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Acute inflammation has been described as a reactive dynamic process, promoted by the secretion of proinflammatory mediators,
including lipid molecules like leukotrienes and prostaglandins, and counterbalanced by proresolving mediators including omega-3
polyunsaturated fatty-acid- (PUFA-) derived molecules. The switch from the initiation to the resolution phase of acute inflammatory
response is crucial for tissue homeostasis, whereas the failure to resolve early inflammation by specialized proresolving mediators leads
to chronic inflammation and tissue damage. Among PUFA-derived proresolving mediators, different eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) derivatives have been described, namely, resolvins (resolution phase interaction
products), which exert their anti-inflammatory and immune-regulatory activities through specific G-protein-coupled receptors.
In recent years, compelling evidence has shown that impairment of resolution of inflammation is a crucial pathogenic hallmark
in different neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. This review summarizes current
knowledge on the role of resolvins in resolution of inflammation and highlights available evidence showing the neuroprotective
potential of EPA- and DHA-derived resolvins (E-series and D-series resolvins, respectively) in neurodegenerative diseases.

1. Introduction

Neurodegenerative diseases, including Alzheimer’s disease
(AD) and Parkinson’s disease (PD), represent a critical threat
to human health at a global level. In fact, they are debilitating
and largely untreatable conditions whose prevalence is
increasing worldwide with aging population. Until two
decades ago, the pathogenesis of neurodegenerative diseases

was in many respects unclear. In the last years, however, it
has been progressively elucidated that they may result from
different anomalies in the processing of various neuronal
proteins, leading to their abnormal aggregation and accu-
mulation. In addition, compelling evidence has recently
shown that inflammation is a crucial pathogenic hallmark
in these neurological disorders [1]. However, despite signif-
icant progresses that have been made in the knowledge of
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the pathogenesis of AD and PD, there is still an essential
requirement for therapeutic strategies and disease-modifying
treatments beyond symptomatic remedies [2].

Resolvins, different molecules deriving from the lipoxy-
genase metabolism of eicosapentaenoic acid (EPA), namely,
E-series resolvins (RVE), and docosahexaenoic acid (DHA),
namely, D-series resolvins (RvD) (Figure 1), are crucial
mediators of the resolution phase of acute inflammatory
response. In different experimental studies, resolvins have
been recognized to inhibit neutrophil infiltration and trans-
migration [3-7] and to variably modulate the expression of
chemokines, adhesion molecules, and other mediators of
inflammatory response [8, 9] (Table 1). Therefore, they have
attracted attention as possible therapeutic agents in inflam-
matory conditions, including those affecting the central and
peripheral nervous system [10, 11]. Particularly, the potential
neuroprotective effects of resolvins attributable to resolution
of neuroinflammation have been investigated in neurodegen-
erative diseases. In this review, we take stock of current
knowledge on the role of resolvins in the resolution of
inflammation and we highlight available evidence showing
the neuroprotective potential of resolvins in AD and PD.

2. Resolvins and Resolution of Inflammation

In the last years, different oxidized lipid molecules, namely,
oxylipins, have been recognized to modulate several biolog-
ical functions. The term “neuroprotectins” was first used by
Serhan and colleagues for a class of oxylipins primarily dis-
covered in neuronal tissues, although the word “protectins”
was later implemented when it was found that these com-
pounds were expressed in many other animal tissues. After-
ward, oxylipins with equal fundamental characteristics but
shaped by different enzymatic reactions were identified
and called “maresins.” Subsequently, oxygenated products
of two omega-3 polyunsaturated fatty acids (PUFAs), EPA
and DHA, were identified and termed “resolvins” or
“resolution-phase interaction products,” as they were found
to inhibit inflammatory responses (Figures 1 and 2). Due to
their close association with inflammation resolution, these
lipid metabolites were also referred to as “specialized pro-
resolution mediators” (SPMs).

