cognitive dysfunction 
shown by the Morris water maze test in 
db/db mice. A, The chemical structure 
of Quercetin. B, Schematic plan of water 
maze experimental device. C, Escape 
latency of five consecutive daily tests. D, 
Swimming paths of the respective groups 
on the first and fifth day. E, Crossing times 
of the target platform in the probe trial. F, 
Time spent in the target quadrant in the 
probe trial. db/db + QL: Quercetin (35 mg/
kg/d); db/db + QH: Quercetin (70 mg/
kg/d). Data represent mean ± SEM (n = 8 
per group). #P < .05, ##P < .01, ###P < .001 
vs db/m; *P < .05, **P < .01, ***P < .001 vs 
db/db
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test zone and objects were washed with 70% ethanol to avoid being af-
fected by the smell after each test. The computer equipment, respec-
tively, recorded the time spent by exploring the novel object (TN) and 
the familiar object (TF). The time which the mouse spent distinguishing 
novel and similar objects could be calculated using the identify index 
(TNI) = (TN − TF)/(TN + TF).41,42

2.5 | Oral glucose tolerance test and insulin 
tolerance test

Blood glucose levels were measured using the ACCU-CHEK Advantage 
glucose analyzer (Roche Diagnostics). The test is based on a previous 
research with slight modification.7 All mice were weighed, and then 
OGTT was tested after 16 hours fasting. A 2 g/kg glucose solution was 
given orally by weight; then, glucose levels were tested at 0, 30, 60, 90 
and 120 minutes after giving glucose solution by gavage. ITT (insulin 
tolerance test) was proceeded after three days. The animals were given 
0.5 U/kg insulin (Eli Lilly and Co.) in saline by intraperitoneal injection 
after 4-hour fasting. Blood glucose levels obtained from the tail vein at 
appointed time (0, 30, 60, 90 and 120 minutes) Furthermore, AUC, an 
index of whole glucose excursion after glucose loading, was calculated 
in according to a previous study.43

2.6 | Nissl's staining

After ITT experiments, all mice were anaesthetized with chloral 
hydrate (0.04 mL/10 g, Intraperitoneal injection), then they were 
killed by cervical dislocation. Three paraffin sections of each 
group were dewaxed in xylene and passed through a series of gra-
dient ethanol and double distilled water rehydrated. Staining was 
performed according to the Nissl staining kit (Nanjing Jiancheng 
Bioengineering Research Institute, Nanjing). Images were ana-
lysed using an optical microscope and LEICA QWin Plus (Leica 
Microsystems).

2.7 | Immunohistochemistry

Three paraffin sections of each group were taken for dewaxing and 
rehydration. The sections were placed in sodium citrate buffer for 
antigenic repair for 30 minutes (microwave heating). Blocking with 
5% normal goat serum in PBS (37°C, 30 minutes), then incubating 
with anti-SIRT1 (1:400; CST) overnight at 4°C. It was washed three 
times with PBS (10 minutes/time) after rewarming for 30 minutes, 
and the secondary antibody was added dropwise for 1 hour at 37°C.

2.8 | Western blot analysis

The tissues of brain were lysed and homogenized in lysis buffer 
for 15 minutes. The lysed cocktail was centrifuged for 12 minutes 

(12  000  g, 4°C), and then we measured the protein concentra-
tions using BCA protein assay kit. The total protein (30ug) were 
separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
analysis gel and transferred to PVDF membranes. Then, mem-
branes were immersed in 5% skim milk (or BSA) for 1.5  hours 
at 25°C. The membrane was incubated, respectively, with anti-
NLRP3, anti-ASC, anti–Caspase-1, anti–IL-1β, anti–IL-18, anti-
PSD93, anti-PSD95, anti-BDNF, anti-NGF and anti-SIRT1, and 
mouse anti–β-actin overnight at 4°C. Then, the membrane was 
incubated with secondary antibodies for 2 hours. Routinely, a rea-
gent of super-enhanced chemiluminescence (ECL) made the mem-
brane visualized.

2.9 | Statistical analysis

Our experimental values were all presented as mean  ±  SEM. 
Statistical analyses were all performed using SPSS 19.0 program 
(IBM). The sample as a whole is normally distributed, and statistical 
differences in data between groups were performed with one-way 
ANOVA, and followed by a post hoc test (Dunnett). P < .05 was pre-
sented as statistically significant.

3  | RESULTS

3.1 | Quercetin relieves cognitive impairment in db/
db mice

To investigate whether quercetin could relieve memory and learn-
ing impairments, we performed the tests of Morris maze and novel 
object recognition. In the Morris water maze test, the time for 
mice to find central platform was decreased gradually in the five 
testing days (Figure 1B,C). The time for finding the central plat-
form signally prolonged in the db/db group, compared with db/m 
group. After treated with quercetin (db/db  +  QL, 35  mg/kg; db/
db + QH, 70 mg/kg), animals showed a marked shortness of the 
escape latency performance, especially for the high-dose group 
(Figure 1B).

