
Comparison of parametric and nonparametric methods for 
outcome prediction using longitudinal data after cardiac arrest

Jonathan Elmer, MD, MS1, Bobby L. Jones, PhD2, Daniel S. Nagin, PhD3

1.Departments of Emergency Medicine, Critical Care Medicine and Neurology, University of 
Pittsburgh School of Medicine, Pittsburgh, PA, USA

2.Western Psychiatric Institute and Clinic of UPMC, Pittsburgh, PA, USA

3.Heinz College, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Introduction: Predicting outcome after cardiac arrest is challenging. We previously tested group-

based trajectory modeling (GBTM) for prognostication based on baseline characteristics and 

quantitative electroencephalographic (EEG) trajectories. Here, we describe implementation of this 

method in a freely available software package and test its performance against alternative options.

Methods: We included comatose patients admitted to a single center after resuscitation from 

cardiac arrest from April 2010 to April 2019 who underwent ≥6 hours of EEG monitoring. We 

abstracted clinical information from our prospective registry and summarized suppression ratio in 

48 hourly epochs. We tested three classes of longitudinal models: frequentist, statistically based 

GBTMs; non-parametric (i.e. machine learning) k-means models; and Bayesian regression. Our 

primary outcome of interest was discharge CPC 1 to 3 (vs unconsciousness or death). We 

compared sensitivity for detecting poor outcome at a false positive rate (FPR) <1%.

Results: Of 1,010 included subjects, 250 (25%) were awake and alive at hospital discharge. 

GBTM and k-means derived trajectories, group sizes and group-specific outcomes were 

comparable. Conditional on an FPR <1%, GBTMs yielded optimal sensitivity (38%) over 48 

hours. More sensitive methods had 2–3% FPRs.

Conclusion: We explored fundamentally different tools for patient-level predictions based on 

longitudinal and time-invariant patient data. Of the evaluated methods, GBTM resulted in optimal 
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sensitivity while maintaining a false positive rate <1%. The provided code and software of this 

method provides an easy-to-use implementation for outcome prediction based on GBTMs.
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Introduction

Comatose patients resuscitated from cardiac arrest routinely undergo continuous monitoring 

of multiple physiological parameters in the intensive care unit (ICU). Treatment priorities in 

the days following initial resuscitation include developing a timely and accurate estimate of 

individual patients’ potential for neurological recovery. Failure to meet this goal has tangible 

costs: premature withdrawal of life-sustaining therapy results in unnecessary mortality,(1, 2) 

while ICU care provided to patients with unrecognized irrecoverable brain injury may be 

futile, burdensome to families and costly to society. Current guidelines for neurological 

prognostication after cardiac arrest address the utility of multiple diagnostic modalities 

including electroencephalography (EEG).(3, 4) Although EEG can be acquired continuously, 

prior research and resulting guidelines most often consider single time-invariant features (for 

example, lack of reactivity at 72 hours after return of spontaneous circulation (ROSC)) 

without consideration of other prior knowledge (for example, brain imaging or neurological 

examination). This reflects, in part, limitations in the bioinformatic infrastructure and 

analytical tools required to extract actionable clinical information from complex continuous 

waveform data. Better methods for real-time patient-level outcome prediction based on 

multimodality assessment of time-varying and invariant predictors are needed.

We previously described use of group-based trajectory modeling (GBTM) for post-arrest 

prognostication based on trajectory of one or more quantitative EEG metrics over time.(5) 

We subsequently developed a theoretical framework that used probability of trajectory group 

membership and other time-invariant factors to predict individual outcome over time.(6) 

This proof-of-concept worked was custom-coded and poorly generalizable to other 

applications or data sets. In the present report, we build upon our prior work to test 

performance of the several variations of this method against other commonly used statistical 

and machine-learning tools.

Methods

Patients and setting

The University of Pittsburgh Human Research Protection Office approved this study. We 

included comatose patients admitted to a single academic medical center after resuscitation 

from in- or out-of-hospital cardiac arrest from April 2010 to April 2019. We identified 

patients from a prospective registry maintained by our Post-Cardiac Arrest Service (PCAS). 

