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Abstract
Maternal bonding early postpartum lays an important foundation for child development. Changing brain structure and
function during pregnancy and postpartum may underscore maternal bonding. We employed connectome-based predictive
modeling (CPM) to measure brain functional connectivity and predict self-reported maternal bonding in mothers at 2 and
8 months postpartum. At 2 months, CPM predicted maternal anxiety in the bonding relationship: Greater integration
between cerebellar and motor–sensory–auditory networks and between frontoparietal and motor–sensory–auditory
networks were associated with more maternal anxiety toward their infant. Furthermore, greater segregation between the
cerebellar and frontoparietal, and within the motor-sensory-auditory networks, was associated with more maternal anxiety
regarding their infant. We did not observe CPM prediction of maternal bonding impairments or rejection/anger toward the
infant. Finally, considering 2 and 8 months of data, changes in network connectivity were associated with changes in
maternal anxiety in the bonding relationship. Our results suggest that changing connectivity among maternal brain
networks may provide insight into the mother–infant bond, specifically in the context of anxiety and the representation of
the infant in the mother’s mind. These findings provide an opportunity to mechanistically investigate approaches to
enhance the connectivity of these networks to optimize the representational and behavioral quality of the caregiving
relationship.
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Introduction
The quality of the mother–infant bond is critical for child
development and well-being (Bowlby 1969). Structural and
functional brain changes during the perinatal period puta-

tively lay the foundation for optimal maternal bonding
(Kim et al. 2010; Hoekzema et al. 2017). Therefore, studies of the
maternal brain may provide new insight into potential neural
pathways of optimal, and sub-optimal, caregiving to optimize
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outcomes for mothers and children (Squire and Stein 2003).
Studies of human maternal neurocircuitry were motivated
by rich preclinical literature evidencing neural reorganization
during the postpartum period in cortical (e.g., prefrontal and
orbitofrontal), limbic (e.g., amygdala), hypothalamic (including
the medial preoptic area), and striatal (e.g., ventral tegmental
area, nucleus accumbens) regions (e.g., Barrett and Fleming
2011; Pereira 2016). Critically, neural reorganization becomes
more distributed across the postpartum period with increasing
maternal experience (Pereira and Morrell 2011).

Accumulating research has employed functional magnetic
resonance imaging (fMRI) to identify neural circuitry under-
scoring maternal caregiving (Rutherford and Mayes 2013). Most
studies have examined regional activation in the maternal
brain following the presentation of visual and/or auditory
infant stimuli (e.g., Leibenluft et al. 2004; Strathearn et al. 2008;
Kim et al. 2011). Convergent findings suggest key networks are
activated in response to infant stimuli, and these networks
include brain regions implicated in reward processing, saliency
detection, emotion regulation, and social cognition (Swain et al.
2014; Feldman 2015; Barba-Müller et al. 2018). However, meta-
analytic examination of a subset of these fMRI studies reveals
a more limited subset of brain regions underlying maternal
responsiveness, namely the uncus and amygdala, caudate,
precentral gyrus, and thalamus (Paul et al. 2018).

Efforts to complement activation-based fMRI studies of
maternal caregiving examine the task-based functional con-
nectivity of distinct brain regions during maternal processing of
infant affective cues (Moses-Kolko et al. 2010; Atzil et al. 2011; Ho
and Swain 2017; Swain et al. 2017). Measuring the synchrony of
activation across brain regions may provide greater insight into
networks underscoring maternal caregiving, and postpartum
bonding, than regional brain activation alone. Notably, these
maternal studies employing task-based functional connectivity
encapsulate brain activation during processing of infant
affective cues in contrast to intrinsic functional connectivity
approaches in studying the maternal brain, which instead
examine synchronous brain activation at rest in the absence
of external stimuli (e.g., Chase et al. 2013; Atzil et al. 2017).

Task-based functional connectivity studies have also been
conducted in the context of maternal psychopathology. Two
studies have examined functional connectivity in the context
of maternal depression. While engaged in a negative emo-
tional face-matching task, there was significant connectivity
between the left amygdala and left dorsomedial prefrontal
cortex (dmPFC) in mothers without depression, which was
absent in mothers with depression (Moses-Kolko et al. 2010).
Maternal depression was also associated with differences
in connectivity between the left extended amygdala and
nucleus accumbens, as well as dmPFC, during an infant cry
perception task (Ho and Swain 2017). A third exploratory study
suggested that psychotherapy may alter functional connectivity
of the maternal brain during an infant cry perception task
(Swain et al. 2017).