The swimming path (Figure 1C): Animals swimmed irregularly in 
designated areas on the first day. After five days of training, the tra-
jectory of db/db showed a long and disorderly swimming path, which 
was improved by quercetin treatment, especially in high-dose group 
(Figure 1C). After the removement of the platform on the sixth day, 
the group of db/db had shorter crossing times and target quadrant 
dwelling time than the group of db/m (Figure 1D,E). The groups of 
quercetin had longer platform crossing times and target quadrant 
dwell time than those in the db/db group, notably for db/db + QH 
group (Figure 1D,E).

In the novel object recognition test (Figure 2A), the db/db group 
showed signally lower level of the TNI than db/m group. After 
treated with quercetin, db/db + QH group show significantly a higher 
level than db/db group (Figure 2B).
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3.2 | Quercetin reduces fasting glucose and insulin 
resistance in db/db mice

In OGTT test, the db/db group showed a higher peak of glucose 
rise and a slower reduction of blood glucose concentration than 
db/m group. The db/db group manifested glucose intolerance be-
cause of the obviously high glucose excursion, and it is AUC during 
the OGTT (Figure 3A,B). After treated with quercetin (db/db + QL, 
35  mg/kg; db/db  +  QH, 70  mg/kg), the rising peak of mice glu-
cose became lower and the decreasing concentration of blood glu-
cose was faster than db/db group, especially for high-dose group 
(Figure 3A).

In ITT test, the group of db/db mice exhibited insulin resis-
tance, compared with db/m group. The db/db group showed a 
slower rate of blood glucose concentration decline than db/m 
(Figure 3C). After treated with quercetin, the blood glucose con-
centration was significantly lower and insulin resistance was 

significantly improved compared with db/db group, notably for 
db/db + QH group (Figure 3C,D).

3.3 | Quercetin improves neurodegeneration in db/
db mice

As illustrated in Figure 4, the protein expressions of the neuro-
trophic factors, including PSD93, PSD95, NGF and BDNF, were 
sharply decreased in db/db group (Figure 4A-E). After treatment 
with quercetin, especially for high-dose group, the levels of PSD93, 
PSD95, BDNF and NGF were increased in the brain (Figure 4A-E). 
In addition, the results of Nissl staining further confirmed the above 
changes (Figure 4F). The number of Nissl bodies in the db/db mice 
was significantly reduced compared with the db/m mice, and the 
staining was observably shallow. After treated with quercetin, the 
number and colour of Nissl bodies were significantly improved. 

F I G U R E  2   Quercetin prevents learning and memory impairments by the novel object discrimination in db/db mice. A, Schematic diagram 
of new object recognition experimental device. B, Recognition index (TNI) = (TN − TF)/(TN + TF). db/db + QL: Quercetin (35 mg/kg/d); db/
db + QH: Quercetin (70 mg/kg/d). Data represent mean ± SEM (n = 8 per group). #P < .05, ##P < .01, ###P < .001 vs db/m; *P < .05, **P < .01, 
***P < .001 vs db/db

F I G U R E  3   Quercetin decreases fasting 
glucose in db/db mice. A, OGTT. B, AUC 
(OGTT). C, ITT. D, AUC (ITT). db/db + QL: 
Quercetin (35 mg/kg/d); db/db + QH: 
Quercetin (70 mg/kg/d). Data represent 
mean ± SEM (n = 8 per group). #P < .05, 
##P < .01, ###P < .001 vs db/m; *P < .05, 
**P < .01, ***P < .001 vs db/db
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These results indicate that quercetin could improve neurodegenera-
tion in db/db mice.

3.4 | Quercetin activates SIRT1 and inhibits NLRP3 
inflammasome activation

As illustrated in Figures 5 and 6, the db/db group showed a lower 
protein expression of SIRT1 than db/m (Figures 5 and 6A,B). After 
treatment with quercetin, especially for high-dose group, the 
protein expression of SIRT1 was increased (Figures 5A and 6B). 
Subsequently, we measured the expression levels of NLRP3 inflam-
mation-related proteins, including NLRP3, cleaved Caspase-1(p20), 
ASC, IL-1β and IL-18, which were evident different between groups 
of db/m and db/db (Figure 6C-G). After treatment with quercetin, 
the expression of these proteins expression was sharply decreased, 

contradistinguished with db/db group (Figure 6C-G). The data indi-
cated quercetin could activate SIRT1 and inhibit NLRP3 inflamma-
some activation to protect DE.

