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LncRNA GUARDIN suppresses cellular senescence
through a LRP130-PGC1a-FOXO4-p21-dependent
signaling axis
Xuedan Sun1, Rick Francis Thorne2,3, Xu Dong Zhang2,4, Miao He5, Jinming Li2, Shanshan Feng6,* ,

Xiaoying Liu2,7,** & Mian Wu1,2,8,***

Abstract

The long noncoding RNA GUARDIN functions to protect genome
stability. Inhibiting GUARDIN expression can alter cell fate deci-
sions toward senescence or apoptosis, but the underlying molecu-
lar signals are unknown. Here, we show that GUARDIN is an
essential component of a transcriptional repressor complex involv-
ing LRP130 and PGC1a. GUARDIN acts as a scaffold to stabilize
LRP130/PGC1a heterodimers and their occupancy at the FOXO4
promotor. Destabilizing this complex by silencing of GUARDIN,
LRP130, or PGC1a leads to increased expression of FOXO4 and
upregulation of its target gene p21, thereby driving cells into
senescence. We also found that GUARDIN expression was induced
by rapamycin, an agent that suppresses cell senescence. FOS-like
antigen 2 (FOSL2) acts as a transcriptional repressor of GUARDIN,
and lower FOSL2 levels in response to rapamycin correlate with
increased levels of GUARDIN. Together, these results demonstrate
that GUARDIN inhibits p21-dependent senescence through a
LRP130-PGC1a-FOXO4 signaling axis, and moreover, GUARDIN
contributes to the anti-aging activities of rapamycin.
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Introduction

Senescence is an irreversible state of cellular dormancy driven by

various mechanisms such as replicative exhaustion resulting from

telomere shortening or uncapping, oncogene activation, and geno-

toxic, nutrient, and oxidative stress [1]. These mechanisms

commonly cumulate in the DNA damage response (DDR) leading to

activation of the tumor suppressor p53 and the expression of cyclin-

dependent kinase (CDK) inhibitors such as p21 and p16 that execute

the senescent response. Although cellular senescence was initially

regarded as a passive cell-autonomous anti-proliferation program

echoing normal cellular aging [2,3], it is increasingly appreciated

that senescence plays an important role in many other physiological

and pathological processes including tumor suppression, neurode-

generation, and tissue remodeling [4,5]. Moreover, the senescence-

associated secretory phenotype (SASP) resulting from changes in

the secretome of senescent cells contributes to regulating inflamma-

tion, tissue microenvironment, and age-related disorders [6–8].

As an important regulatory mechanism of cellular senescence

that integrates a variety of extracellular and intracellular signals [1],

the mechanistic target of rapamycin (mTOR; as known as mamma-

lian target of rapamycin) plays an important role in regulating long-

evity [6]. Inhibition of mTOR signaling by genetic or

pharmacological approaches extends lifespan of various model

organisms and mice with different genetic backgrounds [7–10].

Indeed, treatment with the mTOR inhibitor rapamycin or its analogs

(rapalogs) reduces cellular senescence [11–14]. Nevertheless, the

molecular mechanisms involved in rapamycin-mediated inhibition

of senescence are not well understood.

An increasing number of noncoding RNAs have been found to be

involved in regulation of cellular senescence [15]. For example, the
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long noncoding RNA MIR31HG regulates the expression of p16 to

modulate oncogene-induced senescence [16], whereas HOTAIR acti-

vates cellular senescence through p53-p21 signaling of the DDR

[17]. Moreover, the lncRNA OVAAL blocks cellular senescence

through regulating the expression of the CDK inhibitor p27 [18]. We

have also found that the lncRNA GUARDIN plays an essential role

in maintaining genomic stability [19]. Silencing of GUARDIN was

shown to induce cellular senescence although the mechanism

responsible remains undefined.

In this report, we demonstrate that GUARDIN serves to facilitate

assembly of the complex between LRP130/PGC1a that acts as

repressor complex at the FOXO4 promoter. Silencing of GUARDIN

disrupts this complex leading to FOXO4-dependent upregulation of

p21, thereby driving cell entry into senescence. On the other hand,

GUARDIN expression is upregulated by rapamycin treatment and

this results from modulation of FOS-like antigen 2 (FOSL2) levels.

FOSL2 normally transcriptionally represses GUARDIN but downreg-

ulation of FOSL2 by rapamycin releases this inhibition to promote

GUARDIN expression. Thus, GUARDIN inhibits p21-dependent

senescence induction through a signaling axis involving LRP130-

PGC1a-FOXO4 moreover plays a functional role in the antagonistic

actions of rapamycin on senescence.

Results

GUARDIN inhibits cellular senescence through suppressing
transcriptional activation of p21

To validate the notion that GUARDIN protects cells from cellular

senescence [19], we knocked down GUARDIN using shRNA in

normal human adult foreskin fibroblasts (HAFF), non-small-cell

lung carcinoma cells (A549 and H1299), and hepatocellular carci-

noma HepG2 cells, respectively (Fig EV1A). We observed that

shRNA silencing of GUARDIN induced senescence-associated-galac-

tosidase (SA-gal) activity (Fig 1A), the formation of senescence-

associated heterochromatin foci (SAHF) as shown by increased

levels of H3K9me3 (Fig 1B), and enhanced the senescence-asso-

ciated secretory phenotype (SASP) as represented by elevated extra-

cellular levels of IL-6 and IL-8 in A549 cells (Fig 1C) [20].

Knockdown efficiencies varied from 50 to 90%, possibly due to the

varied endogenous expression profiles of GUARDIN observed

among the different cell lines (Fig EV1A and B). Alternatively, over-

expression of GUARDIN accelerated cell proliferation and did not

result in cellular senescence (Fig EV1D–F) consistent with prior

reports [19]. Northern blotting analysis of GUARDIN in H1299 and

A549 cells showed a single band of 985nt (Fig EV1C), consistent

with the three exon transcript reported previously [19]. Thus, loss

of GUARDIN induces senescence while its overexpression promotes

proliferation in cell lines from different sources.