In summary, research has indicated the utility of task-based
functional connectivity in tracking maternal attunement (Atzil
et al. 2011, 2017) and the impact of maternal psychopathol-
ogy to infant cue processing (Moses-Kolko et al. 2010; Ho and
Swain 2017; Swain et al. 2017), motivating further study of the
functional connectivity of the maternal brain. Here, we employ
connectome-based predictive modeling (CPM) as a machine-
learning approach to probe functional connectivity measured
across the whole brain rather than being restricted to spe-

cific seed regions like previous functional connectivity studies
of the maternal brain (Shen et al. 2017). In addition, unlike
explanatory models based on correlation or regression, CPM
with built-in cross-validation increases the likelihood of repli-
cation in future studies by limiting overfitting (Shmueli 2010;
Whelan and Garavan 2014; Gabrieli et al. 2015). CPM is actualized
through examination of the functional connection of predefined
nodes throughout the brain and their associations with observed
behaviors or cognitive measures and, then, by predicting the
strength of these brain–behavior associations. For instance, CPM
has been employed to predict attention (Rosenberg et al. 2016),
personality traits (Hsu et al. 2018), and cocaine abstinence (Yip et
al. 2019). Here, we examine whether CPM applied to the mater-
nal brain can predict a critical element of caregiving, namely
the mother–infant bond. Furthermore, we examine whether
connectivity-bonding associations persist across the postpar-
tum period. Given prior functional connectivity associations
between maternal brain and behavior, we hypothesized that
CPM would predict maternal bonding across the postpartum
period. To our knowledge, this is the first application of CPM to
identify maternal brain networks predicting maternal bonding.

Methods
Participants

The Yale Human Investigations Committee approved all
procedures before recruitment commenced. Sixty-two mothers
were recruited from the local community of New Haven, CT,
as part of a larger study on parenting. Inclusion/exclusion
criteria included recent delivery and no contraindications
to MRI. Seven mothers were removed from further analyses
because of excess motion leaving a sample of 55 mothers (mean
age = 28 years; SD =5 years; 26 primiparous; 26 multiparous; 3 did
not report parity) early postpartum (M = 2 months; SD = 1 month)
who completed the Postpartum Bonding Questionnaire (PBQ;
Brockington et al. 2001, 2006) and MRI scanning. Maternal
ethnicity consisted of Caucasian (n = 43), African American
(n = 8), American Indian/Alaskan (n = 2), and Other (n = 2).
Maternal education was employed as a proxy for socioeconomic
status (Mayes and Bornstein 1995; Landi et al. 2012), and
mean education was 15 years (SD = 4 years). Marital status was
single (n = 25) or married (n = 28; 2 did not report). Mothers also
completed a trait anxiety measure (M = 48; SD = 3; Spielberger
et al. 1970) and a depression measure (M = 12; SD = 8; Beck et al.
1996). Mothers were invited to participate in a second lab and
MRI visit at 8 months postpartum. At the second postpartum
time point (M = 8 months; SD = 2 months), 37 mothers completed
the PBQ and 29 mothers completed the MRI scan. Of these
mothers, seven did not complete either the PBQ or the MRI scan
at the first time point. Overall, 55 mothers completed the first
PBQ and first MRI scan, 32 mothers completed the second PBQ
and first MRI scan, 30 mothers completed the second PBQ and
second MRI scan, and 23 mothers completed all four. All mothers
provided written informed consent and were compensated $80
for their participation in each of the scan visits. Their infants
were also provided with a small gift.

The PBQ is the central dependent measure in the study
(Brockington et al. 2001, 2006) is a 25-item questionnaire
designed to measure a mother’s experience of bonding with
her child and her representation of this bonding in mind.
Each item is scored on a Likert scale where “0” refers to
“always” and “4” refers to “never.” The PBQ consists of four
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subscales. The impaired bonding subscale reflects items that
represent impairments in bonding (e.g., “I feel happy when
my baby smiles or laughs”) and originally identified over 90%
of mothers with bonding impairments compared to healthy
mothers and depressed mothers with normal bonding (cut-
off score ≥12). The rejection subscale reflects items that
measure rejection and anger toward the infant (e.g., “I feel
angry with my baby”) and is useful in identifying mild and
severe bonding disorders (cut-off score ≥13). The anxiety
subscale includes items related to anxiety in caring for the
infant (e.g., “My baby makes me anxious”) and is useful in
identifying anxious mothers (cut-off score ≥10). The final scale
includes items related to risk of abuse (e.g., “I have done
harmful things to my baby”; cut-off score ≥2). No mother
endorsed any items on this latter scale, and it was not
included further. Impaired bonding (M = 5; SD = 5), rejection
(M = 3; SD = 2), and anxiety (M = 3; SD = 2) subscale scores
were calculated separately for the analysis. The PBQ shows
good internal reliability and satisfactory validity (Brockington
et al. 2001; Brockington et al. 2006; Wittkowski et al. 2007).