Although compelling evidence shows that resolvins may
exert their powerful anti-inflammatory activities at multiple
levels, their main proresolving pathways comprise the modu-
lation of chemotaxis and phagocytic ability of inflammatory
cells, along with the control of the expression and activity
of a variety of proinflammatory mediators, including arachi-
donic acid metabolites such as some prostaglandins and
leukotrienes [12-15] (Figure 3). Noteworthy, both E-series
resolvins (e.g., RvE1 and RvE2), which are bioactive oxygen-
ated lipid products of EPA, and D-series resolvins (e.g.,
RvD1, RvD2, RvD3, and RvD5), which are DHA derivatives,
exert their proresolving action through transmembrane
G-protein-coupled receptors (GPCRs). Currently, four
receptors for resolvins are known, that is, A lipoxin and for-
myl peptide receptor 2 (ALX/FPR2), D resolvin receptor
1(DRV1)/GPR32, D-resolvin receptor 2 (DRV2)/GPRI1S,
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and chemokine-like receptor 1 (CMKLR1), which is also
referred to as ChemR23 or ERV1 [16].

By binding to ERV1/ChemR23, RvEl activates a down-
stream pathway leading to the inhibition of NF-«B signaling
in inflammatory cells [17]. Accordingly, the activation of the
RvE1-ERV1/ChemR23 axis promotes neutrophil apoptosis
and macrophage-mediated phagocytosis, while reducing the
production of proinflammatory cytokines (Figure 4) [18].
Available evidence suggests that the proresolving action
mediated by RvE2 is more selectively directed towards neu-
trophils, as compared to that mediated by RvE1. However,
whether RvE1 and RvVE2 may share the same receptor and
signaling cascade remains unclear [16, 19].

D-series resolvins display a variable affinity for three
different GPCRs (i.e., ALX/FPR2, DRV1/GPR32, and
DRV2/GPR18). RvD1 and RvD3 transduce their signal
through both ALX/FPR2 and DRV1/GPR32, whereas RvD2
and RvD5 signal through DRV2/GPR18 and DRV1/GPR32,
respectively [16]. The activation of the ALX/FPR2 pathway
inhibits the p38 mitogen-activated protein kinase (MAPK)
phosphorylation, counteracting the ability of neutrophils
and macrophages to migrate and produce proinflammatory
mediators [4, 6, 20, 21]. The DRV1/GPR32 signaling not only
promotes macrophage-mediated phagocytosis and macro-
phage polarization toward a proresolution phenotype but
also regulates adaptive immune responses by preventing T
cell differentiation towards Thl and Th17 phenotypes and
by promoting the generation of regulatory T cells [16].
The RvD2-DRV2/GPRI18 axis, beyond being involved in
the modulation of neutrophil infiltration ability and on
macrophage-mediated phagocytosis, seems to exert a crucial
role in the regulation of microglial function [16].

Noteworthy, some resolvin receptors are able to activate
different downstream signaling pathways, depending on both
the biological context and the presence of additional agonists
beyond resolvins. To this regard, it should be emphasized
that also some proinflammatory mediators, beyond proresol-
ving mediators, may activate resolvin receptors, leading to
the transduction of even opposite biological responses. For
instance, chemerin and lipoxin A, may act as proinflamma-
tory ligands of ERV1/ChemR23 and ALX/FPR?2, respectively
[16]. In addition, some resolvins may bind to other receptors
beyond their specific GPCRs, thereby promoting proresol-
ving effects through multiple cellular pathways. For instance,
RvE1 may act as a partial agonist of leukotriene B [4] receptor
1 (BLT1), dampening leukotrien-induced proinflammatory
signals on leukocytes [22]. Therefore, although resolvins
and their receptors have been attracting great attention as
possible therapeutic targets against inflammation, a better
understanding of their complex pharmacology will be crucial
in view of their potential therapeutic use to induce resolution
of inflammation in different pathological conditions.