The induction of senescence following GUARDIN silencing was

associated with upregulation of p21 protein, a factor which is well

known to be involved in triggering senescence [21]. In contrast,

the expression of other senescence-inducing proteins, such as p15

and p16 [22], remained unaltered (Fig 1D). Indeed, p21 expression

appeared critical for the induction of senescence caused by

GUARDIN silencing, as co-silencing of p21 abolished SA-gal activity

induced by GUARDIN knockdown as well as reversing the resulting

inhibition of cell proliferation (Figs 1E and EV1G). Together, these

results suggest that GUARDIN silencing induces senescence through

upregulation of p21. Indeed, we observed increased p21 mRNA

levels in cells following knockdown of GUARDIN, and consistent

with this notion, overexpression of GUARDIN caused a decrease in

p21 transcription levels (Fig 1F). Of note, neither GUARDIN knock-

down nor overexpression affected p53 protein levels (Fig 1G), nor

did these manipulations alter the mRNA levels of Noxa, TIGAR,

and Bax (Fig 1H) that are known transcriptional targets of p53

[23]. Moreover, GUARDIN knockdown also caused upregulation of

p21 and activation of senescence in p53-null H1299 cells (Fig 1F

and G). Together, these data indicated that p53 is not involved in

GUARDIN-mediated upregulation of p21.

To understand how silencing of GUARDIN could influence p21

expression, we first measured the effect of GUARDIN knockdown

on the turnover of the p21 protein. Instructively, there were no

changes in the half-life time of p21 (Fig EV1H) upon GUARDIN

depletion, indicating that GUARDIN did not influence the post-trans-

lational stability of p21. Furthermore, treatment with the general

transcription inhibitor actinomycin D (Act D) did not lead to notice-

able changes in the turnover rate of p21 mRNA (Fig EV1I) [24],

suggesting that p21 upregulation was not a consequence of an

increased p21 mRNA stability; rather, it occurred through upregu-

lated transcription. Thus, GUARDIN appears to inhibit cellular

senescence through repressing transcriptional activation of p21.

GUARDIN facilitates LRP130/PGC1a interaction that mediates the
transcriptional repression of p21

To investigate the mechanism responsible for GUARDIN-mediated

suppression of p21, we interrogated the protein interactome of

GUARDIN using RNA pull-down assays, and proteins that co-preci-

pitated with biotin-labeled antisense probe against GUARDIN were

identified by mass spectrometry (Fig 2A). Binding between

GUARDIN and LRP130 was subsequently confirmed by Western

blotting (Figs 2B and EV2E). Consistently, the interaction of LRP130

and GUARDIN was readily detected using RNA immunoprecipitation

(RIP) assay and RNA FISH (Fig 2C and D). Moreover, subcellular

fractionation assays showed that GUARDIN and LRP130 were local-

ized to both nuclear and the cytoplasmic compartments (Fig EV2A,

B and E), together indicating that LRP130 is a bona fide binding

partner of GUARDIN.

LRP130 is a transcription factor shown previously to functionally

complex with PGC1a to exert effects on gene expression [25]. RNA

pull-down assays performed with GUARDIN also showed the pres-

ence of PGC1a (Fig 2E) suggesting that GUARDIN may associate

with the LRP130-PGC1a complex. Consistently, RNA immunopre-

cipitation (RIP) assay showed association between GUARDIN and

PGC1a (Fig 2F). To verify that GUARDIN associates with the

LRP130-PGC1a complex, we introduced FLAG-tagged PGC1a into

A549 cells and conducted two-step IP assays from total protein

extracts. In the first-phase IP, FLAG antibodies precipitated PGC1a
along with LRP130 and GUARDIN while in the second-phase IP,

LRP130 antibodies co-precipitated PGC1a and GUARDIN (Fig 2G),

indicating GUARDIN, LRP130, and PGC1a exist as a ternary

complex. Instructively, GUARDIN knockdown diminished the rela-

tive amount of LRP130 associated with PGC1a as shown in co-

immunoprecipitation (Co-IP) and mammalian two-hybrid assays
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Figure 1.
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(Fig 2H and I), indicating that GUARDIN functions to facilitate inter-

actions between LRP130 and PGC1a.
We also investigated the structural basis of the interaction of

GUARDIN with LRP130 and PGC1a by using deletion-mapping

experiments. Binding assays with in vitro-transcribed GUARDIN

along with truncation mutants demonstrated that deletion of exon 3

(E3; -288/-985) diminished the binding of GUARDIN to LRP130 and

PGC1a (Fig EV2C). These results support the notion that E3 region

of GUARDIN is the binding unit responsible for the association with

LRP130 and PGC1a. Deletion-mapping experiments with truncated

mutants of LRP130 and PGC1a revealed that the N-terminal and C-

terminal regions of LRP130 are required for its association with

GUARDIN, whereas the C-terminus and central region of PGC1a are

responsible for binding to GUARDIN (Fig EV2D).

We next examined whether LRP130 and PGC1a play roles in

GUARDIN-mediated repression of p21. ShRNA knockdown of either

LRP130 or PGC1a resulted in upregulation of p21 at both mRNA

and protein levels (Fig 2J), recapitulating the effects of GUARDIN

depletion on p21. However, neither LRP130 nor PGC1a levels were

significantly impacted by GUARDIN depletion (Fig 2K). Thus, the

association of LRP130 and PGC1a facilitated by GUARDIN appears

necessary for GUARDIN-mediated repression of p21 expression.