4  | DISCUSSION

In our study, we proved that quercetin could relieve diabetes-
associated cognitive impairment in db/db mice. The experimen-
tal results found that quercetin preserved learning and memory, 
alleviated insulin resistance and decreased blood glucose in db/
db mice. For mechanism exploring, quercetin increased nerve and 
synapse-related protein expression and reduced the protein ex-
pression of neuroinflammatory factors in the brain of db/db mice. 
Furthermore, quercetin activated SIRT1 and inhibited the expres-
sions of NLRP3-regulated inflammation-related proteins, which 

F I G U R E  4   Quercetin increases neurotrophic factor levels in the brain of db/db mice. Representative Western blot results A, of protein 
expression in the brain of db/db mice. B, PSD93. C, PSD95. D, NGF. E, BDNF. F, Nissl's staining in cortex. db/db + QL: Quercetin (35 mg/
kg/d); db/db + QH: Quercetin (70 mg/kg/d). Data represent mean ± SEM (n = 8 per group). #P < .05, ##P < .01, ###P < .001 vs db/m; *P < .05, 
**P < .01, ***P < .001 vs db/db. Bar: 50 μm

F I G U R E  5   Quercetin activates 
SIRT1 in the brain of db/db mice. 
Immunofluorescence of SIRT1 in cortex. 
Bar: 50 μm
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might be the key mechanisms of the neuroprotective effect of 
quercetin.

Diabetes is a key cause of cardiovascular disease, retinal dis-
ease, and the development and progression of neurological dis-
eases.44 DE is a series of behavioural and pathological changes 
caused by constitutive hyperglycaemia, including cognitive de-
cline, neuronal loss and disorders of glycolipid metabolism.45-47 
DE decreased the patient's ability of the learning and memory.48 
In previous studies, quercetin has been shown to lower blood 
lipid levels and increase glucose tolerance.49 Recently, studies 
have reported that quercetin has neuroprotective effects on cog-
nitive impairment caused by diabetes.50 In our study, using db/
db mice showed the neuroprotective mechanisms of quercetin. 
Behavioural results (Morris water maze test, new object recogni-
tion test) showed that quercetin (70 mg/kg) significantly improved 
learning and memory levels. At the same time, quercetin reduces 
insulin resistance and promotes glucose metabolism by reducing 
the susceptibility to T2D/IR. The therapeutic effect of quercetin 
on DE is clearly consistent with previous studies.49,51,52

The activation of NLRP3 inflammatory bodies is closely related 
to the pathogenesis of DM.53,54 In a previous study, NLRP3 inflam-
masome is activated in the neurons of hippocampus in db/db mice.55 
NLRP3 catalyzes the activation of caspase-1, thereby promoting the 
maturation and secretion of IL-1β and IL-18.7,56 Studies have found 
that inhibiting NLRP3 inflammasome activation can reduce IL-1β lev-
els in hippocampus of DM rats,57 and the expression level of hippo-
campal IL-1β is related to cognitive function in DM mice.55 Quercetin 
has been shown to increase microglial activation and potently in-
hibit pro-inflammatory factors.58 In addition, quercetin attenuates 
NLRP3 inflammatory activation and lipid accumulation in diabetic 
rats.59-61 In our study, we found that the NLRP3 pathway is activated 
in the brain of db/db mice and that synapses and trophic factors are 
significantly reduced. This effect of quercetin on neuroinflammation 
is based on previous studies.62-65

SIRT1 regulates intracellular signalling molecules, inhibits apopto-
sis, regulates inflammation and resists oxidative stress.66,67 SIRT1 can 
be involved in regulating the formation of Alzheimer's disease amyloid 
and maintaining the stability of the neuronal genome.68,69 Studies have 

F I G U R E  6   Quercetin activates SIRT1 
and inhibits NLRP3 inflammasome 
activation in the brain of db/db mice. 
Representative Western blots A, results 
of protein expression in the brain of db/
db mice. B, SIRT1. C, NLRP3. D, ASC. E, 
IL-18. F, Cleaved Caspase-1. G, IL-1β. db/
db + QL: Quercetin (35 mg/kg/d); db/
db + QH: Quercetin (70 mg/kg/d). Data 
represent mean ± SEM (n = 8 per group). 
#P < .05, ##P < .01, ###P < .001 vs db/m; 
*P < .05, **P < .01, ***P < .001 vs db/db
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reported that quercetin improve lipid, glucose metabolism and inhib-
its neurodegeneration through SIRT1 signalling pathway.22,70 These 
results suggest SIRT1 might play a pivotal role of quercetin on DE in 
db/db mice. In addition, SIRT1 is closely related to the activation of 
NLRP3 inflammasome.71 In rat cerebral ischaemia/reperfusion models 
and ventilation-induced lung injury models, SIRT1-dependent inhibi-
tion of NLRP3 inflammatory body activation.72,73 Therefore, it may be 
assumed that quercetin effects on DM in db/db mice through SIRT1/
NLRP3 signalling pathway. In our study, we found that SIRT1 were ob-
servably decreased when the NLRP3 increased in the brain of db/db 
mice. This effect of quercetin on SIRT1/NLRP3 signalling pathway is 
according with previous studies.19,22,74

5  | CONCLUSION

Quercetin may ameliorate DE by decreasing fasting glucose, up-reg-
ulating activity and protein level of SIRT1, and inhibiting the expres-
sions of NLRP3-regulated inflammation-related proteins. Quercetin 
shows the potential for the prevention and therapy of DE. However, 
further evidence is still needed to confirm this phenomenon. These 
data could be useful for explaining the underlying neuroprotective 
mechanisms of quercetin on DE.
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