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Abstract

Chronological age remains an imperfect measure of accumulated physiological stress. Biological measures of aging may

provide key advantages, allowing scientists focusing on age-related functional changes to use metrics derived from

epigenetic factors like DNA methylation (DNAm), which could provide greater precision. Here we investigated the

relationship between methylation-based age and an essential cognitive function that is known to exhibit age-related

decline: selective attention. We found that DNAm-age predicted selective attention abilities and fully mediated the

relationship between selective attention and chronological age. Using neuroimaging with magnetoencephalography, we

found that gamma activity in the anterior cingulate was robustly predicted by DNAm-derived biological age, revealing the

neural dynamics underlying this DNAm age-related cognitive decline. Anterior cingulate gamma activity also significantly

predicted behavior on the selective attention task, indicating its functional relevance. These findings suggest that DNAm

age may be a better predictor of cognitive and brain aging than more traditional chronological metrics.
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Introduction

Increases in chronological age have been associated with

gradual declines in numerous cognitive processes, including

motor control (Mattay et al. 2002), memory (Nyberg et al. 2012),

and attention (Verhaeghen and Cerella 2002). These detrimental

changes are often mild and can be difficult to distinguish with

high specificity from early stages of pathological cognitive

decline. Thus, an enhanced understanding of the nature and

genesis of age-related cognitive decline would be of high utility.

Complicating this matter, chronological measures of aging have

been criticized as an incomplete representation of the level of

accumulated physiological stress that a person has undergone

(Hayflick 2007; Mitnitski et al. 2013). Anecdotally, this rings true:

the idiom of a person looking “good for their age” is a common

one. Empirically, this is supported by the highly variable rates of
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mortality and morbidity as a function of chronological age, as

well as by the ability of biological markers of aging to provide

enhanced prediction of mortality and morbidity in late life

(Mitnitski et al. 2002; Levine 2013; Marioni et al. 2015a). Despite

this, uncertainty remains regarding the proper definition and

measurement of biological markers of aging, as well as the

relationship between these measurements and age-related

cognitive decline.

In recent years, the accumulation of epigenetic changes

across the lifespan has been found to powerfully predict a

number of age-related complications. This was largely enabled

by newmethods of analyzing and interpreting DNAmethylation

(DNAm) patterns across a large number of CpG (i.e., 5′-cytosine-

phosphate-guanine-3′) sites that can be used to predict the

chronological age of a person with a high degree of accuracy

(Hannum et al. 2013; Horvath 2013; Marioni et al. 2015a;

Gross et al. 2016; Field et al. 2018; Horvath and Raj 2018).

Discrepancies between these methylation-based assessments

of age (DNAm age) and chronological age can be used to provide

an index of “accelerated/decelerated” biological aging. Such

measures of relative biological age advancement (1Age) are

highly heritable (Horvath 2013) and have already been tied

to health conditions such as cancer, diabetes, and human

immunodeficiency virus (HIV), and may also help to predict

the onset of other age-related disorders (Bell et al. 2010;

Day et al. 2013; Hannum et al. 2013; Levine et al. 2015a;

Gross et al. 2016). Robust links have even been drawn between

1Age and increased all-cause mortality in later life (Marioni

et al. 2015a; Christiansen et al. 2016), further supporting the

role of these markers as a valuable and potentially more precise

metric in the field of aging.

Though increasingly utilized in other areas, it remains

unclear whether methylome-derived measures of aging are

effective predictors of cognitive and brain decline. Previous

research has found that 1Age can predict domain-general

cognitive fitness in later life (Marioni et al. 2015b), and that

the epigenetic profiles at a number of differentially methylated

regions are associated with cognitive impairment as measured

by the Montreal Cognitive Assessment (Nasreddine et al.

2005; Chouliaras et al. 2018; MoCA). This makes sense, as

age-related changes in DNAm have been identified in post-

mortem tissue in a number of brain regions essential to “higher-

order” cognitive processes (Hernandez et al. 2011; Horvath et al.