GUARDIN/LRP130/PGC1a represses transcription of FOXO4 gene

To investigate whether LRP130/PGC1a was involved directly in

transcriptional regulation of p21, we interrogated the p21 promoter

region for the presence of LRP130/PGC1a binding sites. Indeed,

using the UCSC browser predicted LRP130/PGC1a binding sites

were found embedded within DNase I hypersensitive regions

(DHSs) of the p21 gene promoter (-1870/-1701, -1430/-1221, -395/-1

upstream of the transcription start site) (Fig 3A, lower part). DHSs

mark diverse classes of cis-regulatory regions, such as promoters

and enhancers, and their identification represents a powerful

method of identifying the location of gene regulatory elements,

including promoters [28–30]. Nevertheless, neither LRP130 nor

PGC1a were found to directly bind to p21 promoter using ChIP

assays whereas TP53, a bona fide p21 transcriptional driver, was

shown to bind to the p1(-1870/-1701) and p4 (-199/-1) binding sites

(Fig 3A, upper part). ABCB1 and LMNA [26,27] served here as posi-

tive controls of LRP130 and PGC1a ChIP assays, respectively. These

results implied that the upregulation of p21 by LRP13/PGC1a was

unlikely to be mediated through direct transcription.

To clarify the mechanism by which GUARDIN suppresses p21

expression and cellular senescence, we carried out comparative

RNA sequencing (RNA-seq) analysis for differentially expressed

transcripts in A549 cells with and without GUARDIN shRNA knock-

down (Fig EV3A). Notably, the p21 promoter region is known to

contain consensus forkhead binding elements [31] with the RNA-

seq analysis revealing significant association with FoxO signaling

through enrichment of the forkhead box proteins, FOXO1, FOXO3a,

and FOXO4 in GUARDIN knockdown cells (Fig EV3B, Dataset EV2).

Verification using qPCR showed that FOXO4 but not FOXO1 and

FOXO3a mRNA levels were increased upon GUARDIN knockdown,

and consistent with this notion, overexpression of GUARDIN caused

a decrease in FOXO4 transcription levels (Figs 3B, EV3D and E).

Importantly, knockdown of FOXO4 not only reduced p21 expression

but also diminished the increase in p21 caused by GUARDIN knock-

down (Fig 3C). Collectively, these results suggest that GUARDIN-

mediated repression of p21 may be due to suppression of FOXO4.

Silencing of GUARDIN had no effect on the turnover rate of FOXO4

mRNA when treated with ActD (Fig 3D), suggesting that regulation

of FOXO4 by GUARDIN was unlikely to affect FOXO4 mRNA stabil-

ity. In support of this notion, we identified multiple consensus

LRP130 and PGC1a binding sites in the DNase I hypersensitive

region (-1093/-723, -437/-223, -153/-1) of the FOXO4 gene promoter

(Fig 3E, bottom). ChIP assays showed that LRP130 and PGC1a
bound to the P3 and to a lesser extent the P4 regions (-437/-327 and

-326/-233, respectively; Fig 3E, top).

To verify the interaction of LRP130 and PGC1a with the FOXO4

promoter, we constructed a luciferase reporter vector (Fig 3F,

bottom). The transcriptional activity of the FOXO4 reporter signifi-

cantly decreased when cells were co-transfected with either LRP130

or PGC1a (Fig 3F, top), indicative of repression. Consistent with a

repressor function, shRNA knockdown of LRP130 or PGC1a resulted

in upregulation of FOXO4 mRNA expression, while the overexpres-

sion of LRP130 or PGC1a downregulated FOXO4 mRNA levels

(Fig 3G and H). Silencing of GUARDIN increased the transactivation

of FOXO4 promoter as shown by luciferase assay (Fig 3I). Taken

together, these findings established that GUARDIN suppresses p21

expression through facilitating LRP130/PGC1a-mediated transcrip-

tional repression of FOXO4.

◀ Figure 1. GUARDIN inhibits cellular senescence through suppression of p21.

A Senescence-associated b-galactosidase (SA-b-gal) staining in A549, HAFF, HepG2, and H1299 cells after 48-h transduction with either negative control lentiviruses
(shCtrl) or those targeting GUARDIN (shGUARDIN). The graph shows percentage of SA-b-gal-positive cells.

B Senescence-associated heterochromatin foci formation (SAHF) in A549 cells with either shCtrl or shGUARDIN. Representative IF staining with H3K9me3 antibodies
(green) and nuclear Hoechst counterstaining (blue).

C Secretion of SASP factors IL-6 and IL-8 in A549 cells with either shCtrl or shGUARDIN.
D Western blotting for p21, p16, and p15 in HepG2 cells after 48-h transduction with shCtrl or shGUARDIN-1, -2, respectively (left). Knockdown efficiencies analyzed by

qPCR (right).
E SA-b-gal staining in A549 cells after 24-h transduction with either shCtrl or shGUARDIN in combination with p21 shRNA (shp21). The graph shows percentage of SA-

b-gal-positive cells.
F qPCR measurement of p21 mRNA in A549, HepG2, HAFF, and H1299 cells with either GUARDIN shRNA knockdown (top) or GUARDIN overexpression (bottom).
G Western blotting for p53 and p21 in A549, HepG2, HAFF, and H1299 cells with either GUARDIN shRNA knockdown (top) or GUARDIN overexpression (bottom).
H qPCR assays of NOXA, TIGAR, BAX, and p21 mRNA levels in A549 cells with either shCtrl or shGUARDIN.

Data information: (A, C, D–F, H) values are mean � SEM (n = 3 biological replicates). (A, C, D, F, H) two-tailed paired Student’s t-test; (E) two-way ANOVA with
Bonferroni’s multiple comparison post-test (ns, not significant, ***P < 0.001).
Source data are available online for this figure.
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Finally, comparing LRP130, GUARDIN, and FOXO4 expression

across 30 human tissue samples from the GTEx (Genotype-Tissue

Expression) Project showed the majority tissues with high expres-

sion levels of GUARDIN positively and negatively correlated with

LRP130 and FOXO4, respectively (Fig EV3C), thus supporting the

regulatory relationship established between GUARDIN, LRP130, and

FOXO4.