Experimental Design: Infant Face and Cry Functional
Task

Unfamiliar infant face and cry stimuli were presented randomly
during experimental trials using E-Prime 1.2 software. Although
a number of studies incorporate infant faces that are familiar
and unfamiliar (e.g., Strathearn et al. 2009; Kim et al. 2011), our
selection of unfamiliar infant faces reflected the difficulty in
acquiring variation in infant emotional expressions very early
postpartum (within 1–2 months) as well as providing continuity
in the stimuli set across the postpartum period, without needing
to adjust infant face stimuli to reflect their current age (which
may introduce additional confounding factors to our findings).
Twenty-one photographs of infant faces were taken from six
infants, aged 5–10 months, with each expressing happy, neu-
tral, and sad expressions (126 total unique stimuli). While all
face stimuli were provided from a prior maternal brain study
(Strathearn and McClure 2002), they were re-rated to validate
the emotional expression (Landi et al. 2011). Infant faces were
balanced for sex (male, female) and race (Caucasian and African
American). The infant faces were presented on a gray back-
ground, and the size, luminance, and contrast were kept con-
stant. Two-second cry samples (44 100 Hz sampling frequency)
were recorded from healthy infants aged 27–32 days (Gustafson
and Green 1989). From these samples, cries from two infants
were selected: one cry was a high-distress cry and the other
was a low-distress cry (four cry samples in total). Praat software
(http://www.fon.hum.uva.nl/praat/) was employed to normalize
the cries to the same relative peak intensity. All cry stimuli were
also rated to confirm their distress intensity (Landi et al., 2011).
As well as these cry stimuli, a “neutral” 220 Hz pure tone was
also presented.

Infant faces were presented centrally for 1000 ms and audi-
tory stimuli were presented through headphones with a blank
visual display in a passive viewing paradigm. There were 42 trials
for each functional run, consisting of six trials for each of the
face and cry conditions, as well as a one-back memory trial, that
was not included in any analyses. The intertrial interval was
jittered between 4000 and 14 000 ms.

Data Acquisition

All data were acquired with a Siemens Trio 3T MRI system
employing a standard 12-channel head coil. Functional data

were collected with a gradient echo, echoplanar sequence:
repetition time = 2000 ms, echotime = 30 ms, flip angle =
80◦, field of view = 220 × 220 mm, matrix = 64 × 64, in-plane
resolution = 3.4 mm × 3.4 mm, slice thickness = 4 mm, and 32
slices. Each block of trials consisted of 163 volumes, including
an initial 12-s rest period to achieve signal stability, which was
removed from analyses.

Common Space Registration

First, images were skull stripped using FSL (https://fsl.fmrib.ox.
ac.uk/fsl/), and any remaining nonbrain tissue was manually
removed. All further analyses were performed using BioImage
Suite (Joshi et al. 2011). The Shen 268 functional atlas was
warped from MNI space to single participant space through the
concatenation of a series of linear and nonlinear registrations.
The functional series were linearly registered to the T1 axial–
oblique (2D anatomical) image. The 2D anatomical image was
linearly registered to the MPRAGE (3D anatomical) image. The
3D anatomical image was nonlinearly registered to the template
MNI brain using a previously validated algorithm (Scheinost
et al. 2017). All transformation pairs were calculated indepen-
dently and combined into a single transform warping the single
participant results into common space. This single transforma-
tion allows the single participant images to be transformed to
common space with only one transformation, reducing interpo-
lation error.

Functional Connectivity Preprocessing

The first 10 volumes of each functional run were discarded to
allow for the magnetization to reach a steady state. Slice-time
and motion correction was performed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/). All further analyses were performed
using BioImage Suite (Joshi et al. 2011). Several covariates of
no interest were regressed from the data including linear and
quadratic drifts, mean cerebrospinal fluid signal, mean white
matter signal, and mean global signal. For additional control
of possible motion-related confounds, a 24-parameter motion
model (including six rigid body motion parameters, six temporal
derivatives, and these terms squared) was regressed from the
data. The data were temporally smoothed with a Gaussian
filter (approximate cutoff frequency = 0.12 Hz). A canonical gray
matter mask defined in common space was applied to the
data, so only voxels in the gray matter were used in further
calculations. Finally, for each participant, all preprocessed runs
were variance normalized and concatenated.