2012; Horvath 2013). Additionally, earlier work in the field

of neuroepigenetics suggested a role for DNAm in memory

formation and learning ability (Liu et al. 2009; Day and Sweatt

2010; Levine et al. 2015b). Coupled with recent reports of

covariance between DNAm measures of aging and structural

neuroimaging measures of brain integrity (Raina et al. 2017;

Chouliaras et al. 2018), these findings indicate a general link

between DNAm and the neural underpinnings of cognition.

However, few studies have independently investigated the

relationship between DNAm profiles and specific cognitive

functions (Wiers 2012; Nikolova and Hariri 2015; Lancaster

et al. 2018), and none has examined whether measures of

1Age independently predict the neural dynamics underlying

cognitive processes that are known to be affected by chrono-

logical age. Key among these processes is selective atten-

tion (Hasher and Zacks 1988; Plude and Doussard-Roosevelt

1989; Hasher et al. 1991; McDowd and Filion 1992; Maylor

and Lavie 1998; Geerligs et al. 2014), which is the ability

to preferentially allocate neural resources to task-relevant

stimuli, while simultaneously limiting resources to irrelevant

features of the environment. The inhibition of interfering

information is of key relevance to aging, as impairments in

this domain have been directly linked to reductions in specific

functional abilities that also decline with age (Jefferson et al.

2006).

In this study, we combine 2 established methylome-based

measures of biological aging (Hannum et al. 2013; Horvath 2013;

Gross et al. 2016) with high-density, task-based magnetoen-

cephalography (MEG) to characterize the relationship between

biological aging, behavioral performance on a flanker selec-

tive attention task (Eriksen and Eriksen 1974; McDermott et al.

2017), and the oscillatory neural dynamics serving this perfor-

mance in a large group of cognitively healthy adults. We find

that methylome-based biological age not only predicts selec-

tive attention abilities in our participants, but also fully medi-

ates the relationship between chronological age and selective

attention performance. Further, we find that changes found in

the DNAm-determined biological age (the residual difference

between biological and chronological age) strongly covaries with

high-frequency (i.e., gamma) oscillatory neural responses in

the anterior cingulate cortex during a selective attention task.

Finally, we determine that neural activity in the anterior cin-

gulate uniquely predicts behavioral selective attention abilities,

supporting the functional importance of this neural signature in

behavioral performance and age-related cognitive decline.

Materials and Methods

Participants

Sixty-eight cognitively healthy,HIV-negative adults (Mage =44.71;

SD=15.01; range= 22–72 years; 35 males; 57 right-handed)

were included from a large, ongoing study of aging in HIV-

infected and uninfected adults (NIH Study: MH103220) that

includes collection of whole-methylome and task-based

MEG data. Exclusion criteria included any medical illness

affecting central nervous system function, any neurological

or psychiatric disorder, history of head trauma, current

substance abuse, any non-removable metal implants that

would adversely affect MEG data acquisition, and incomplete

methylome and/or MEG data. All participants had normal or

corrected-to-normal vision, and completed a comprehensive

neuropsychological battery and a demographics questionnaire

(see Supplementary Table 1). The Institutional Review Board

at the University of Nebraska Medical Center reviewed and

approved this investigation. Written informed consent was

obtained from each participant following detailed description

of the study. All participants completed the same experimental

protocol.

Neuropsychological Testing

Participants completed a standardized battery of neuropsy-

chological assessments, with raw scores for each participant

being converted to demographically adjusted z-scores using

published normative data (Heaton et al. 2004). This battery

assessed multiple functional domains, including fine motor

(grooved pegboard), speed of processing (trailmaking A, digit

symbol, Stroop color), attention (symbol search, Stroop word),

and executive functioning (verbal fluency, semantic fluency,

Stroop interference, and trailmaking B). Composite scores for

each of these functional domains were computed by averaging

the standardized z-scores from the assessment sets comprising

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data


1236 Cerebral Cortex, 2020, Vol. 30, No. 3

the domain. Participants scoring below the population mean

(i.e., zero) by more than 2 standard deviations on 2 or more

functional domains were suspected to be cognitively impaired

and were not included in the study.