We excluded patients who were awake on arrival; those who arrested due to trauma or a 

primary neurological event; those determined after full workup to have not suffered a cardiac 

arrest; those with <6 hours of continuous EEG data available for analysis; and those with a 

delay from arrest to EEG acquisition >24 hours.
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The PCAS service at our center coordinates post-arrest patient care through the entire post-

arrest course from initial resuscitation and neurological prognostication to post-acute 

rehabilitation. We have previously described this service line in detail.(5, 7) Our standard 

clinical practice is to monitor EEG continuously from ICU admission until death, recovery 

of consciousness or approximately 48 hours of monitoring is completed with no actionable 

findings. Patients with early death due to rearrest or catastrophic multisystem organ failure, 

limitations of care based on pre-arrest advanced directives and those with imaging evidence 

of diffuse cerebral edema with herniation are the most common reasons EEG monitoring is 

not performed.(6) We treat comatose post-arrest patients with targeted temperature 

management (TTM) to 33°C or 36°C for 24 hours regardless of initial arrest location or 

rhythm. We typically delay neurological prognostication for at least 72 hours post-arrest and 

follow a pathway of multimodality outcome prediction consistent with consensus guidelines,

(3, 4) except in cases where surrogate decision makers request withdrawal of life-sustaining 

therapy (WLST) despite some prognostic uncertainty based on their understanding of 

individual patient’s values and preferences. The treating clinical team had access to clinical 

and demographic data.

EEG acquisition and processing

We apply 22 gold-plated cup electrodes using a gel colloidal and paste adhesive in the 

standard 10–20 International System of Electrode Placement positions. We deidentify and 

export EEG data from the electronic medical record and use Persyst Version 13 (Persyst 

Development Corp., Prescott AZ) to quantify approximately 10,000 EEG waveform features 

at a frequency of 1Hz. We aggregate and analyze these features in a custom-built time-series 

data ecosystem implemented using Influx DB software (InfluxData, San Francisco, CA). For 

the present analysis, we created summary measures by first calculating the mean of each 

subject’s right- and left-hemisphere suppression ratio (SR) second-by-second, then 

calculated median suppression ratio each hour. We considered any hour epoch with <15 

minutes of data to be missing, excluded subjects with <6 hourly median SR summaries, and 

calculated hourly summaries for the first 48 hours of available data that served as the time-

varying predictor of interest for modeling. Qualitative EEG data were available to the 

treating clinical team and influenced prognostication, but quantitative measures and 

modeling results were not used clinically.

Time-invariant covariates and outcome

We obtained time-invariant covariates from our prospective registry. These included sex, 

initial arrest rhythm (dichotomized as shockable or non-shockable), arrest location (in-

hospital or out-of-hospital), and baseline illness severity summarized as Pittsburgh Cardiac 

Arrest Category (PCAC). PCAC is a 4-level validated measure based on best neurological 

exam and cardiorespiratory Sequential Organ Failure Assessment (SOFA) subscales 

obtained during initial resuscitation.(8) PCAC I patients are awake so excluded from the 

present analysis. We allowed a separate category for unknown PCAC, as would occur in 

cases of ongoing need for neuromuscular blockade, irreversible anatomic or pre-arrest 

limitations in neurological assessment, etc. We further abstracted initial brain computerized 

tomography (CT) results, which we summarized by calculating the ratio of grey matter to 

white matter density in Hounsfield units as previously described,(9) categorized as <1.2, 1.2 
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to <1.3, 1.3 to <1.4, ≥1.4 or CT imaging not obtained. Our binary outcome of interest for all 

models was discharge with Cerebral Performance Category (CPC) 1–3 (i.e. awake and alive 

at discharge) vs. discharge CPC 4–5 (dead or unconscious at discharge).

Prognostic analytical methods

We used leave-one-out cross validation to calculate individual probability estimates over 

time by first training the model (estimating all model parameters) on the overall population 

excluding one individual, then using that individual’s data and the trained model parameters 

to make predictions. We pooled the results of each individual holdout experiment to evaluate 

overall model performance. We compared four GBTMs, a longitudinal model defining 

trajectories based on k-means clustering, an multivariable prediction using k-means results 

and other time-invariant factors and a Bayesian regression model (Table 1). In each model, 

time zero was considered the start of EEG monitoring, and we began estimating outcome 

models iteratively after the first 6 hours of EEG data were available.