GUARDIN engages the LRP130/PGC1a/FOXO4/p21 signaling axis
independently of its roles in genome maintenance

GUARDIN is known to maintain genomic integrity through stabi-

lizing BRCA1/BARD1 heterodimers and by maintaining TRF2

expression via sequestering of miR-23a [19]. To investigate

whether GUARDIN-mediated repression of p21 occurs indepen-

dently of these functions, we treated cells with miR-23a inhibitors

along with knockdown of either BRCA1 or BARD1 using previ-

ously validated shRNAs [19]. In contrast to shRNA-mediated inhi-

bition of GUARDIN, neither individual knockdown of BARD1 nor

BRCA1, or the inhibition of miR-23a, had appreciable effects on

the levels of FOXO4 (Fig EV4A–C, respectively). Knockdown of

GUARDIN also had no effect on miR-23a or BARD1 levels but as

anticipated from prior data [19] there were reductions in BRCA1

levels along with TRF2. With respect to effects on p21, it is

known that BRCA1 is involved in the activation of p21 and that

BARD1 regulates BRCA1-mediated transactivation of the p21

promoter [32,33]. Moreover, it has been reported that TRF2

represses p21 promoter activity by promoter occupancy [34].

Consistently, silencing of either BRCA1 or BARD1 along with inhi-

bition of miR-23a resulted in the downregulation of p21, in

contrast to the increased levels of p21 resulting from shGUARDIN

treatment (Fig EV4A–D). Thus, BRCA1, BARD1, and miR-23a

levels positively affect p21 expression but such effects contrast

the actions of GUARDIN which acts to suppress p21. These data,

together with findings that neither BRCA1, BARD1, nor miR-23a

influence FOXO4 expression, propose that GUARDIN’s role in

p21-driven senescence occurs independently from its genome

integrity functions.

GUARDIN is transcribed by FOSL2 that is responsive to rapamycin

Rapamycin is known to inhibit senescence through a number of dif-

ferent mechanisms including but not only, inhibition of mTOR

[11,12]. We investigated whether GUARDIN contributes to or even

cooperates with rapamycin to inhibit senescence. Indeed, rapamycin

treatment resulted in upregulation of GUARDIN, both in a time- and

dose-dependent manner (Fig 4A and B) which was associated with

decreased expression of p21 and FOXO4 but not LRP130 (Fig 4C).

Intriguingly, the downregulation of p21 by rapamycin was mediated

through GUARDIN, since the p21-dependent cellular senescence

caused by GUARDIN depletion was reversed by rapamycin treat-

ment (Fig 4D). Rapamycin treatment increased the relative amount

of LRP130 associated with PGC1a as shown in mammalian two-

hybrid assays (Fig 4E), recapitulating the effects of GUARDIN.

Therefore, GUARDIN is not only a rapamycin-responsive lncRNA,

but also it contributes to the rapamycin-mediated inhibition of

senescence. Moreover, the levels of p53 did not change upon rapa-

mycin treatment (Fig 4C), implying that rapamycin does not regu-

late GUARDIN through p53.

To explore the mechanism responsible for the rapamycin-

induced upregulation of GUARDIN, we interrogated microarray gene

expression data derived from tumor tissues with or without rapa-

mycin treatment (GSE39694; Gene Expression Omnibus (GEO)).

Among the 629 genes altered by treatment with rapamycin, there

were 38 encoding transcription factors (Fig EV5A, Dataset EV3).

Inspecting the genomic sequence in the GUARDIN promoter using

the JASPAR database [35] identified putative binding sites for SIX

homeobox 4 (SIX4), FOS-like antigen 2 (FOSL2), and ATA-binding

protein (TBP) (Fig EV5B). Further assessment of the levels of these

transcription factors showed that SIX4 and FOSL2 were downregu-

lated at mRNA and protein levels, whereas TBP remained

unchanged in response to rapamycin treatment (Fig 4F). Moreover,

◀ Figure 2. GUARDIN facilitates LRP130-PGC1a interaction that mediates transcriptional repression of p21.

A SDS–PAGE of RNA pull-down assays using biotin-labeled sense/antisense probes against GUARDIN from whole-cell lysates of A549 cells indicating putative GUARDIN-
binding proteins (left); protein identities with high probabilities were determined by mass spectrometry (right).

B RNA pull-down assays interrogating putative GUARDIN-associated proteins identified in (A) from whole-cell lysates of A549 and HAFF cells. BRCA1, BARD1 served as
positive controls, and b-actin served as negative controls.

C RNA immunoprecipitation (RIP) assays against IgG/LRP130 antibodies in whole-cell lysates of A549 cells.
D Subcellular localization of GUARDIN and its co-localization with LRP130. RNA FISH for GUARDIN (red) and IF for LRP130 (green) in A549 cells with either shCtrl or

shGUARDIN. Nucleus was counterstained with Hoechst (blue).
E RNA pull-down assays using biotin-labeled sense/antisense probes against GUARDIN from whole-cell lysates of A549 cells. GUARDIN levels were measured by RT–PCR

and co-precipitated LRP130 and PGC1a detected by Western blotting. BRCA1 and b-actin served as positive and negative controls, respectively.
F RIP assay using IgG/PGC1a antibodies from whole-cell lysates of A549 cells. GUARDIN, LRP130, and PGC1a levels were measured as per (E).
G Two-step IP assays in whole-cell lysates of A549 cells transfected with FLAG-tagged PGC1a. First-phase IPs were conducted with FLAG antibodies (left), and following

elution with FLAG peptides, eluates were further subjected to second-phase IPs with LRP130 antibodies (right). Samples were subjected to Western blotting and qPCR
analysis for LRP130, PGC1a, and GUARDIN, respectively.

H Co-immunoprecipitation (co-IP) between LRP130 and PGC1a in A549 cells after 48-h transduction with shCtrl or shGUARDIN. LRP130 was precipitated, and samples
were subjected to Western blotting analysis for LRP130, PGC1a and b-actin as loading control.

I Mammalian two-hybrid assays between pACT-LRP130 and pBIND-PGC1a in A549 cells after 48-h transduction with shCtrl or shGUARDIN. Samples were subjected to
the luciferase activity assays.