Blood Draw and Methylation Analysis

All of the methylation metrics described below, including the

Horvath and Hannum models of DNAm age, were computed

on the entire data set from the large (N > 180) study of aging

mentioned above and reported in previous publications (Lew

et al. 2018; Spooner et al. 2018; Wiesman et al. 2018; Spooner

et al. 2019; Wiesman and Wilson 2019). Whole-blood samples

were collected by blood draw from each participant as closely

as possible to their MEG scan date, and this time difference was

used as a covariate of no interest in all analyses involving the

2 different types of measures. Importantly, all statistically sig-

nificant findings held regardless of whether this covariate was

partialed-out, indicating that the relative advancement of bio-

logical versus chronological age remained stable over the period

of time between data collections. The DNA sample collection,

methylation analysis, and epigenetic age estimation closely fol-

lowed the pipeline established in earlier work (Gross et al. 2016).

Briefly, DNA was purified from whole-blood samples using

BD Vacutainer EDTA collection tubes and DNeasy blood and

tissue extraction kits (QIAGEN). Methylation analysis was per-

formed using Infinium HumanMethylation450 BeadChip Kits

(Illumina). Following hybridization, BeadChips were scanned

using the Illumina HiScan System. All data were processed

through the Minfi R processing pipeline (Aryee et al. 2014).

Methylome datawere downloaded fromHannum (Hannumet al.

2013) and EPIC (Riboli et al. 2002) (GEO: GSE40279 and GSE51032),

and we processed these data together along with methylation

data generated from the larger study mentioned above. Beta

values were extracted and quantile normalized using Minfi;

cell counts were estimated using estimateCellComposition and

resulting normalized beta values were adjusted for cell types

(Houseman et al. 2012; Gross et al. 2016). All data was then nor-

malized using a modified BMIQ procedure provided by Horvath

(Horvath 2013). The gold standard was set to the median beta

observed in the Hannum study (Hannum et al. 2013).

For all analyses reported in the main text of this manuscript,

the “consensusmodel”ofmethylation agewas used,which com-

bines both the Horvath (Horvath 2013) and Hannum (Hannum

et al. 2013) methods of prediction and has been previously

found to provide more substantial predictive capacity than

either model in isolation (Gross et al. 2016). In addition, we

also computed all of our main analyses using the Hannum

and Horvath model data individually to ensure that none of

our primary findings were specific to either method, as shown

in the Supplementary Material. Also, similarly to the analysis

reported in Gross et al. (2016), the residuals from a regression of

the consensusmetric of biological age on chronological agewere

used to represent the acceleration/deceleration of biological age

relative to chronological age (1Age).

MEG Experimental Paradigm and Behavioral Data
Analysis

Participants performed an arrow-based version of the Eriksen

flanker task (Eriksen and Eriksen 1974; McDermott et al. 2017;

Heinrichs-Graham et al. 2018) while seated in a nonmagnetic

chair within the magnetically shielded room. Each trial

began with a fixation that was presented for an interval of

1450–1550 ms. A row of 5 arrows was then presented for

2500 ms and participants were instructed to indicate with their

right hand whether the middle arrow was pointing to the left

(index finger) or right (middle finger). The 200 total trials were

pseudo-randomized and equally split between congruent and

incongruent conditions, with left and right pointing arrows

being equally represented in the 2 conditions (Fig. 1). Total

MEG recording time was about 14 min. Reaction time (RT) data

were extracted from each trial, and trial-wise outliers were

excluded based on a fixed threshold of ±2.5 SD from the mean

per participant. To provide a behavioral measure of selective

attention function, the average reaction times per participant

for the incongruent and congruent conditions were subtracted,

to produce an RT “flanker effect” for each participant. At this

stage, the behavioral data from 3 participant-level outliers was

excluded based upon a fixed threshold of ±2.5 SD from the

group mean.