2.1. Proresolving Pathways of E-Series and D-Series Resolvins
in Different Inflammatory Conditions. The proresolving
action of both E-series and D-series resolvins has been
reported to exert a crucial preventive/therapeutic role in
different inflammatory conditions, including allergic reac-
tions, chronic low-grade inflammation of adipose tissue,
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FIGURE 1: Scheme showing the formation of resolvin. DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; RvEl: resolvin E1; LOX:

lipoxygenases.
TaBLE 1: Studies reporting resolvin protective actions.
Resolvins Condition Effects References
Alzheimer’s disease Treatment with RvE1 and LXA4 reversed the inflammatory process and decreased the [99]

neuroinflammation associated with Af pathology.

Enhances T cell and eosinophil clearance; abrogates airway hyperresponsiveness.

Allergy RvEI promoted the clearance of eosinophils and antigen-specific T cells, while reducing [23, 100, 101]
the expression of proinflammatory cytokines by dendritic cells and Th17 cells.
. Myocardlal . RVE1 reduced infiltration of inflammatory cells and reduced production of
. ischemia/reperfusion . . . . . . [25]
E-series injury inflammatory cytokines, leading to improved recovery of cardiac function.
Chronic low-grade The activation of the RvE1-ERV1/ChemR23 axis reduced the inflammatory burden of [29]
systemic inflammation adipose tissue.
In hyperlipidemic mice, the ERV1/ChemR23 gene deletion led to increased oxidized
. low-density lipoprotein uptake by macrophages.
Atherosclerosis Exogenous administration of RvE1 reduced atherosclerosis progression in different (32, 34-36]
animal models.
Alzheimer’s disease Diminished RvD1 production in human Alzheimer’s disease. [102]
. - RvD2 prevents the activation of the TLR4/Nf-«B pathway while RvD1 inhibits Mpp
Parkinson’s disease +-induced inflammation in PC12 cells (a cell model of Parkinson’s disease). [103]
RvD1 enhanced macrophage phagocytosis and clearance of allergens in a murine
Allergy . . . [24]
model of allergic bronchial reaction.
Protect from ischemia-reperfusion-induced kidney damage.
Tissue The activation of the DRV2/GRP18 axis reduces neutrophil infiltration in a mouse
ischemia/reperfusion model of hind limb ischemia/reperfusion. [26-28]
D-series injury In a mouse model of cerebral ischemia/reperfusion injury, exogenous administration
of RvD2 reduced infarction area, inflammatory response, and brain edema.
Chronic low-grade RvD1 and RvD2 decrease the production of proinflammatory mediators in adipose [30]
systemic inflammation tissue and reduce monocyte transadipose migration.
Levels of RvD1 are reduced in the vulnerable regions of atherosclerotic plaques of
fat-fed low-density lipoprotein receptor (Ldlr)-/- mice.
Atherosclerosis Administration of RvD1 to fat-fed Ldlr-/- mice promotes atherosclerotic [33]

plaque stability by reducing lesional oxidative stress and necrosis and improving
lesional efferocytosis.
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FIGURE 2: Structure of metabolites. DHA: docosahexaenoic acid; RvD1: resolvin D1; EPA: eicosapentaenoic acid; RVEL: resolvin El. Citation:
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ischemia/reperfusion tissue injury, and atherosclerotic pla-
que formation and progression [16].

In murine models of airway allergic disease, RvEl has
been demonstrated to promote the clearance of eosinophils
and antigen-specific T cells, while reducing the expression
of proinflammatory cytokines by dendritic cells and Th17
cells [23]. Also, RvD1 has been demonstrated to enhance
macrophage phagocytosis and clearance of allergens in a
murine model of allergic bronchial reaction [24].

In a mouse model of coronary ligation-induced myo-
cardial infarction, administration of RvE1 has been associ-
ated with reduced infiltration of inflammatory cells and
reduced production of inflammatory cytokines, with improved
recovery of cardiac function [25]. The activation of the
DRV2/GRP18 axis has been reported to reduce neutrophil
infiltration in a mouse model of hind limb ischemia/reperfu-
sion [26]. In a mouse model of cerebral ischemia/reperfusion
injury, exogenous administration of RvD2 reduced infarction
area, inflammatory response, and brain edema [27]. In
kidney ischemia/reperfusion injury, RvD1 administration
reduced infiltrating leukocytes and preserved glomerular
function [28].