GBTM is a specialized application of finite mixture modeling that identifies clusters of 

individuals following approximately the same trajectory of a specified measure over discrete 

time periods of fixed length. Software used to estimate all GBTMs and associated output is 

freely available for download at https://www.andrew.cmu.edu/~bjones/index.htm. A 

technical description of the estimation of individual outcome probability over time and 

associated confidence intervals around this outcome estimate is found in Appendix 1. 

Conceptually, GBTM estimates the best fit of a pre-specified number of trajectories (usually 

polynomials of user-defined order) that summarize the evolution of one or more serial 

measures over time (in this case, SR every hour). The model also provides estimates at each 

point in time of the posterior probability that each individual belongs to each trajectory 

group after each sequential realization of the repeated measure(s) of interest (posterior 

probability of group membership; PPGM). Standard methods for determining the optimal 

number of trajectory groups and best order of each groups’ polynomial fit are described 

elsewhere.(10) Time-invariant patient characteristics can be added to GBTMs in two places. 

First, patient characteristics can be included as predictors of trajectory group membership 

probabilities and thereby as determinants of individual PPGMs via Bayes Rule (see 

Appendix 1 for technical details). For example, diffuse cerebral edema on initial brain 

imaging is strongly associated with persistent EEG suppression; therefore, prior knowledge 

that an individual has diffuse edema would be expected to increase that individuals early 

PPGMs in a trajectory group characterized by persistently high SR. We term these baseline 

characteristics “risk factors.” Second, patient characteristics associated with outcome may 

be included as covariates in the outcome model used to predict individual outcomes over 

time.(6) We term these characteristics “outcome covariates.” Characteristics may be treated 

as both risk factors and outcome covariates in a single GBTM. Based on prior work,(6, 11) 

we modeled SR as following a beta distribution and specified four trajectory groups, each 

defined by a quadratic polynomial. We evaluated performance (see below) of a base GBTM 

without covariates, a GBTM with risk factors, a GBTM with outcome covariates and a 

GBTM with both risk factors and outcome covariates. Because we were interested in 

identifying individuals with zero or near-zero outcome probabilities, we used bounded 
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maximum likelihood estimation for the logistic outcome models and bounded all coefficients 

at ±30.

K-means is an unsupervised learning method commonly used to identify clusters of 

individuals within data. Longitudinal extensions of the method have been compared with 

GBTM for clustering tasks and perform well.(12) K-means makes no distributional 

assumptions, so may perform better than GBTM when trajectories do not follow a 

polynomial course, and because clustering is performed iteratively based on calculation of 

simple (typically Euclidean) distance measure from individuals to a theoretical cluster mean, 

estimating cluster trajectories using k-means is computationally faster than GBTM. To 

facilitate comparison to our GBTMs, we specified a four-group model. We determined 

individual probability of membership in each cluster at each time by calculating the sum 

squared Euclidean distance to that cluster mean and scaling to the sum of the sum squared 

distances to each cluster. We calculated individual outcomes by summing the cross product 

of estimated cluster membership and that cluster’s mean outcome in training data. Similar to 

GBTM adjusted outcome models, we also estimated adjusted models (using Firth’s 

penalized maximum likelihood estimate to allow convergence despite null outcome groups) 

to account for both predicted cluster memberships (i.e. the scaled sum squared Euclidean 

distance to each cluster mean was added as regressors) and time-invariant covariates (Table 

1).

To fit the Bayesian regression model, we used the R package brms (“Bayesian Regression 

Models using Stan”)(13) to fit the SR data as a quadratic function of hour. We specified a 

zero – one inflated beta distribution for SR and allowed subject-specific random slopes and 

intercepts. We used the following prior distributions: beta(1, 1) for the zero and one inflation 

parameters and gamma(0.01, 0.01) on the phi parameter for the beta distribution; t-

distributions with df = 10 on the random intercept and slope parameters; and an LKJ prior 

with shape η = 1 to describe the correlation between random slope and intercept. The 

package uses a Hamiltonian Monte Carlo algorithm for sampling from the posterior 

distribution. We sampled four chains with 1000 iterations for warm-up and then an 

additional 1000 for the sample. We assessed convergence by verifying R-hat values were 

close to 1. We then used the resulting random effects as the main predictors of interest in 

adjusted logistic regression models predicting outcome. Because these models were quite 

computationally intensive, we used 5-fold cross validation (rather than leave-one-out, as 

used in other models) and re-estimated models in 6-hour epochs instead of hourly.