Connectivity Matrices

Whole-brain functional connectivity was assessed as described
previously (Finn et al. 2017; Greene et al. 2018). Briefly, network
nodes were defined using the Shen 268-node functional brain
atlas that included the cortex, subcortex, and cerebellum. The
atlas was warped from MNI space into single-subject space, as
described above. Task connectivity was calculated on the basis
of the “raw” task time courses, with no removal of task-evoked
activity. We have previously shown that connectivity matrices
calculated in this manner emphasize individual differences in
connectivity (Finn et al. 2017) and increase CPM performance
(Greene et al. 2018). For every node, a mean time course was
calculated by averaging the time courses of all of its constituent
voxels. Pairwise correlations were computed between all pairs
of nodes, and Pearson correlation coefficients were Fisher
z-transformed to yield symmetric 268 × 268 connectivity
matrices.

http://www.fon.hum.uva.nl/praat/
https://fsl.fmrib.ox.ac.uk/fsl/
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Connectome-Based Predictive Modeling

CPM was conducted to predict each of the PBQ subscales using
previously validated custom MATLAB scripts (Shen et al. 2017).
We were not able to predict the impaired bonding or the
rejection subscales of the PBQ and therefore these were not
considered further and we focused on maternal anxiety toward
her infant. CPM takes connectivity matrices and phenotypic
data from individuals as input to generate a predictive model
of the behavioral data from connectivity matrices. Edges and
phenotypic data from the training data set are correlated using
regression analyses using either Pearson’s correlation or partial
correlation (when controlling for possible confounds) to identify
positive and negative predictive networks. Positive networks
are networks for which increased edge weights (increased
connectivity) are associated with the variable of interest, and
negative networks are those for which decreased edge weights
(decreased connectivity) are associated with the variable of
interest. Single-subject summary statistics are then created as
the sum of the significant edge weights in each network and are
entered into predictive models that assume linear relationships
with behavioral data. The resultant linear equation is then
applied to the test data set to predict the phenotypic data. In
the case of leave-one-out cross-validation, a single participant’s
predicted value (i.e., the “left-out” participant) is generated
by taking the data from all other participants as the training
data set in an iterative manner until all participants have a
predicted value. Our final predictive model was only composed
of edges that appeared in every round of cross-validation
(c.f., Greene et al. 2018).

Localization of Predictive Networks

Predictive networks identified using CPM are complex and
composed of multiple brain regions and networks. Similar to
previous CPM studies, predictive networks were summarized
using parcellation of nodes either by spatial overlap with 10
macroscale brain regions (e.g., prefrontal cortex, cerebellum)
and/or by overlap with 10 canonical functional networks
(e.g., frontoparietal, motor/sensory). Macroscale brain regions
were based on anatomical labels presented in Finn et al.
(2015). Canonical functional network localizations were based
on the functional networks presented in Noble et al. (2017).
Additionally, for each node, the network theory measure degree
was calculated as the sum of the number of edges for each node
that belonged to the predictive networks. Finally, networks were
summarized based on length-of-connection (short- vs. long-
range connectivity). Euclidean distance between the centroids
of each brain region in the Shen atlas was used to classify
short- and long-range edges. First, distance was calculated for

each pair of regions as:

√(
x1 − x0

)2 +
(
y1 − y0

)2 +
(
z1 − z2

)2
,

where
(
x1, y1, z1

)
and

(
x0, y0, z0

)
represent the centroid for

any two regions. Pair-wise distances were median separated
into short- and long-range connections. Visualizations of
predictive edges were created using BioImage Suite Web (https://
bioimagesuiteweb.github.io/webapp/connviewer.html).

Motion Analysis

As head motion has been shown to confound connectivity stud-
ies, we calculated the average frame-to-frame displacement
for each mother’s data. In line with current reports, for each
mother, we selected the first two runs with an average frame-to-
frame displacement less than 0.20. All other runs were removed

from the analysis. In addition, we controlled for frame-to-frame
displacement in our CPM analysis using partial correlation as
described in Hsu et al. (2018)

Statistical Analysis

The correspondence between predicted and actual values, or
model performance, was assessed using Spearman’s rank corre-
lation (ρ), mean square error (defined as:

MSE
(
predicted, actual

)
= 1/

n
∑n{

i=1
}(

actuali − predictedi

)2
,

cross-validation explained variance (defined as: q2 = 1 −
MSE

(
predicted,actual

)

MSE
(

actual,mean
(

actual
) , where mean

(
actual) is the average

maternal anxiety toward her infant from the PBQ across the
sample). When using leave-one-out cross-validation, analyses
in the leave-one-out folds are not independent, and the number
of degrees of freedom is thus overestimated for parametric P
values. Instead of parametric testing, we therefore performed
permutation testing. To generate null distributions for sig-
nificance testing, we randomly shuffled the correspondence
between behavioral variables and connectivity matrices 5000
times and re-ran the CPM analysis with the shuffled data.
Based on these null distributions, the P values for leave-one-
out predictions were calculated as in previous work (Shen et al.
2017). As we expect a positive association between predicted
and actual values, one-tailed P values are reported.