Individuals carrying a gain-of-function genetic variant
of the ERV1/ChemR23 gene have reduced levels of the
inflammatory cytokine IL-6 both in the adipose tissue and
in the bloodstream, suggesting that the RvEI-ERV1/-
ChemR23 axis may be protective against excessive inflam-
matory burden due to adipose tissue accumulation [29].
Also, RvD1 and RvD2 have been reported to decrease the
production of proinflammatory mediators in adipose tissue
and to reduce monocyte transadipose migration [30].
Therefore, stimulating the proresolving pathways of both
E-series and D-series resolvins may be considered a possible
strategy to prevent obesity-related metabolic and cardiovas-

cular complications, which are strictly related to excessive
low-grade inflammation.

Lipoxygenase activity, due to its role in the local biosyn-
thesis of resolvins, has been reported to protect mice against
atherosclerosis, whereas lipoxygenase deficiency has been
shown to promote atherosclerosis progression [31]. In hyper-
lipidemic mice, the ERV1/ChemR23 gene deletion has been
associated with increased proatherogenic signaling and oxi-
dized low-density lipoprotein uptake by macrophages, as well
as reduced phagocytosis and increased necrotic core forma-
tion within atherosclerotic plaques [32]. Levels of RvD1 have
been demonstrated to be significantly reduced in the vulner-
able regions of atherosclerotic plaques of fat-fed low-density
lipoprotein receptor (Ldlr)-/- mice [33]. In addition, exoge-
nous administration of either EPA or RvE1 has been associ-
ated with reduced atherosclerosis progression in different
animal models [32, 34-36]. Similarly, administration of
RvDI1 to fat-fed Ldlr-/- mice has been shown to promote pla-
que stability by reducing lesional oxidative stress and necro-
sis and improving lesional efferocytosis [33]. Therefore, the
stimulation of endogenous resolution of inflammation may
also represent a potential antiatherosclerotic strategy.

3. Neuroinflammation and Neurodegenerative
Diseases: The Role of Microglia

The adult human central nervous system (CNS) includes
almost 100 billion neurons and an equal amount of glia cells,
including astrocytes, oligodendrocytes, and microglia. The
CNS parenchyma is separated from the surrounding tissues
via the blood-brain barrier (BBB), which is made by tight
junctions between endothelial cells of the CNS vasculature.
The BBB limits and controls the entry of supplements and
cells, including peripheral immune cells, in the healthy
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FIGURE 3: Biological role of SPMs in macrophages (a), neutrophils (b), microglia (c), synapse (d), and monocytes (e).

RvE1 LTB4

ChemR23/GPR-32

Ficure 4: RVEl blocks NF-«B and TNFa-signaling pathways
through binding to ChemR23 (chemerin 23) receptor, induces
apoptosis, and decreases migration. AKT: protein kinase B; ERK:
extracellular signal-regulated kinases; RvE1: resolvin E1.

CNS. This has resulted in the opinion that the CNS is an
immune-privileged organ. Nevertheless, this concept has
completely changed in recent years, as compelling evidence

has shown that the CNS itself is immune-competent and
rapidly reacts to damage or infections [2]. In addition, cells
of the peripheral innate immune system, including macro-
phages, can easily pass the BBB under a pathological
condition (e.g., BBB breakdown) affecting the CNS (e.g.,
spinal cord injury, ischemia, and multiple sclerosis). Fur-
thermore, the activation of the peripheral immune system
by systemic conditions can accelerate chronic neurodegen-
eration [37-41].