MEG Data Acquisition

Four head-position indicator (HPI) coils were attached to the

participant’s head and localized, together with the 3 fiducial

points and scalp surface, using a 3D digitizer (Fastrak 3SF0002,

Polhemus Navigator Sciences, Colchester, VT, USA). Once the

participantwas positioned forMEG recording, an electric current

with a unique frequency label (e.g., 322 Hz) was fed to each

of the coils. This induced a measurable magnetic field and

allowed each coil to be localized in reference to the sensors

throughout the recording session.All recordingswere conducted

in a one-layer magnetically shielded room with active shield-

ing engaged for environmental noise compensation. Neuromag-

netic responses were sampled continuously at 1 kHz with an

acquisition bandwidth of 0.1–330 Hz using a 306-sensor Elekta

MEG system (Helsinki, Finland) equipped with 204 planar gra-

diometers and 102magnetometers. Participantsweremonitored

during data acquisition via real-time audio-video feeds from

inside the shielded room. Importantly, since head movement

differences as a function of age are a concern in neuroimag-

ing, we correlated head movement parameters (i.e., individual

participant mean, median, and range of motion over the course

of the task) with consensus predicted age, chronological age,

and 1Age, and found no significant covariance between any of

these metrics (all P’s> 0.15). Further, to ensure that movement

parameters were not having any specific effect on our main

neural measure of interest, we correlated our head movement

parameters with the flanker effect on gamma oscillations in

the anterior cingulate cortex and again found no indication of

a relationship (all P’s> 0.40).

MEG Preprocessing, Time-Frequency Transformation,
and Sensor-Level Statistics

Each MEG data set was individually corrected for head motion,

aligned to the starting head position for each participant, and

subjected to noise reduction using the signal space separation

method with a temporal extension (tSSS; Taulu and Simola

2006). The tSSS and movement compensation parameters were

as follows: buffer length= 6 s, subspace correlation thresh-

old= 0.95, HPI extraction window= 0.2 s, HPI sliding-window

step= 0.01 s, and HPI goodness-of-fit= 0.90. Only data from

the gradiometers was used for further analysis. Cardiac and

blink artifacts were removed from the data using signal-space

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data
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Figure 1. Selective attention task design and behavior. The single-trial layout of the flanker task is shown above, in which participants viewed a centrally presented

crosshair for 1500 ms and then were presented with 1 of the 4 arrow arrays shown. Upon presentation of the arrow array, participants were instructed to indicate the

direction of the central arrow, regardless of congruency. The significant effect of congruency (i.e., the flanker effect) on reaction time (P <0.001) is illustrated by the

box-and-whisker plot on the bottom left. The scatterplot on the bottom right shows the relationship between chronological age (x-axis, in years) and the effect of

congruency on reaction time (y-axis, in milliseconds), with the line of best fit and correlation coefficient for this relationship overlaid.

projection,whichwas subsequently accounted for during source

reconstruction (Uusitalo and Ilmoniemi 1997). The continuous

magnetic time series was then divided into 1500 ms epochs,

with the baseline extending from −450 to −50 ms prior to the

onset of the probe stimuli. Epochs containing artifacts were

rejected using a fixed threshold method, supplemented with

visual inspection. An average amplitude threshold of 1037.13

(SD= 200.67) fT and an average gradient threshold of 234.85

(SD= 88.60) fT/s was used to reject artifacts. Across the group,

an average of 174.12 (SD= 10.29) trials per participant were used

for further analysis. Importantly, none of our statistical compar-

isons were compromised by relevant differences in trial number,

as the number of accepted trials did not differ across congru-

ency conditions (P > 0.60), and the difference in trials between

conditions did not covary with any measures of chronological

age, biological age, or 1Age (all P’s > 0.30).

The artifact-free epochs were next transformed into the

time-frequency domain using complex demodulation, and the

resulting spectral power estimations per sensor were averaged

over trials to generate time-frequency plots of mean spectral

density. These sensor-level data were normalized by each

respective bin’s baseline power, which was calculated as the

mean power during the −450 to −50 ms time period. The

specific time-frequency windows used for subsequent source

imaging were determined by statistical analysis of the sensor-

level spectrograms across all conditions and the entire array of

gradiometers. Each data point in the spectrogram was initially

evaluated using a mass univariate approach based on the

general linear model. To reduce the risk of false-positive results

while maintaining reasonable sensitivity, a two-stage procedure

was followed to control for type 1 error. In the first stage,

one-sample t-tests were conducted on each data point and the

output spectrogram of t-values was thresholded at P < 0.05 to

define time-frequency bins containing potentially significant

oscillatory deviations across all participants. In stage two, the

time-frequency bins that survived the threshold were clustered

with temporally and/or spectrally neighboring bins that were

also above the threshold (P < 0.05), and a cluster value was

derived by summing all of the t-values of all data points in

the cluster. Nonparametric permutation testing was then used

to derive a distribution of cluster values and the significance

level of the observed clusters (from stage one) were tested

directly using this distribution (Ernst 2004;Maris andOostenveld

2007). For each comparison, at least 10 000 permutations were

computed to build a distribution of cluster values. Based on

these analyses, the time-frequency windows that contained

significant oscillatory events across all participants were

subjected to a beamforming analysis.