J LRP130/PGC1a and p21 protein expression was measured by Western blotting in A549 and HAFF cells after 48-h transduction with shCtrl or shLRP130 (top left) or
shPGC1a (bottom left) as indicated. qPCR assays for p21 mRNA levels were performed in parallel (right panels).

K Western blotting analysis of LRP130, PGC1a, and p21 protein levels in HAFF and A549 cells after 48-h transduction with shCtrl or shGUARDIN.

Data information: (I, J) values are mean � SEM (n = 3 biological replicates). (I, J) two-tailed paired Student’s t-test (**P < 0.01, ***P < 0.001).
Source data are available online for this figure.
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knockdown of FOSL2 but not SIX4 caused upregulation of

GUARDIN and downregulation of p21 (Fig 4G), suggesting that

FOSL2 expression underpinned the rapamycin-dependent changes

in GUARDIN expression. Consistently, overexpression of FOSL2

caused downregulation of GUARDIN and upregulation of p21

(Fig 4G), recapitulating the effects of rapamycin treatment on

GUARDIN and p21 expression (Fig 4A–C). Additionally, FOSL2

knockdown increased the transcriptional activity of the -784/-54

GUARDIN reporter construct whereas reporter levels after SIX4

shRNA were unchanged from controls (Fig 4H). In addition, ChIP

assays demonstrated that FOSL2 bound to its predicted binding sites

(-503 to -493) in the GUARDIN promoter (Figs 4I and EV5C).

Together, these results indicate that binding of FOSL2 to the

GUARDIN promoter transcriptionally represses its expression. Thus,

rapamycin suppresses FOSL2 and subsequently upregulates

GUARDIN leading to suppression of p21 and inhibition of cellular

senescence. Additionally, we compared the expression levels of

GUARDIN, FOXO4, FOSL2, and LRP130 at 15 and 35 passages in

HAFF cells representing early and late stages of replicative senes-

cence (Fig EV5D). The transition to replicative senescence was asso-

ciated with decreased GUARDIN, increased FOXO4 and FOSL2 but

without changes in LRP130, consistent with the regulatory events

identified in the preceding analysis.

Discussion

We have previously shown that GUARDIN is a p53-responsive

lncRNA that is essential for cell survival and proliferation through

maintaining genomic integrity in response to DNA damage [19].

However, low levels of GUARDIN can still be detected in TP53-null

cells or tumors with mutations in TP53 [19], although the functional

significance of GUARDIN under p53 deficient conditions is still

unclear. In this report, we provide evidence that GUARDIN is

responsive to rapamycin and represses cellular senescence through

facilitating LRP130/PGC1a-mediated repression of FOXO4 leading to

transcriptional inactivation of p21. Moreover, we show that repres-

sion of FOSL2 is responsible for upregulation of GUARDIN in

response to rapamycin. These results not only reveal a p53-indepen-

dent mechanism that regulates GUARDIN expression, but also

uncover a novel signaling pathway of cellular senescence induced

by rapamycin.

◀ Figure 3. LRP130/PGC1a negatively regulates FOXO4 transcription.

A ChIP assays detecting binding of LRP130/PGC1a to the p21 promoter using qPCR and RT–PCR (top left and right, respectively). IgG and p53 served as a negative and
positive controls, respectively. Schematic illustrations of the putative LRP130/PGC1a binding sites within DNase I hypersensitive regions of the p21 promoter
(bottom).

B qPCR assays for GUARDIN, FOXO1, FOXO3a, and FOXO4 in A549 cells after 24-h transduction with shCtrl or shGUARDIN.
C Western blotting assays for FOXO4 and p21 protein expression in A549 cells after 48-h transduction with shCtrl or shGUARDIN alone or in combination with

shFOXO4. b-actin served as loading control.
D Half-life times of FOXO4 mRNA in A549 cells with shCtrl or shGUARDIN measured by qPCR after treating cells with 5 lg/ml of actinomycin (ActD) for the indicated

times.
E ChIP assays detecting binding of LRP130/PGC1a to putative binding sites in the FOXO4 promoter using qPCR (top). Data were normalized to the IgG negative control.

Schematic illustration of the LRP130/PGC1a binding sites within DNase I hypersensitive regions of the FOXO4 promoter (bottom).
F Luciferase assays conducted in A549 cells transfected with LRP130 or PGC1a using the pGL3 (negative control) or pGL3-FOXO4 promoter reporter plasmids.
G qPCR assays for LRP130 and FOXO4 mRNA levels (upper) and Western blotting analysis for LRP130 protein level (lower) in A549 cells after 48-h transduction with

LRP130 overexpression or knockdown.
H qPCR assays for PGC1a and FOXO4 mRNA level (upper) and Western blotting analysis for PGC1a protein level (lower) in A549 cells after 48-h transduction with

PGC1a overexpression or knockdown.
I Luciferase activity assays in A549 cells transduced with shCtrl or shGUARDIN using the pGL3 (negative control) or pGL3-FOXO4 promoter reporter plasmids.

Data information: (A, B, D–I) values are mean � SEM (n = 3 biological replicates). (A, B, E–I) two-tailed paired Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001).
Source data are available online for this figure.

▸Figure 4. Rapamycin regulates GUARDIN expression via FOSL2.

A, B qPCR assays for GUARDIN expression in A549 cells treated with increasing doses of rapamycin for 24 h (A) or 100 nM of rapamycin for the indicated times (B).
C Western blotting assays for p53, LRP130, FOXO4, and p21 expression in A459 and H1299 cells treated with 100 nM of rapamycin or vehicle (DMSO) for 48 h.
D A549 cells with shCtrl or shGUARDIN were treated with 100 nM rapamycin or DMSO vehicle in the indicated combinations for 48 h. Western blotting was used to

measure p21 levels (left) while conducting SA-b-gal staining in parallel (middle) with the percentage of senescent cells calculated from the SA-b-gal staining (right).
E Mammalian two-hybrid assays between pACT-LRP130 and pBIND-PGC1a in A549 cells treated with DMSO or 100 nM rapamycin. Samples were subjected to the

luciferase activity assays.
F SIX4 and FOSL2 mRNA (left) and protein levels (right) measured by qPCR and Western blotting, respectively, in A549 cells treated with DMSO or 100 nM rapamycin.