Although all types of glial cells are of relevance to sustain
the homeostasis of the CNS, astrocytes have a crucial role for
the trophic support of neurons [42, 43], while oligodendro-
cytes and microglia act as resident immune cells of the
CNS. Under physiological conditions, the so-called resting
microglia cells, which are kept resting via interacting with
neuronal proteins like CX3CL1 (fractalkine) and CD200
[44], monitor the variations of the surrounding CNS envi-
ronment [45]. However, either systemic or local conditions
inducing neuronal damage may lead to microglial cell activa-
tion. In case of transient CNS injury, activated microglial
cells release neurotrophic factors and promote tissue regen-
eration [46, 47]. Instead, persistent neuronal injury can lead
to the release of proinflammatory cytokines by microglial
cells, which in turn may be harmful to the CNS [44, 48]. In
fact, tumor necrosis factor- (TNF-) a and other inflamma-
tory mediators released by activated microglia can increase
the release of reactive oxygen species (ROS), thereby promot-
ing neurodegeneration.



4. The Role of Resolvins in Alzheimer’s Disease

AD, a neurodegenerative disease that progressively leads to
the impairment of cognitive function and skills to execute
the simplest jobs, is the leading cause of dementia worldwide.
According to the amyloid- 5 (Af3) theory, the cortical deposi-
tion of diverse types of Af, due to an imbalance between Af
production and clearance, is the hallmark of AD neuropa-
thology [49-51]. According to this hypothesis, physiological
AP elimination, which may occur via transport through the
blood-brain barrier (BBB) [52] and enzymatic degradation
[53], but also through phagocytosis by microglia [54] and
immunomediated mechanisms [55-57], is impaired in AD
[58]. However, in the recent years, also, the significant contri-
bution of neuroinflammation to the pathogenesis of AD has
been recognized [3, 12-14, 59-67]. To this regard, different
studies have shown a significant dysfunction in the resolution
of inflammation pathways in AD [68], strongly suggesting
proresolving mediators as potential therapeutic strategies.
Experimental studies have shown that RvD1 was able to
downregulate 3-amyloid (Af) 42-induced inflammation in
human microglia [69]. Mizwicki et al. studied the effects of
RvD1 on phagocytosis of 6-carboxyfluorescein-labeled ApS
1-42 (FAM-Af5) by AD macrophages [70]. In their study,
AD macrophage phagocytosis of FAM-A was amplified by
RvD1 in a concentration-dependent manner, while caspase-
3-positive apoptosis of the AD macrophages stimulated by
fA S treatment was significantly reduced by RvD1 [70].

A number of experimental studies have shown beneficial
effects of PUFA supplementation in terms of reduction of
brain A plaque burden or even improvement of cognitive
performance in animal models of AD [71-73]. In addition,
some clinical studies have investigated the possible therapeu-
tic role of PUFA supplementation in the improvement of
cognition in the very early stages of AD [74], showing prom-
ising results. Fiala et al. showed that after a 4-17-month
PUFA supplementation, the RvD-induced phagocytosis of
Ap by monocytes increased significantly in patients with
mild cognitive impairment (MCI) and pre-MCI. However,
they did not observe any clinical benefit in terms of cognitive
improvement in treated patients [75]. In the OmegAD study
(a randomized, double-blind, and placebo-controlled clinical
trial), a supplement of 1.7g DHA and 0.6 g EPA was taken
daily for 6 months by AD patients. The analysis of the culture
medium of peripheral blood mononuclear cells obtained from
treated patients and incubated with amyloid-f 1-40 showed
unchanged levels of RvD1, which were associated with a stable
cognitive status. Instead, a significant decrease of RvD1 levels
was seen in the placebo group corresponding to a significant
decline in cognitive function [76], suggesting a possible corre-
lation between resolvin expression and cognitive impairment.