GBTM and associated outcome models were estimated using the traj package and Stata 

version 14 (StataCorp, College Station, TX). Longitudinal k-means models were fit using 

the kml package in R (R Foundation for Statistical Computing, Vienna, Austria), and 

Baysian regression models were fit using the brms package in R.

Comparing model performance

There is no universal standard for evaluating prognostic models after cardiac arrest. The use 

case for output from these models, if validated, would likely be to inform early and accurate 

withdrawal of life-sustaining therapy based on an extremely low predicted probability of 

recovery. Based on prior work, clinicians’ tolerance for error in this setting is low (between 
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1% and 0.01%).(14) In this work, we considered predicted individual recovery probabilities 

<1% at any time to be sufficient to lead to withdrawal of life-sustaining therapy, and 

assumed withdrawal would uniformly occur any time an individual’s outcome probability 

fell below this threshold. We considered three performance metrics across models when 

comparing performance. First, we considered each models’ sensitivity over time, defined as 

the proportion of the population of poor outcomes (death or persistent unconsciousness) 

with <1% probability of recovery at that time or at any time prior. Second, we considered 

each models’ false positive rate, defined as number of cases with <1% recovery estimate at 

that time or any time prior who actually recovered (i.e. false positives) divided by the total 

number of cases who recovered. Third, we considered the overall time to a recovery estimate 

<1%. Across the 4 GBTMs, we also compared the width of the confidence intervals 

resulting from our parametric bootstrap. Methods for confidence interval estimation do not 

exist for the other models used, so they were excluded from this evaluation.

Results

Overall, our registry included 2462 patients during the study date range. Of these, 525 were 

awake on arrival and excluded, 778 had 0–6 hours of EEG data available, 102 had EEG 

initiation delayed >24 hours post-arrest, and 47 arrested due to trauma, neurological 

catastrophe or were deemed not to have suffered a cardiac arrest. Of the 1,010 subjects 

included in analysis, mean age was 58 ± 17 years, 384 (38%) were female and 250 (25%) 

were awake and alive at hospital discharge (Table 2). Comparing GBTM and k-means 

models, trajectories, group sizes and group-specific outcomes were generally comparable 

(Figure 1, Table 3), while Bayesian regression by design did not yield clusters.

Of the methods we compared, Bayesian regression yielded no false positives (outcome 

estimates <1% for a patient who actually had non-vegetative survival at hospital discharge), 

but was relatively insensitive only identifying only 26% of non-survivors after 48 hours of 

observation (Figure 2, Table 4). This approach was computationally quite intensive, 

requiring days for estimation each for models at subsequent timepoints, so we estimated 

results in 6-hour increments instead of hourly as in other models. Using k-means clusters for 

outcome prediction resulted in a single false positive (false positive rate (FPR) 0.4%) but 

was the least sensitive method for outcome prediction (10% after 48 hours of observation). 

Addition of time-invariant patient characteristics to a multivariable outcome model increased 

both sensitivity (66%) and cumulative FPR (3.6%). Like the unadjusted k-means model, 

unadjusted GBTM resulted in a single false positive (FPR 0.4%), but achieved 38% 

sensitivity. Addition of risk factors to the GBTM did not meaningfully affect any model 

performance characteristic. Addition of outcome covariates to the GBTM resulted in a single 

additional false positive (FPR 0.8%), did not improve sensitivity, and resulted in 

considerably wide confidence intervals around outcome point estimates. By contrast, 

addition of both risk factors and outcome covariates to the GBTM markedly improved 

sensitivity (61%) but also significantly increased false positives (2.8%). These errors 

occurred from hour 6 to hour 24 of monitoring and occurred in cases with the PPGM for the 

group with no recovery transiently reached 1.0 despite the subject ultimately being assigned 

with high probability to a different group. In these cases, subjects’ suppression ratio was 
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quite high for 12 to 24 hours then rapidly fell, resulting in a reclassification in the subjects’ 

group membership.

Discussion

Intensively sampled longitudinal data are ubiquitous in modern ICUs. We explored the 

performance characteristics of three classes of longitudinal models that might be used to 

transform patient-level trends in these data into actionable prognostic information: 

frequentist statistically based GBTMs; non-parametric (i.e. machine learning) k-means 

models; and Bayesian regression. Further, we provide the statistical documentation 

(Appendix 1), code (Appendix 2), and access to the freely downloadable Stata or SAS 

software packages needed for other investigators to develop GBTMs in these environments, 

iteratively estimate PPGMs and associated outcome probabilities in their own research.