Results
Prediction of Maternal Anxiety at 2 Months

The overall CPM model successfully predicted maternal
anxiety toward bonding with their infant (ρ = 0.34, q2 = 0.11,
MSE = 6.55, P = 0.018, permutation testing, 5000 iteration, one-
tailed; Fig. 1A). Follow-up comparisons controlling for head
motion (ρ = 0.38, q2 = 0.10, MSE = 6.61, P = 0.0082, permutation
testing, 5000 iteration, one-tailed), maternal age (ρ = 0.3, q2 = 0.08,
MSE = 6.78, P = 0.02, permutation testing, 5000 iteration, one-
tailed), depression (ρ = 0.33, q2 = 0.11, MSE = 6.60, P = 0.011,
permutation testing, 5000 iteration, one-tailed), trait anxiety
(ρ = 0.28, q2 = 0.06, MSE = 6.92, P = 0.027, permutation testing, 5000
iteration, one-tailed), maternal education (ρ = 0.19, q2 = 0.03,
MSE = 7.16, P = 0.09, permutation testing, 5000 iteration, one-
tailed), and parity (ρ = 0.16, q2 = 0.00, MSE = 7.01, P = 0.15, permu-
tation testing, 5000 iteration, one-tailed) demonstrated similar
prediction performances. Similarly, to further investigate the
specificity of the model to maternal, rather than trait, anxiety,
the network strength of the CPM model did not correlate with
trait anxiety and we were not able to predict trait anxiety
with CPM.

Anatomical Localization

The predictive edges were widely distributed throughout
the brain (Fig. 1B), yet only contain a small portion of the
total edges in the connectome (220 edges total out of 35 778
or 0.6%). About 126 edges positively predicted maternal
anxiety, consisting of 41 ipsilateral connections in the right
hemisphere, 28 ipsilateral connections in left hemisphere, and

https://bioimagesuiteweb.github.io/webapp/connviewer.html
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Figure 1. CPM predicts maternal anxiety toward her infant. (A) Scatter plot showing observed values plotted against actual values. (B) Edges that contributed to the
CPM model organized by macroscopic brain regions. The positive network is in red (top) and negative network is in blue (bottom). To help in visualizing these complex

networks, edges only belonging to nodes with five or more edges (degree ≥5; middle) and 10 or more edges (degree ≥10; right) are also shown. Visualization created
using BioImage Suite Web, http://bisweb.yale.edu/. (C) Visualization of node degree (i.e., the sum of predictive edges for a node) for the positive (top; warm colors) and
negative networks (bottom; cool colors). Darker color indicates higher degree. (D) The positive network is in red in the upper triangle and the negative network is in blue
in the lower triangle. Each number corresponds to one canonical network (methods): 1 = medial frontal, 2 = frontoparietal, 3 = default mode, 4 = motor–sensory–auditory,

5 = visual A, 6 = visual B, 7 = visual association, 8 = salience, 9 = subcortical, and 10 = cerebellum.

57 connections between the right and left hemispheres. A total
of 94 edges negatively predicted maternal anxiety, consisting of
22 ipsilateral connections in the right hemisphere, 25 ipsilateral
connections in left hemisphere, and 47 connections between
the right and left hemispheres. For both positive and negative
networks, nodes with the greatest number of edges were
primarily located in the cerebellum, motor cortex, and left
prefrontal cortex (Fig. 1C). Both networks included short- and
long-range connections. However, the positive network was
characterized by a greater number of long-range connections
(67% long range, 33% short range, χ2 = 6.5, P = 0.01), whereas
the negative network included an equal number of long- and
short-range connections (58% long range, 42% short range,
χ2 = 0.77, P = 0.38).