TBP served as a control.
G qPCR (upper) and Western blotting (lower) assays for GUARDIN, SIX4, and FOSL2 expression in A549 cells comparing shCtrl with shSIX4 (left), shFOSL2 (middle), or

FOSL2 (right) after transduction for 48 h.
H Luciferase assays in A549 cells transduced with shCtrl, shSIX4, or shFOSL2 using pGL3 (negative control) or pGL3-FOXO4 promoter reporter plasmids.
I ChIP assays comparing control IgG versus FOSL2 antibodies demonstrate specific recovery of the GUARDIN promoter by RT–PCR assay. UPe and UPk served as a

positive and negative controls, respectively [54].

Data information: (A, B, D-I) values are mean � SEM (n = 3 biological replicates). (A, B, E–I) two-tailed paired Student’s t-test; (D) two-way ANOVA with Bonferroni’s
multiple comparison post-test (*P < 0.05, **P < 0.01, ***P < 0.001).
Source data are available online for this figure.
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It was previously reported that silencing of GUARDIN could

induce cell senescence [19], and conceivably, this resulted from loss

of one or both of GUARDIN’s functions in maintaining genomic

integrity, either through influencing DNA repair or by maintaining

telomeric repeat binding factor 2 (TRF2) expression and the activity

of the shelterin complex critical for telomeric capping [36]. The

latter function is relevant since telomere shortening or uncapping

can also drive cellular senescence [21]. However, rather than a fait

accompli of genomic damage, we show here that GUARDIN plays a

direct role in restraining cell entry into senescence. Indeed, senes-

cence induced by GUARDIN knockdown was mediated by p21, as

knockdown of GUARDIN upregulated p21 and co-knockdown of

p21 diminished senescence resulting from GUARDIN knockdown

[19]. Intriguingly, GUARDIN-mediated regulation of p21 expression

appeared to be independent of p53, although p21 is a major effector

of p53 signaling and we have previously shown that GUARDIN,

similar to p21, may represent an indicator of wild-type p53 activity

[19]. Nevertheless, p53-independent regulation of p21 has been

widely documented [37,38]. Moreover, while the actions of

GUARDIN were inextricably linked to p21, they appeared indepen-

dent of other known major effectors of cellular senescence, namely

p15 and p16 [39–41]. Our results further consolidate that notion that

both GUARDIN and p21 can function independently of p53 and

point to a GUARDIN-mediated mechanism that transcriptionally

represses p21 irrespective of p53 activation status.

Previously, we have found that GUARDIN acts as an RNA scaffold

to facilitate the binding between BRCA1 and BARD1 in response to

DNA damage [19]. Intriguingly, the primary contribution of

GUARDIN in suppressing senescence also involved a role in facilitat-

ing protein complexes, in this case the assembly and stability of a

repressor complex formed by LRP130 and PGC1a. This was demon-

strated by (i), GUARDIN, LRP130, and PGC1a formed a ternary struc-

ture; (ii), knockdown of GUARDIN reduced the association between

LRP130 and PGC1a; (iii), binding of LRP130 and PGC1a to the FOXO4

promoter was associated with transcriptional repression while

inhibiting LRP130, PGC1a, or GUARDIN increased its activation; and

(iv), knockdown of LRP130 or PGC1a upregulated p21, recapitulating

the effects of knockdown of GUARDIN. Notably, the binding interac-

tions between BRCA1/BARD1 and LRP130/PGC1a were mediated

through different regions of GUARDIN [19], indicative of distinct

structural specificities embedded in the RNA sequence.

PGC1a is a transcriptional cofactor that interacts with multiple

transcription factors [42] while LRP130 is a leucine-rich repeat-

containing protein (also known as LRPPRC) functionally associated

with mitophagy induction [43] but also with demonstrated transcrip-

tional and/or translational roles in the nucleus and endoplasmic retic-

ulum [44]. The LRP130/PGC1a complex plays a critical role in

glucose homeostasis and energy balance through regulation of gluco-

neogenic and mitochondrial genes [25,45]. Interestingly, previous

studies show that PGC1a is a binding partner and coactivator of

Senescence

GUARDIN

p21PGC1α LRP130 FOXO4

FOSL2

Rapamycin

Figure 5. Model for GUARDIN-mediated regulation of cellular senescence.

GUARDIN acts as an RNA scaffold to facilitate interaction between LRP130/PGC1a that acts to transcriptionally repress FOXO4 expression. This repression prevents FOXO4-
mediated upregulation of p21 and cell entry into senescence. GUARDIN participates in rapamycin-induced cellular senescence, likely through downregulation by FOSL2,
which is also downregulated by rapamycin.
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FOXO1 which drives the expression of gluconeogenic genes in liver

[25,46] while in contrast, PGC1a acts at the FOXO3 promoter to

suppress its expression in skeletal muscle [47]. Our results showing

that the GUARDIN/LRP130/PGC1a complex acts to transcriptionally

repress FOXO4 are consistent with the latter mode of regulation.

Maintaining low FOXO4 levels prevents activation and upregulation

of p21 expression and protects cells against senescence induction.

Consistently, FOXO4 has been shown to drive oncogene-induced

senescence in the melanocytic lineage through p21 [48]. Moreover,

the levels of FOXO4 increased during replicative senescence in fibrob-

lasts, and among a range of normal tissues with higher GUARDIN

expression, there appeared to be a negative correlation with FOXO4

expression. Indeed, FOXO4 is known to play an important role in p21

transcriptional regulation [48,49], and notably, administration of a

small interfering FOXO4 peptide reduces senescence and restores

overall fitness in naturally aged mice or in fast aging mice models

[50]. Our results showing suppression of p21 by GUARDIN through

LRP130/PGC1a-mediated transcriptional repression of FOXO4 as an

important mechanism to counteract cellular senescence implicate that

promotion of GUARDIN expression may be a general approach to

prevent aging through sustained repression of FOXO4.