5. The Role of Resolvins in Parkinson’s Disease

PD is a highly prevalent neurodegenerative disease which
primarily affects dopaminergic neurons located in the part
of the CNS that controls the facilitation of voluntary move-
ments, namely, the substantia nigra [77-79]. The main neu-
ropathological finding in PD is the accumulation of a-
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synuclein-containing Lewy bodies. However, compelling
evidence shows that also an imbalance between neuroin-
flammatory and proresoving processes is involved in the
pathogenesis of PD [80-82]. The neuroinflammatory path-
way linked with PD starts with the accumulation of post-
translationally modified a-synuclein, which may lead to
neuronal cell loss and chronic activation of microglia
[83]. Such modifications in the microglial phenotype can
modify the mesencephalic substantia nigra pars compacta
(SNpc) microenvironment by generating a proinflammatory
milieu that promotes PD pathogenesis [84-88]. Accordingly,
increased plasma levels of proinflammatory mediators (e.g.,
TNFq, IL-1p, IL-2, IL-6, COX-1, COX-2, and iNOS) have
been shown to exacerbate the dopaminergic neuron damage
in PD [89-91]. In addition, both T helper and cytotoxic lym-
phocytes, promoting a dynamic adaptive immune response
inside the substantia nigra, have been recognized to exert a
crucial role in the pathogenesis of PD both in experimental
and in clinical studies [51, 92, 93].

The effects of stimulating the resolution of inflammation
to slow PD progression still remain poorly explored. To the
best of our knowledge, the neuroprotective effects of two
DHA-derived resolvins, that is, RvD1 and RVD2, have been
investigated in experimental models of PD. In a cellular
model of PD (i.e., PC12 cells), RvD1 was reported to inhibit
1-methyl-4-phenylpyridinium ion- (Mpp+-) induced expres-
sion of proinflammatory mediators [94]. In a rat model of
LPS-induced PD, intrathecal injection of RvD2 in SNpc pre-
vented the activation of the NF-«B pathway, thereby inhibit-
ing microglial dysfunction and dopaminergic neuron injury
[95]. In an animal study, RvD2 repressed LPS-induced stim-
ulation of glial cells and the onset of defective movements. In
fact, LPS-treated rats showed more apomorphine-induced
rotational cycles, while rats treated with 25, 50, and 100 ng/kg
RvD2 displayed a considerable reduction in the numbers
of apomorphine-induced rotational cycles [95]. In the
same study, it was shown that RvD2 inhibited LPS-induced
microglial stimulation, as revealed by a significant decrease
in the expression of proinflammatory mediators and ROS
[95].Growing evidence from experimental studies suggest that
PUFA administration, by increasing resolvin bioavailability,
may represent a potential therapeutic strategy in PD. In a
mouse model of PD, a diet enriched with ethyl-EPA increased
cortical dopamine levels, attenuated the striatal dopaminergic
turnover, and reduced neuronal apoptosis [96]. In a mouse
model of a-synucleinopathy, DHA intake significantly
increased striatal dopamine concentrations [97]. In an animal
partial lesion model of PD, the administration of either DHA
(50 mg/kg) or its hydroxylated derivate (DHAH) (50 mg/kg)
led to positive results on dopaminergic system, neuroinflam-
mation, and oxidative stress and to a significant improve-
ment in amphetamine-induced rotations and cylinder test
[98]. Data from clinical studies on the impact of PUFA sup-
plementation on PD onset and progression are awaited.

6. Conclusions and Future Perspectives

Growing proof points to that resolvins have strong anti-
inflammatory and proresolving properties. As compelling
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evidence has recently shown that neuroinflammation exerts a
crucial role in the pathogenesis of neurodegenerative dis-
eases, resolvins have attracted attention as potential thera-
peutic strategies in these pathological conditions.

To date, some experimental studies have evaluated the
efficacy of resolvins in decreasing neuronal damage in AD
and PD, while few clinical studies have investigated the pos-
sible therapeutic role of PUFA supplementation in slowing
the progression of MCI toward AD. There is an urgent need
to further investigate the potential therapeutic role of resolu-
tion of inflammation in neurodegenerative diseases in order
to provide an effective therapy to these pathological condi-
tions, which are still considered irreversible and incurable.
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