Structural MRI Processing and MEG Coregistration

Given the digitization of fiducials, head coils, and the scalp

surface performed prior to the recordings (see “MEG Data Acqui-

sition”), each participant’s MEG data could be transformed into

a common coordinate system and co-registered with their indi-

vidual structural T1-weighted MRI data. This was done prior to

source-space analysis using BESA MRI (Version 2.0). Structural

MRI data were aligned parallel to the anterior and posterior

commissures and transformed into standardized space. MRI

data were acquired with a Philips Achieva 3 T X-series scanner
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using an 8-channel head coil and a 3D fast-field echo sequence

with the following parameters: TR: 8.09 ms, TE: 3.70 ms, field

of view: 24 cm, slice thickness: 1 mm with no gap, in-plane

resolution: 1.0 × 1.0 mm. Following source-space analysis (i.e.,

beamforming), each participant’s 4.0 × 4.0 × 4.0 mm functional

images were also transformed into standardized space using

the transform that was previously applied to the structural MRI

volume and spatially resampled.

MEG Source Imaging and Statistics

Cortical networks were imaged using dynamic imaging of coher-

ent sources (Gross et al. 2001), which applies spatial filters to

time-frequency sensor data in order to calculate voxel-wise

source power for the entire brain volume. The single images

are derived from the cross spectral densities of all combina-

tions of MEG gradiometers averaged over the time-frequency

range of interest, and the solution of the forward problem for

each location on a grid specified by input voxel space. For this

analysis, the forward solution was computed using a spherically

symmetric model (Sarvas 1987). Following convention, we com-

puted noise-normalized, source power per voxel in each partici-

pant using active (i.e., task) and passive (i.e., baseline) periods

of equal duration and bandwidth. Such images are typically

referred to as pseudo-t maps, with units (pseudo-t) that reflect

noise-normalized power differences (i.e., active vs. passive) per

voxel. This generated participant-level pseudo-t maps for each

time-frequency-specific response identified in the sensor-level

cluster-based permutation analysis.

Thesewhole-brain images per time-frequency responsewere

computed for each condition (i.e., congruent and incongruent)

and then subtracted within each participant to generate maps

representing the effect of congruency (i.e., the “flanker” effect).

This has the net effect of retaining the neural differences

resultant of selective attention load while nulling the responses

underlying lower-level visual and perceptual processing.

To examine the effects of biological age measures on the

neural dynamics serving selective attention, the whole-brain

congruency effect maps were then regressed on linearmeasures

of DNAm age while controlling for the effect of chronological

age,with a two-step process to control formultiple comparisons.

First, to examine potentially significant 3-dimensional clusters

of covariance, the statistical output maps of this analysis were

thresholded with a voxel-wise significance cutoff of P <0.005

and cluster-size cutoff of k > 500. Second, the voxel-wise

threshold was increased to a very stringent familywise error-

corrected significance cutoff of P < 0.05 using second-level

analysis in SPM12. MEG pre-processing and imaging used the

Brain Electrical Source Analysis (BESA version 6.0) software.

Whole-brain regressions used SPM12, and all other statistical

analyses relating behavioral performance, neuroimaging met-

rics, and agingmeasures were performed using R. Bootstrapping

was performed to derive 90% (one-tailed) confidence intervals

for indirect effects for the hypothesized mediations using the

robmed package in R. Note that one-tailed tests were appropriate

here, as only 1 direction of indirect effect would be interpretable

for each of the mediations performed. All other statistical tests

were two-tailed, unless otherwise stated.