Network Localization

The positive and negative networks were further summarized
by the number of edges within and between large-scale func-
tional networks (Fig. 1D). By definition, edges within the positive
and negative networks cannot be overlapping connections as
a single edge cannot be both a positive and negative predictor.
However, positive and negative networks included connections
within and between similar large-scale functional networks. The
positive network was characterized primarily by connections
between the cerebellar and motor–sensory–auditory networks
and between the frontoparietal and motor–sensory–auditory
networks. The negative network was characterized primarily by
connections between the frontoparietal and cerebellar networks
and connections within the motor–sensory–auditory networks.

http://bisweb.yale.edu/
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Figure 2. Scatter plot illustrating the association between the change in CPM

network strength and the change in anxiety toward her infant from 2 to 8 months
postpartum (ρ = 0.62, P < 0.01, df = 21, one-tailed). A greater reduction in network
strength was positively correlated with a greater reduction of anxiety.

Virtual Lesion Analysis

Given that 80 out of the 220 total edges in the overall CPM model
were within and between the frontoparietal, motor–sensory–
auditory, and cerebellar networks, we used a virtual lesion anal-
ysis to evaluate the sensitivity of the edges within and between
these networks versus edges from every other network. First,
we retained edges only within and between the frontoparietal,
motor/sensory/auditory, and cerebellar networks (i.e., removing
all other edges) and performed CPM using only these edges.
Using only these three networks, we achieved superior predic-
tion performance than the CPM analysis using all 10 networks
(ρ = 0.42, q2 = 0.15, MSE = 6.29). Second, we removed edges only
within and between the frontoparietal, motor/sensory/auditory,
and cerebellar networks (i.e., retaining all other edges) and per-
formed CPM using only these edges. Using the remaining seven
networks, we achieved worse prediction performance than the
CPM analysis using all 10 networks (ρ = 0.31, q2 = 0.09, MSE = 6.74).
Using Steiger’s test to compare dependent correlation coeffi-
cients using edges only within and between the frontopari-
etal, motor/sensory/auditory, and cerebellar networks for CPM
resulted in significantly better prediction performance than
using edges not in these networks for CPM (Z = 2.051, P = 0.04).

Prediction of Maternal Anxiety at 8 Months Postpartum

To test the generalization of our CPM model for future anxiety
toward the infant, individual participant network summary
scores were created as the difference of connectivity strengths
within positive and negative networks for both the 2- and
8-month connectivity data. The CPM model, when applied to the
2 months of connectivity data, moderately predicted maternal
anxiety toward the infant at 8 months (ρ = 0.3016, P = 0.047,
df = 30, one-tailed). The CPM model, when applied to the
8 months of connectivity data, did not predict maternal anxiety
toward the infant at 8 months (ρ = 0.13, P = 0.25, df = 28, one-
tailed). Finally, we calculated the change in anxiety toward the
infant between 2 and 8 months and the change in connectivity
strength between 2 and 8 months to test whether a reduction in
connectivity strength in the predictive networks correlated with
a reduction in anxiety toward the infant. These changes were
strongly correlated (ρ = 0.62, P < 0.01, df = 21, one-tailed, Fig. 2).

Discussion
In this study, we examined whether CPM would predict mother’s
bonding with her child at 2 and 8 months postpartum. Our
CPM approach predicted one specific facet of postpartum bond-
ing, maternal anxiety toward the child, measured at 2 months
postpartum. Greater “integration” between the cerebellar and
motor–sensory–auditory networks and between the frontopari-
etal and motor–sensory–auditory networks was associated with
more maternal anxiety regarding the infant. In contrast, greater
“segregation” between the cerebellar and frontoparietal and
within the motor-sensory-auditory networks was associated
with more maternal anxiety regarding the infant. Furthermore,
we observed that changes in network connectivity across the
postpartum period were associated with changes in levels of
postpartum bonding, specifically in the context of maternal anx-
iety toward her child. Finally, we were unable to model the other
postpartum bonding subscales regarding impaired bonding and
rejection. Taken together, these data indicate the value of CPM
to studying the maternal brain with implications for bonding at
2 months postpartum, particularly in how mother’s internally
represent the relationship with their infant in the context of
maternal anxiety.

The specificity of the CPM to maternal anxiety toward the
child may reflect the salience of this construct to maternal
brain networks. Indeed, maternal anxiety symptoms are height-
ened during the perinatal period (Wenzel et al. 2003, 2005; Lee
et al. 2007; Goodman et al. 2014). Importantly, we found that
CPM predicted infant-directed maternal anxiety even when con-
trolling for measures of anxiety (and depression). Our longi-
tudinal findings reinforce the plasticity of the maternal brain
and the value of repeated measures over time to understand
functional and structural brain changes during pregnancy and
the postpartum period and their implications for parenting
(Kim et al. 2010; Hoekzema et al. 2017). Given that changes in
network strength were associated with changes in maternal
bonding, it is possible that perinatal interventions influencing
connectivity within these networks (e.g., cognitive behavioral
or pharmacological therapies, Rosenberg et al. 2016) may be
helpful in increasing the representational quality of maternal
bonding with the infant through decreasing anxiety in this
context.