Finally, we establish that GUARDIN expression is induced in

cells in response to the mTOR inhibitor, rapamycin. This agent has

long been known to inhibit cellular senescence and prolong life span

in various model systems [6]. However, the mechanisms involved

remain less understood and are thought to be multifactorial. We

found that GUARDIN contributes to rapamycin-mediated inhibition

of cellular senescence, opening a novel scenario that rapamycin

protects against cellular aging through a noncoding mechanism.

Instructively, treatment with rapamycin did not activate p53, consis-

tent with senescence representing a p53-independent aspect of

GUARDIN function. The upregulation of GUARDIN by rapamycin

was mediated through downregulation of FOSL2. FOSL2 was shown

to exert transcriptional repression of GUARDIN through occupancy

of the GUARDIN promoter although how rapamycin affects down-

regulation of FOSL2 is not currently known.

In summary, we have identified a signaling axis encompassing

GUARDIN, LRP130/PGC1a, FOXO4, and p21 that can suppress

cellular senescence (Fig 5). Manipulating GUARDIN levels by inhibi-

tion or overexpression acted to either trigger or block senescence.

An important question involves how the contextual placement of

GUARDIN’s independent functions involving genomic maintenance

versus its role in senescence. The latter involves negative control of

gene expression that conceivably may act as a failsafe switch under

conditions where GUARDIN expression is compromised although

this thesis remains to be explored. Nevertheless, as GUARDIN is

responsive to treatment with rapamycin, our findings also highlight

a potential role for GUARDIN in aging-associated diseases with

perhaps practical implications in aging prevention.

Materials and Methods

Reagents

Reagents and antibodies were sourced as indicated: cycloheximide

(Sigma); rapamycin (BBI); actinomycin D (Solarbio); streptavidin

beads (Invitrogen); and A/G beads (Pierce);

Antibodies

anti-H3K9me3 (ab176916), p15 (ab53034), p16 (ab211542), FOXO4

(ab126594), and Alexa Fluor� 488-conjugated secondary antibodies

(ab150077) from Abcam; anti-p21 (P1484-.2ML) and flag (F7425-

.2MG) from Sigma; anti-IL6 (21865-1-AP), IL-8 (17038-1-AP),

LRP130 (21175-1-AP), HSPA5 (11587-1-AP), MPG (11481-2-AP),

SIX4 (21305-1-AP), FOSL2 (15832-1-AP), and TBP (22006-1-AP)

from Proteintech; anti-GAPDH (AT0002) and b-actin (AT1569) from

CMC-TAG; anti-HUR (sc-5261), H2A (sc-54606), p53 (sc-126), ROD1

(sc-398105), and PGC1a (sc-5816) from Santa Cruz; and HRP-conju-

gated secondary antibodies against mouse and rabbit IgG (W4021,

W4011) from Promega.

Cell culture

HepG2, A549, H1299, 293T, and HAFF cells were cultured in DMEM

(Invitrogen) supplemented with 10% FBS/1% penicillin/strepto-

mycin and maintained in a humidified incubator at 37°C/5% CO2.

All cells were authenticated by STR profiling (GenePrint 10 System

kit from Promega and AuthentiFiler PCR Amplification Kit from

Thermo Fisher) and tested negative for mycoplasma contamination

using the Cell Culture Contamination Detection Kit (Thermo Fisher).

RNA interference and gene overexpression

Lentiviruses for gene knockdown and overexpression experiments,

respectively, were generated by transfecting HEK293T cells for 48 h

with PLKO.1-based shRNAs, pREV, pGag, and pVSVG (2:2:2:1 ratio)

or psin/pCDH, pspax2, pmd2.g (2:2:1 ratio). Supernatants were 0.45

um filtered, supplemented with 8 lg/ml polybrene (Sigma) before

incubating with target cells and selecting with 5 lg/ml puromycin.

Targeting sequences are shown in Table EV1.

Quantitative and semi-quantitative RT–PCR

Total RNA was isolated by TRIzol reagent (Invitrogen) and 500 ng

RNA used to synthesize cDNA using PrimeScriptTM RT reagent kit

(TaKaRa) according to the manufacturer’s instructions. Semi-quanti-

tative RT–PCR was performed using 2× Taq PCR mix with 25 cycles

for internal controls and 30–40 cycles for RNAs. Primer sequences

are shown in Table EV1. QPCR was performed as described previ-

ously [51].

b-Galactosidase staining and quantitation

b-galactosidase staining was performed according to the manufac-

turers protocol (C0602, Beyotime). b-galactosidase-positive cells

were scored using light microscopy, counting at least 50 cells from

three random fields.

Immunofluorescence and RNA FISH

Cells grown on coverslips were fixed in 4% paraformaldehyde and

permeabilized using 0.2% Triton X-100. After blocking with 2%

BSA, coverslips were incubated overnight at 4°C with primary anti-

bodies before addition of Alexa-488 secondary antibodies. RNA

probes synthesized by T7-mediated transcription were purified by
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phenol/chloroform extraction and 1 lg RNA labeled with Alexa-546

using the ULYSIS Nucleic Acid Labeling Kit (Thermo Fisher) [52].

Nuclei were counterstained with Hoechst.

ELISA

Cells were incubated in serum-free DMEM for 24 h and IL-6/8 levels

determined in supernatants using the femtoELISATM HRP Kit (G-

Biosciences).

Western Blotting

Whole-cell lysates were prepared using RIPA buffer containing

protease inhibitors (Beyotime) before conducting SDS–PAGE and

Western blotting using enhanced chemiluminescence.

Northern Blotting

Northern blots were performed as described previously [51] against

total RNA resolved on 1.5% agarose gels. Membranes were hybri-

dized with digoxigenin-labeled antisense GUARDIN probes synthe-

sized using T7 RNA polymerase using the DIG Northern Starter Kit

(Roche).