We applied a clinically relevant and stringent cutoff for model performance, evaluating 

specificity identifying non-survivors with a goal false positive rate <1%. Overall, the best 

performing models meeting this goal were GBTMs without covariates, or with addition of 

baseline risk factors or outcome covariates. More sensitive models such as adjusted k-means 

and GBTM with addition of both risk factors and outcome covariates FPRs between 2–3%, 

which we considered unacceptably high. This increase in misclassification may result in part 

from degree of collinearity between predictors or an endogeneity problem. It is likely that 

sensitivity could be further optimized while maintaining a stringent FPR by tuning either the 

probability threshold at which patient-level predictions are dichotomized, or by waiting for 

more than 6 hours of data before making a treatment recommendation. Future work models 

will focus on tuning these parameters.

We, and others, have previously investigated quantitative EEG modeling methods for 

prediction of outcome after cardiac arrest with promising results. Jagaraj, et al.,(15) 

considered a broad array of EEG features. They used penalized regression for variable 

selection then a random forest classifier for patient-level outcome prediction. This approach 

identified 60% of non-survivors at 24 hours with no false positives. As in our work, they find 

SR to be an important predictor of outcome. Ghassemi, et al., used a similar approach with 

generally comparable results.(16) A strength of these prior studies is the consideration of a 

broad range of EEG features with automated variable selection. It is our belief that there is 

likely to be clinically important information that may be revealed by the evolution of 

physiological measures over time, and so favor methods that account for the temporal 

relationship of these data. All of the models we investigated in this work allow multivariate 

time series modeling, an area of ongoing investigation.

Our study has several limitations. Principle among these is the single-center nature of the 

cohort, which precludes generalizability of the specific prognostic results to other centers. 

Our intent here was to explore methodological tools useful to make real-time, patient-level 

predictions from this type of time series data, not to develop a refined prognostic tool per se. 

Similarly, as in any prognostication research conducted in an environment where physician 

decision making precludes observation of patients’ true outcomes (i.e. withdrawal of life-

sustaining therapy in this cohort invariably lead to death), our results may be biased by 
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human error and self-fulfilling prophecies. Development of predictive models suitable for 

real-world decision support will require validation in settings where withdrawal of care 

based on perceived poor prognosis does not occur, or development of quantitative methods 

to mitigate this source of bias. Finally, we chose several representative modeling tools 

suitable for longitudinal data, but many others exist. It was not possible to test all possible 

options for data modeling and prediction, and other tools outside the scope of the present 

analysis may perform as well or better than those we selected.

In conclusion, we explored fundamentally different tools that allow patient-level predictions 

to be made from a combination of intensively sample longitudinal data and time-invariant 

patient characteristics. Of the evaluated methods, group-based trajectory modeling resulted 

in optimal sensitivity while maintaining a false positive rate <1%. The provided code and 

software of this method provides an easy-to-use implementation for outcome prediction 

based on trajectory modeling of data.

Disclosures:

Dr. Elmer’s research time is supported by the NIH through grant 5K23NS097629. Drs. Elmer and Nagin are co-
Principal Investigators on a grant from UPMC Enterprise that supported this work.

Appendix 1 -: GBTM and derivative outcome predictions, technical details

We assume that for each individual i, biomarkers 1,…,K are observed at discrete times 1,

…,T, with the possibility that monitoring may be censored due to outcomes such as death or 

recovery. Let yitk denote individual i’s measurement of biomarker k at time t, let τi denote the 

censoring time (equaling T+1 if monitoring is not stopped early), and let Y i = yitt t = 1, k = 1
τi − 1, K

denote individual i’s observed measurements. Additionally, let oi denote a discrete variable 

encoding individual i’s outcome or status taking M categorical values. In this case, we 

consider a binary outcome (non-vegetative survival to hospital discharge vs. not) amenable 

to logistic regression; an example with M=3 might be {healthy, vegetative, dead} and be 

amenable to a multinomial logistic regression model. Current software implementation 

supports estimation of logistic and multinomial logistic outcome models. Generally 

speaking, however, there are not theoretical constraints to the type of outcome model that 

can be estimated from GBTM output.