Like previous CPM studies (Shen et al. 2017; Greene
et al. 2018), the generated predictive networks were complex,
spanned the whole brain, and contained both short- and long-
range connections. This complexity is consistent with the
diverse brain regions and cognitive processes (e.g., reward
processing, saliency detection, emotion regulation, and social
cognition) associated with infant stimuli in the maternal brain
(Swain et al. 2014; Feldman 2015; Barba-Müller et al. 2018).
Nevertheless, a majority of the predictive edges were located
within and between the frontoparietal, cerebellar, and motor–
sensory–auditory networks, and only using these edges for
CPM resulted in significantly better prediction than including
edges spanning the whole brain. Figure 3 shows a model of the
interaction between the frontoparietal, cerebellar, and motor–
sensory–auditory networks in predicting a mother’s bonding
with her child. Next, we offer potential interpretations of this
data-driven model to provide a framework for future research
on maternal bonding to mechanistically test.

Although long implicated in motor control, increasing
research suggests the cerebellum contributes to the perception,
recognition, and processing of emotion, potentially translating
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Figure 3. Schematic of simplified and best performing CPM model. When
restricted to only edges within and between the frontoparietal, cerebellar, and

motor–sensory–auditory networks, prediction results significantly improved.
This model was characterized by greater integration between the cerebellar and
motor–sensory–auditory networks and between the frontoparietal and motor–
sensory–auditory networks and greater segregation between the cerebellar and

frontoparietal and within the motor–sensory–auditory networks.

emotional experiences into behavioral actions (Adamaszek
et al. 2017). Notably, the cerebellum has also been linked to
empathy (Singer et al. 2004), as well as emotion regulation
(Turner et al. 2007; Adamaszek et al. 2017)—both capacities
important for early caregiving (Swain et al. 2014; Rutherford
et al. 2015). Similarly, fMRI studies of the maternal brain
during the presentation of infant faces and cries implicate
the cerebellum (Ranote et al. 2004; Strathearn et al. 2008;
Swain et al. 2008; Laurent and Ablow 2012). Concurrently,
most maternal fMRI studies report increased activation during
processing of infant affective cues in motor–sensory–auditory
regions (Swain 2008). Consequently, integration of these latter
networks with cerebellar networks may increase prioritization
of processing infant cues in the brain promoting caregiving
behavior. Critically, given that increased activation of these
networks was associated with more anxiety toward the child,
perhaps this represents a hyperactivation of the network and an
interaction between greater integration and heightened anxiety
toward their infant in our maternal sample. Consistent with
this notion, hypervigilance in parenting has been observed
typically in the context of maternal anxiety (e.g., Ostlund et
al. 2017); however, it has also been reported in other clinically
vulnerable maternal populations (e.g., Schechter and Willheim
2009), perhaps speaking to a broader role for this network
in motherhood. Nevertheless, mean maternal anxiety scores
toward the infant were below the recommended clinical cut-off
range (Brockington et al. 2001, 2006), suggesting further work is
needed to more fully explore this network in mothers with more
clinically significant anxiety toward bonding with their child.

Frontoparietal networks have been implicated in attentional
control (Scolari et al. 2015) and may be modulated by emotional
arousal (Moratti et al. 2004). Mothers with higher levels of
anxiety toward bonding with their child may be more reactive
to infant affective cues, including the infant cries and faces that

were employed in this study, increasing attentional processing
of these stimuli. Concurrently, increased attention toward
salient infant cues may also drive increased connectivity
between the frontoparietal and motor–sensory–auditory net-
works in the presence of anxiety. Given the frontoparietal
network’s role in attention (Scolari et al. 2015), in conjunction
with cerebellar engagement in emotion processing (Adamaszek
et al. 2017), perhaps the observed decreased connectivity
between the networks reflects more dysregulation between
these two systems resulting in more maternal anxiety toward
bonding with her child. Future research with repeated mea-
surements of infant cue reactivity and bonding across the
postpartum period will be important in the beginning to
disentangle these findings. Finally, increased segregation within
the motor–sensory–auditory networks suggests less integration
of visual (infant facial expressions) and auditory (infant cries
and tone) sensory information with increasing maternal anxiety
toward the child, though this interpretation currently remains
speculative.