Results

Methylation Age Predicts Selective Attention
Performance

Sixty-eight adult participants each completed 200 trials of our

selective attention task (Fig. 1, top) while undergoing high-

density MEG. Please see Supplementary Table 1 for comprehen-

sive sample characteristics. Participants performed generally

Figure 2.Methylation-based biological age predicts chronological age and the behavioral flanker effect. The scatterplot on the left represents the relationship between

chronological age (x-axis, in years) and methylation-based biological age (y-axis, blue, in years). The line of best fit and effect size for this relationship are overlaid. On

the same plot, each participant’s biological age acceleration/deceleration (y-axis, red, in years) is indicated below in red. The scatterplot on the right represents the

relationship between methylation-based biological age (x-axis, in years) and the effect of congruency (i.e., the flanker effect) on reaction time (y-axis, in milliseconds),

with the line of best fit and correlation coefficient for this relationship overlaid.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data
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well (meanRT = 664.12, SDRT = 139.42; mean%Correct = 97.87,

SD%Correct = 4.31) and, as is typically reported, a significant

effect of congruency was found on RT (t(67)= 9.88, P < 0.001),

such that participants were significantly slower to respond on

incongruent compared to congruent trials (Fig. 1, bottom left).

This congruency or “flanker effect,” which is representative of

selective attention function,was predicted by both chronological

(r(63)= 0.40, P = 0.001; Fig. 1, bottom right) and methylation-

based biological (r(63)= 0.44, P < 0.001; Figure 2, right) measures

of aging. Intriguingly, methylation-based biological age fully

mediated the relationship between chronological age and

selective attention ability (1R = 0.46, indirect effect= 0.93, 95%

CIlower = 0.05), indicating that biological age is responsible for

the observed effect of chronological age on selective attention

function. Finally, as hypothesized, biological age predicted

selective attention ability above and beyond the effect of

chronological age (r(63)= 0.22, P = 0.041, one-tailed test), such

that increased biological age, relative to chronological age,

predicted worse performance on the task.

Accelerated Biological Aging Predicts the Neural
Dynamics of Selective Attention

Chronological age covaried with methylome-predicted bio-

logical age (r(66)= 0.94, P < 0.001; Fig. 2, left, blue); however,

a reasonable amount of variability remained in the residuals

of this relationship (SDresiduals = 5.39; Fig. 2, left, red). Since

these residuals (1Age) represent the standardized deviation of

biological age from chronological age, they are commonly used

as a measure of “accelerated/decelerated aging”. Notably, we

ran these same analyses using both the Hannum and Horvath

models of DNAmage separately, and the results remained nearly

identical (Supplementary Fig. 1), with the consensus of these

models providing the most robust estimator of chronological

age. Before relating DNAm age directly to neural activity, we

first had to identify the significant neural responses during

our selective attention task. Significant oscillatory responses

were observed in 4 distinct time-frequency windows (Fig. 3).

These included a strong increase or synchronization in the theta

(4–8 Hz) range over medial posterior and lateral anterior cortices

extending temporally from stimulus onset to 250 ms post-

stimulus onset. In a spatially overlapping group of MEG sensors,

there was also a broadband gamma (62–72 Hz) increase, which

ranged temporally from 200–325 ms post-stimulus onset. In

addition, there was a slightly more lateral posterior decrease or

desynchronization response in the alpha (8–16 Hz) band, which

stretched from 200 to 600 ms post-stimulus onset. Finally, in

medial central sensors, a strong decrease in the beta (18–26 Hz)

band was observed from 300 to 550 ms post-stimulus onset.

See Supplementary Figs 2–4 for a visualization of the spectral,

temporal, and spatial extents of each of these clusters in sensor

space. To identify the anatomical basis of these 4 oscillatory

responses, we performed source reconstruction on each per

congruency condition. The conditional volumetric maps for

each participant where then subtracted (i.e., incongruent-

congruent) to generate 4 spectrally specific whole-brain

maps reflecting selective attention-related neural activity

per participant. Importantly, the beta response was found to

originate from the hand-knob region of the precentral gyrus

contralateral to movement, indicating a motor-related origin.

As the focus of this study was the neural dynamics relating to

selective attention function, we did not examine this response

further.