In its most general form the GBTM assumes that the observables (oi, τi, Yi) are jointly 

modeled by a GTBM (17) with attrition (18), in which each individual i has a latent group 

membership variable ji ∈ {1,…,J}, and the joint distribution of (ji, oi, τi, Yi) is assumed to be 

as follows:

ji Discrete π1, …, πJ

oi | ji Discrete α1
ji, …, αM

ji
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P τi = t | ji =

θt
ji ∏

s = 1

t − 1
1 − θs

ji t ≤ T − 1

∏
s = 1

T
1 − θs

ji t = T

yitk t = 1, k = 1
T , K | ji p ⋅ | ji; βji

Y i = yitk t = 1, k = 1
τi − 1, K

where π = (π1, …, πJ) are parameters giving the latent group probabilities and are specified 

to follow the multinomial logistic function which allows for the specification of latent group 

probabilities as functions of individual level covariates termed “risk factors” in the above 

discussion; αj = α1
j, …, αM

j  are parameters giving the probability of each outcome for 

members of group j which are specified to follow the multinomial conditional logit function 

which, as with the latent group probabilities, allows for the specification of outcome 

probabilities as functions of individual level covariates termed “outcome covariates” in the 

above discussion; θj = θ1
j, …, θT

j  are parameters describing the distribution of the censoring 

time for group j, i.e., θt
j is the probability for members of group j that measurements are 

censored at time t given that they were observed at time t−1 Note that in our application we 

did not account for censoring because models with and without censoring performed 

similarly; and p(· |j; βj) is the conditional density function of the uncensored measurements 

for members of group j, which we assume follows a parametric family with parameter βj, 

such as a multivariate Gaussian or beta distribution whose mean for each biomarker is fully 

parameterized to be a low-order polynomial in t.

To estimate the parameters (π, α, θ, β), we maximize the likelihood function given by

L(π, α, θ, β) = ∏
i

∑
j = 1

J
πjαoi

j θτi
j ∏

t = 1

τi − 1
1 − θt

j p Y i | j; βj . (1)

The optimization is performed using a general quasi-Newton procedure (19, 20), with the 

variance-covariance of parameter estimates are estimated by the inverse of the information 

matrix.

Consider an individual i whose trajectory is in progress and whose measurements Yi have 

been observed only up to some time t < τi, and hence whose outcome oi is unknown. Let 

Y it = yisk s = 1, k = 1
t, K  denote the observed measurements up to time t. Using the maximum 
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likelihood estimate (π, α, θ , β) from (1), the plug-in estimate of the posterior distribution of 

ji conditioned on Yit is equal to

P ji = j |Y it =
πj ∏s = 1

t 1 − θs
j p Y it | j; βj

∑j = 1
J πj ∏s = 1

t 1 − θs
j p Y it | j; βj

, (2)

and given the posterior estimates P ji = j |Y it , the plug-in estimate of the posterior for oi 

given Yit can be seen to equal

αit
m =def P oi = m |Y it = ∑j = 1

J P ji = j |Y it αm
j . (3)

As with (21, 22), confidence intervals for the estimated posterior probabilities in (3) are 

generated when possible by a parametric bootstrap under the assumption that the maximum 

likelihood estimates (π, α, θ , β) (or their exponential family parameterizations thereof) are 

asymptotically normally distributed. The caveat “when possible” is added to account for 

circumstances where there are no instances of outcome m for group j. In such cases, 

confidence intervals were instead calculated according to an approach laid out in [6], which 

can be thought of as a generalization of the approach for calculating confidence intervals for 

binary outcomes developed by Wilson (23). When the confidence intervals were estimable 

based on the parametric bootstrap, the companion confidence intervals based on (24) did not 

materially differ.

Appendix 2:: Example code for outcome estimation based on group-based 

trajectory modeling output, using the traj package in Stata.

***Import data

use “data and covariates.dta”, clear //import data

*data must be in wide format,

*the vector of suppression ratio measures is stored in columns sr1, sr2 …sr48

*the vector of time measures (scaled and centered) is generated as:

forval i = 1/48 {

gen otì’ = (ì’ − 24)/10

}

*additional time-invariant characteristics are

*age // continuous, in years

*female //binary − Sex

*shock //binary − shockable rhythm?