Biotin pull-down assays and mass spectrometry

Biotinylated sense (negative control) and antisense biotin-labeled

DNA oligomers corresponding to GUARDIN (1 lg) were coupled to

streptavidin-coupled Dynabeads (Invitrogen). The Dynabeads were

subsequently incubated with cell lysates for 4 h and eluted proteins

subjected to SDS–PAGE and staining with Coomassie Brilliant Blue

G-250. Protein bands were excised and sent to Core Facility of

Center for Life Sciences, USTC for mass spectrometry (MS) analysis

using a Thermo-Finnigan LTQ LC/MS-MS. Protein IDs determined

by MS are listed in Dataset EV2. All processes were performed under

RNase-free conditions.

Immunoprecipitation

Cells were lysed in IP lysis buffer (150 mM NaCl, 50 mM Tris, pH

7.4, 10% glycerol, and 1.5 mM MgCl2) supplemented with protease

inhibitor cocktail before incubation for 4 h at 4°C with protein A/G

beads precoated with indicated antibodies. Beads were washed

three times using IP lysis buffer, eluted with heat (95°C, 10 min)

and the samples analyzed by Western blotting. Where indicated,

two-step IPs were performed against cell lysates prepared using lysis

buffer containing 20 mM HEPES, pH 7.8, 400 mM KCl, 5% glycerol,

5 mM EDTA, 1% NP-40, protease inhibitors cocktail, and RNase

inhibitor. The first IP used anti-Flag antibodies before elution with

Flag peptides. Ten percent of the sample was reserved for Western

blotting and semi-quantitative RT–PCR analysis, respectively, while

the remaining eluate was subjected to the secondary IP. Steps were

performed under RNase-free conditions as required.

RNA immunoprecipitation

RNA immunoprecipitation (RIP) was performed as described [53].

Briefly, cells were lysed in RIP buffer supplemented with RNase A

inhibitor and DNase I. Soluble cell lysates were precleared with

protein A/G beads alone before IP with the indicated antibodies at

4°C for 3 h. After washing, the bead-bound immunocomplexes were

eluted using elution buffer (50 mM Tris, pH 8.0, 1% SDS, and

10 mM EDTA) at 65°C for 10 min. To isolate protein-associated

RNAs from the eluted immunocomplexes, samples were treated

with proteinase K, and RNAs were extracted by phenol/chloroform

before RT–PCR analysis.

In vitro transcription

The T7 RNA polymerase promoter sequence was introduced into

DNA templates generated by PCR to allow for in vitro transcription.

PCR products were purified using the DNA Gel Extraction Kit (Axy-

gen), and in vitro transcription performed using the T7-Flash

BiotinRNA Transcription Kit (Epicentre, biotin labeling) or Tran-

scriptAid T7 High Yield Transcription Kit (Thermo Scientific, unla-

beled) according to the manufacturer’s instructions. RNA was

subsequently extracted using phenol/chloroform. Primer sequences

are shown in Table EV1.

ChIP assay

Cells were crosslinked with 1% formaldehyde for 10 min and ChIP

assays performed using the Pierce Agarose ChIP kit (Thermo Scien-

tific, USA) according to the manufacturer’s instructions. Anti-rabbit

immunoglobulin G was used as a negative control. Bound DNA frag-

ments were subjected to RT–PCR using the specific primers

(Table EV1).

Luciferase reporter assay

Luciferase reporter assays were performed as described previously

[53] using the Dual-Luciferase Reporter Assay System (Promega,

Madison, WI, USA).

Subcellular fractionation

Cells were incubated with hypotonic buffer (25 mM Tris–HCl, pH

7.4, 1 mM MgCl2, 2.5 mM KCl) on ice for 5 min. An equal volume

of hypotonic buffer containing 1% NP-40 was then added, and each

sample was left on ice for another 5 min. After centrifugation at

5000 g for 5 min, the supernatant was collected as the cytosolic

fraction. The pellets were resuspended in nuclear resuspension

buffer (20 mM HEPES, pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 1 mM DTT, 1 mM PMSF) and incubated at 4°C for 30 min.

Nuclear fractions were collected after removing insoluble membrane

debris by centrifugation at 12,000 g for 10 min.

RNA-seq

Total RNA was extracted by phenol/chloroform. RNA-Seq was

performed using an Illumina Hiseq platform (Bohao, shanghai,

China). The amount of sequencing data per sample is 3G. Differential

expression analysis of two groups was performed using the DESeq2 R

package. DESeq2 provides statistical routines for determining differen-

tial expression in digital gene expression data using a model based on

the negative binomial distribution. The resulting P-values were
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adjusted using the Benjamini and Hochberg’s approaches to control

false discovery rate. Genes with an adjusted P < 0.05 were considered

to be differentially expressed. The sequencing data were deposited in

the National Center for Biotechnology Information Gene Expression

Omnibus database (GSE137513).

Mammalian Two-Hybrid assays

Complementary DNAs for PGC1a and LRP130 cloned into the

pBIND and pACT vectors were transfected along with pG5luc vector

(Promega) and reporter activity measured 48 h later using the Dual-

Luciferase Reporter Assay Kit (Promega). Renila measurements

were used to normalize changes in firefly luciferase activity.

Quantification and statistical analysis

Statistical analysis was carried out using Microsoft Excel 2016 and

GraphPad Prism 7 to assess differences between experimental

groups. Densitometry was performed using Image-Pro plus 6.0 soft-

ware. Statistical significance was analyzed by two-tailed Student’s t-

test for comparisons of two samples, and two-way ANOVA with

Bonferroni’s post-test for bivariate comparisons. P-values lower

than 0.05 were considered to be statistically significant (ns, not

significant, *P < 0.05, **P < 0.01, ***P < 0.001).

Data availability

Raw and normalized data files for the microarray analysis have

been deposited in the NCBI Gene Expression Omnibus under acces-

sion number GSE39694 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE39694) and GSE137513 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE137513).

Expanded View for this article is available online.
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