Figure 3. Spectral and temporal definitions of neural responses to the selective

attention task. Sensor-level spectrograms showing the time-frequency represen-

tations of neural responses identified through the cluster-based permutation

analysis across the entire array of gradiometers. Time (in ms) is shown on the

x-axis, frequency (in Hz) is denoted on the y-axis, and the dashed white line at

0 ms indicates the onset of the flanker stimuli. The color scale bar for percent

change from baseline is displayed above each plot. Each spectrogram represents

group-averaged data from 1 gradiometer sensor that was representative of the

neural response. The beta motor response is not shown.

Next, we probed whether the spectrally specific neural

dynamics serving selective attention were predicted by bio-

logical age, above and beyond the effect of chronological

age. Put another way, we examined the covariance between

1Age and these neural dynamics. Interestingly, 1Age pre-

dicted selective attention-related oscillations only in the

gamma range. Regressions of 1Age on whole-brain selective

attention-related neural activity in the gamma band revealed

significant clusters in the anterior cingulate (rpeak = 0.57;

peak coordinates: x= 2, y= −2, z= 41), left superior parietal

(rpeak =0.47; peak coordinates: x= −14, y= −80, z= 45), and

left primary visual cortices (rpeak = 0.44; peak coordinates:

x= −7, y= −84, z= −4). In all 3 of these regions, greater 1Age

predicted a greater effect of congruency (Supplementary Fig.

5), indicating increased neural resources were needed for

selective attention processing. In other words, greater biological

age relative to chronological age was associated with greater

selective attention-related brain activity in the gamma range

in these 3 regions. Although all 3 regions exhibited significant

relationships with relative age advancement at their peaks, only

the anterior cingulate cluster survived stringent family-wise

error correction. Again, these same analyses were run using

the Hannum and Horvath DNAm age predictions separately

and produced very similar results (Supplementary Fig. 6). To

determine the importance of anterior cingulate gamma activity

in selective attention performance, we next correlated the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz162#supplementary-data
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Figure 4. DNAm-predicted anterior cingulate gamma oscillations predict the

behavioral flanker effect. Whole-brain maps are voxel-wise regressions of

gamma-range congruency maps on biological age advancement and represent

the anterior cingulate cluster that survived stringent multiple comparisons

correction. The color scale-bar (above maps) indicates the statistical signifi-

cance of the test at each voxel, with warmer colors representing more robust

relationships. The scatterplot below represents the relationship between the

congruency effect on gamma oscillations (x-axis, in units of pseudo-t) at the

peak shown above and the effect of stimulus congruency on reaction time (y-

axis, in milliseconds), with the line of best fit and effect size overlaid.

neural effect of congruency in this region with the behavioral

flanker effect, which reflects selective attention function. We

found that these variables were significantly related, such that

greater congruency effects on gamma-range neural activity in

this region were associated with greater congruency effects

on behavior (r(59)= 0.30; P = 0.020; Fig. 4). Importantly, the

relationship between 1Age and selective attention function

was mediated by congruency effects on gamma activity in

the anterior cingulate (1R = 0.17, indirect effect= 0.79, 95%

CIlower = 0.14). Lastly, whole-brain selective attention-related

neural activity did not covary significantly with 1Age in the

theta or alpha bands.

Discussion

Despite the growing popularity of physiologically-based mea-

sures of biological aging, virtually no studies have found signifi-

cant relationships between these metrics and specific cognitive

abilities that are known to covarywith chronological age.Herein,

we found a robust and behaviorally relevant connection between

biological age and the oscillatory neural dynamics serving selec-

tive attention function. Specifically, we found that methylation-

based measures of biological aging predict a well-established

behavioral index of selective attention function and even fully

mediate the classic relationship between chronological age and

this measure. Further, biological age was found to predict selec-

tive attention-related gamma activity in the anterior cingulate

cortex, a region that is widely known to be essential to conflict

processing and selective attention (Heinze et al. 1994;Weissman

et al. 2003; Botvinick et al. 2004; Geerligs et al. 2014; McDermott

et al. 2017). Importantly, neural activity in this region was also

found to predict behavior on the task, as well as to mediate the

novel relationship between biological age and selective atten-

tion function, supporting the relevance of this response for

selective attentional performance.

Previous studies have reported a relationship between per-

formance on selective attention tasks and chronological aging

(Plude and Doussard-Roosevelt 1989; McDowd and Filion 1992;

Geerligs et al. 2014), however, whether such performance could

be linked to biological aging metrics has remained uncertain.