*gwr_12, gwr_13 … //Series of binary indicator variables binning grey-white 

ratio (continuous) into mutually exclusive categories)

*ca_type3, ca_type4 … //series of binary indicator variables binning PCAC 

into mutually exclusive categories

*awake_and_alive //binary outcome variable

*keep1, keep2, … keep1010 //indicator variable indicating patient is out-of-
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sample

**generate initial starting values for future modeling

traj, var1(sr*) indep1(ot*) model1(beta) order1(2 2 2 2) detail

*var1 specifies the vector containing repeated measures to model

*var2 specifies the vector of time measures

*model1 specifies the distribution of the data (options include cnorm 

(censored normal), zip (zero-inflated Poisson), beta, etc)

*order1 specifies the number and polynomial order of trajectory groups

*detail returns detailed output, including final parameter estimates

**matrix of starting values for unadjusted model (derived from output of 

above model:

matrix sv = ( −3.83088, −0.14053, 0.08379, −1.80959, −0.53672, 0.13827, ///

0.08875, −0.41665, 0.04468, 1.73181, −0.14050, −0.03424, ///

14.64151, 3.19860, 3.57577, 2.97422, 25.18232, 30.75965, ///

24.91653, 19.14150, 0,0,0,0)

**matrices of upper and lower bounds for parameter estimates needed for 

bounded MLE; we do not bound the estimates for the trajectory model (i.e. 

bound ==.), only the outcome parameter estimates:

matrix u = (.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,30,30,30,30)

matrix l = (.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,−30,−30,−30,−30)

**Unadjusted leave one out results

forval i = 1/1010 {

use “data and covariates.dta”, clear

traj, start(sv) var1(sr*) indep1(ot*) model1(beta) order1(2 2 2 2) 

omodel(logit) outcome(alivenonveg) upper(u) lower(l) detail probupdates 

outofsample(keepì’) scoreci twostep

drop if keepì’ !=1

save “unadjusted/unadjusted − holdoutì’.dta”, replace

}

*Additional options specified here:

*start specifies the matrix of starting values for MLE

*omodel specifies the outcome model (options include logit, mlogit 

(multinomial logit), etc)

*outcome specifies the outcome variable to be predicted

*upper and lower specify the matrices of estimated parameter bounds

*probupdates returns posterior probabilities and outcome estimates for each 

time epoch, rather than only for the full duration of observation

*outofsample specifies the observation(s) to be held out. Model parameters 

are estimated on in-sample observations, then estimates are calculated using 

these parameters for the holdout sample

*scoreci specifies the method used to calculate the confidence interval

*twostep indicates that two-step estimation of the traj model then outcome 

model is performed

**ocov+risk GBTM
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**matrices of starting values and parameter bounds:

matrix l = ( .,.,.,.,.,.,.,.,.,.,.,.,.,.,.,., ///traj parameters

., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,

 ., ., ., ., ., ., ., .,.,., /// risk covariates

−30, −30, −30, −30,−30, −30, −30, −30, −30, −30, −30, −30, −30, −30, −30) //

outcome model coef

matrix u = (.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,., ///traj parameters

., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,

 ., ., ., ., ., ., ., .,.,., ///risk covariates

30, 30, 30, 30,30, 30, 30, 30, 30,30, 30, 30, 30, 30, 30 ) //outcome model 

coef

matrix sv = (−3.84720, −0.14175, 0.08305, −1.81303, −0.53310, 0.13852, ///

0.08613, −0.41681, 0.04511, 1.73140, −0.13947, −0.03460, ///

14.93284, 3.18965, 3.57393, 2.97906, −1.11678, 0.01767, ///

−0.55048, −0.69077, 0.09804, 2.40897, 0.48062, 0.48208, ///

0.08861, 0.18093, 1.01530, 0.35143, −3.06748, 0.02622, ///

−0.52956, −1.17418, 0.45753, 3.82787, 0.89463, 0.51815, ///

0.00423, 0.30254, 2.30860, 1.00963, −5.04319, 0.03073, ///

0.09694, −1.01467, 0.63341, 5.15461, 1.04877, 0.49503, ///

0.70066, 0.34008, 2.95645, 1.67299, 0.55441, −0.82277, ///

−3.79603, −5.00000, −0.00438, −0.39278, −0.06661, −0.03093, ///

−0.20291, −0.58937, −0.49990, −0.25662, 0.14925, −0.56435, ///

−0.41224 )

forval i = 1/1010 {

use “data and covariates.dta”, clear

traj, start(sv) var1(sr*) indep1(ot*) model1(beta) order1(2 2 2 2) 

omodel(logit) outcome(alivenonveg) upper(u) lower(l) detail probupdates 

outofsample(keepì’) scoreci ocov(age female shock oohca gwr_12 gwr_13 

gwr_lt12 gwr_miss catype3 catype4 catype5) risk(age female shock oohca 

gwr_lt12 gwr_12 gwr_13 gwr_miss catype3 catype4 catype5)

drop if keepì’ !=1

save “ocovrisk/ocovrisk - holdoutì’.dta”, replace

}

*Additional options specified here:

*ocov is the list of covariates to be included in the adjusted outcome model 

(see Appendix 1)

*risk is the list of covariates to be used to predict trajectory group 

membership (see Appendix 1)
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Figure 1: 
Comparison of trajectories and relative group sizes from group-based trajectory modeling 

(A) and k-means (B) methods.
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Figure 2: 
Model performance characteristics over time. Note, sensitivities (A) and false positive rates 

(B) for three GBTMs (unadjusted, outcome covariates (OCov) and risk factors (Risk) were 

nearly identical so are partially obscured by overplotting.
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Table 1:

Models compared in this work.

Model Longitudinal 
predictor

Other predictors of cluster 
membership

Predictors of outcome

GBTM - unadjusted SR -- PPGMs

GBTM - Ocov SR -- PPGMs; age; sex; arrest location; arrest 
rhythm; PCAC; GWR

GBTM - Risk SR Age; sex; arrest location; arrest rhythm; 
PCAC; GWR PPGMs

GBTM - Ocov + Risk SR Age; sex; arrest location; arrest rhythm; 
PCAC; GWR

PPGMs; age; sex; arrest location; arrest 
rhythm; PCAC; GWR

K-means - unadjusted SR -- SSDs

K-means - Adjusted SR -- SSDs; age; sex; arrest location; arrest rhythm; 
PCAC; GWR

Bayesian regression SR -- --

Abbreviations: SR – suppression ratio; PCAC – Pittsburgh Cardiac Arrest Category; GWR – Grey matter to white matter ratio of Hounsfield units 
on brain computerized tomography; PPGMs – posterior probability of group membership; SSDs – Sum squared Euclidean distances from each 
cluster mean
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Table 2:

Patient characteristics and outcomes

Characteristic Overall cohort (n = 1010)

Age, years 58 ± 17

Female sex 384 (38)

Shockable initial rhythm 301 (30)

Arrested out-of-hospital 845 (84)

Pittsburgh Cardiac Arrest Category

 II 270 (27)

 III 129 (13)

 IV 539 (53)

 Unassessable 72 (7)

Grey-white ratio

 <1.2 119 (12)

 1.2 to <1.3 212 (21)

 1.3 to <1.4 315 (31)

 ≥1.4 162 (16)

 Not obtained 202 (20)

Baseline suppression ratio 59 [14 – 87]

Survival to discharge 294 (29)

Awake and alive at discharge 250 (25)
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Table 3:

Results from k-means clustering and group-based trajectory modeling (Figure 1), including the size of each 

trajectory group/cluster and the proportion of subjects estimated to belong to that trajectory group/cluster with 

discharge Cerebral Performance Category 1 to 3.

Group Group size n = 1,010 Group members recovering n = 250

Sustained high GBTM: 192 (19)
k-means: 214 (21)

GBTM: 0 (0)
k-means: 0 (0)

Initially high, slowly falling GBTM: 248 (25)
k-means: 193 (19)

GBTM: 4 (2)
k-means: 3 (2)

Initially mid, rapidly falling GBTM: 223 (31)
k-means: 210 (21)

GBTM: 89 (29)
k-means: 33 (16)

Sustained low GBTM: 254 (25)
k-means: 393 (39)

GBTM: 157 (68)
k-means: 214 (55)

Data are presented as n (percentage).
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Table 4:

Model performance characteristics

Model Computational time Maximum sensitivity Maximum FPR

GBTM unadjusted Hours 0.378 0.004

GBTM + Risk Hours 0.383 0.004

GBTM + OCov Hours 0.372 0.008

GBTM + OCov + Risk Hours 0.612 0.028

K-means unadjusted Minutes 0.010 0.004

K-means adjusted Days 0.664 0.036

Bayesian regression Days 0.264 0
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