Our study has several strengths. It acquired data prospec-
tively during the early postnatal period, incorporating task-
based fMRI in the context of salient infant cues (faces and cries)
and an important caregiving measure of mothers’ perception
of bonding with their child. Task-based connectivity analyses
may be superior to resting-state connectivity in emphasizing
individual differences (Finn et al. 2017) and increasing CPM
performance (Greene et al. 2018). Understanding neural predic-
tors of postpartum bonding in the context of infant-relevant
stimuli may be optimal compared to comparable data collected
in the absence of such caregiving cues. Indeed, finding that
CPM predicted maternal anxiety in bonding—but not impaired
bonding and rejection—may relate to the brain state elicited by
the infant cries, as well as infant negative and neutral facial
expressions, which may provoke anxiety in mothers. Finally, we
used prediction, rather than explanation, to reduce overfitting
and exaggerated effect sizes often reported in neuroimaging
studies (Shmueli 2010; Whelan and Garavan 2014; Gabrieli et al.
2015).

Our goal was to investigate individual differences in
the internal representation of maternal bonding during the
postpartum period using predictive modeling. For this goal, we
used task-based functional connectivity rather than traditional
approaches based on general linear models (GLM). Previous
studies have used GLM to delineate task-related activity from
distinct and unique brain regions, but the magnitude of these
signal changes are weak predictors of individual differences
in behavior (Rosenberg et al. 2017; Gabrieli et al. 2015) as
many processes or disorders cannot be localized to a single
region. Meta-analyses suggest that many behaviors rely on the
orchestrated activity of a distributed array of regions (Laird et al.
2005; Yarkoni et al. 2011). Thus, the best predictive models from
task data may rely not on the magnitude of activation in a single
area, but rather on the degree to which activity is coordinated
across large-scale networks. Future analyses may examine the
task-evoked responses to investigate the neural correlates of
attending to positive versus negative infant faces or high versus
low distress sounds.

Our study also has several limitations. The use of predictive
models typically involves larger samples than this study. As
a result, we used leave-one-out cross-validation rather than
the emerging standard of 5- or 10-fold cross validation. The
smaller sample size may also reduce the generalizability of
our findings; therefore, replication studies involving larger, and
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more diverse, samples are needed. To aid these efforts, our CPM
model is shared as open source from https://nitrc.org/projects/
bioimagesuite/. While the CPM model was fairly robust when
controlling for demographic and mood variables (including trait
anxiety), the model became less sensitive when parity was
included. Although less well studied, prior reproductive experi-
ence may impact caregiving at neural, hormonal, and behavioral
levels (Bridges 2015; Maupin et al. 2016), warranting further
investigation. While the CPM model applied to connectivity data
at 2 months postpartum predicted maternal anxiety toward the
child measured at 8 months, connectivity data at 8 months
did not predict bonding at the same time point, indicating
the importance of understanding the temporal dynamics of
maternal brain and bonding associations. Overall, our results
suggest that the CPM model for maternal anxiety does not
relate to trait anxiety in our sample. However, a larger sample
would likely be needed to fully characterize the association
between the neural correlates of trait anxiety and maternal
anxiety to provide more conclusive findings of the specificity of
our model. Our CPM model was derived from unfamiliar infant
face and cry stimuli; therefore, it will be important in advanc-
ing this work to examine whether maternal responses to their
own infant’s affective cues also track future maternal bonding
with her child (e.g., Strathearn et al. 2009; Kim et al. 2011) or
whether these findings represent a more general response to
infant cues in the prediction of postpartum bonding. Indeed,
employing own infant cues may yield prediction of the other
components of maternal bonding not found here. Relatedly, we
also employed a self-reported measure of maternal bonding
with her child. Although beneficial in providing insight into the
mother’s internal representation of the infant at the level of
anxiety, further work is needed to address whether maternal
anxiety toward her child impacts the mother–infant relationship
more generally. This may be achieved in part through employing
objective measures of caregiving, including behaviorally coded
maternal sensitivity, as well as assessments of children’s socio-
emotional responding during interactions with their mother.
Finally, we did not have access to imaging or assessments of the
infants to ascertain the implications of these findings for child
development. Future studies should investigate how maternal
anxiety in the bonding relationship, the maternal brain, and the
developing brain all interact.

In conclusion, we employed CPM to examine the maternal
brain and associations with postpartum bonding. Our central
findings suggest that cerebellum, frontoparietal, and motor–
sensory–auditory networks may interact and contribute to
increased maternal anxiety toward the child over the first
8 months postpartum.
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