Our finding of strong covariance between biological aging met-

rics and both behavioral and neural markers of selective atten-

tion function provides powerful support for such a link. Impor-

tantly, biological aging predicted these neural and behavioral

markers “above and beyond” the effects of chronological aging,

indicating that DNAm age may provide a more effective model

of aging than chronological measures in the context of age-

related cognitive decline. Additionally,we identified population-

level neuronal dysfunction in the anterior cingulate cortex as an

important mediator of these declines.

The anterior cingulate has been found in a number of pre-

vious studies to be critically involved in the performance of

selective attention tasks (Heinze et al. 1994; Weissman et al.

2003; Botvinick et al. 2004; Weissman et al. 2005; Frühholz et al.

2011; Iannaccone et al. 2015; McDermott et al. 2017), and activity

in this region has been previously shown to vary as a function

of chronological age (Milham et al. 2002; Geerligs et al. 2014).

Further, the anterior cingulate has also been repeatedly linked

to the processing of cognitive interference and conflict in the

context of similar tasks (Heinze et al. 1994; Milham et al. 2002;

Peterson et al. 2002; van Veen and Carter 2002; Bush et al. 2003;

Weissman et al. 2003; Botvinick et al. 2004; Weissman et al. 2005;

Hanslmayr et al. 2008; Frühholz et al. 2011; Iannaccone et al.

2015; McDermott et al. 2017). Thus, the increased effect of con-

gruency in this region as 1Age increased likely reflects an

amplified effect of interfering stimuli on conflict processing cir-

cuitry in physiologically older adults. In other words, as DNAm

age accelerates disproportionately with chronological age, fast

gamma-range activity in the anterior cingulate may be more

affected by the presence of visual distractor stimuli, which in

turn interferes with the participant’s ability to inhibit the effect

of these distractors on behavior. In short, from these data we

can logically conclude that the essential role of the anterior

cingulate cortex in selective attention and conflict processing

is tied to the physiological impact of epigenetic alterations on

the genome. Finally, it should also be noted that these findings

were consistent across the 2 models of DNAm age (i.e., the

Hannum and Horvath methods), reinforcing the robustness of

these effects.

Although our results are of interest, the limitations of this

study must be kept in mind. First and foremost, the methylation
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data from our participants were derived from peripheral blood

and not directly from the brain, as the collection of neural tissue

from healthy adult brains is not possible. Age-related patterns

of CpG methylation have been found to vary across tissue types

(Christensen et al. 2009; Thompson et al. 2010). Thus, while the

observed relationship between methylation-based measures of

biological age and neural activity is statistically robust, a level of

extrapolation is necessary to assume that thewithin-participant

variability in methylation patterns across tissue types (i.e.,

blood and brain tissues) is less than that observed across

participants as a function of age. Importantly, recent research

supports this extrapolation, as DNAm measures of age have

been found to be remarkably consistent across the vast majority

of tissue types, with some of the highest concordance observed

between brain and blood samples (Horvath et al. 2012; Horvath

2013). Regardless, these results can be interpreted to indicate

that, at least at the level of peripheral epigenetic alterations,

physiological measures of accumulated biological stress can be

used to predict extremely important neurophysiological and

cognitive features that also vary across the lifespan. Such an

analysis can now be used in studies of neurodegenerative and

other disorders that affect cognitive function. It should also

be noted that due to the nature of our analysis pipeline and

neuroimaging research in general, in which the maximization

of signal-to-noise is always a concern, it is likely that these

results are not exhaustive in nature. It is possible that only the

most robust and consistent link between DNAm, 1Age, and

selective attention-related neural activity are reported here.

As new research emerges, more targeted, seed-based analyses

of different cortical and sub-cortical areas may be warranted.

Finally, it is important to acknowledge that only 1 cognitive

faculty (i.e., selective attention) was investigated here. While

these findings provide an essential first step, a great deal

of future investigation is warranted into the interdependen-

cies between DNAm age, chronological age, other cognitive

functions (e.g., stimulus-response interference, working mem-

ory, executive function, etc.), and the underlying neural

dynamics.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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