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Abstract
Degree centrality is a widely used measure in complex networks. Within the brain, degree relates to other topological
features, with high-degree nodes (i.e., hubs) exhibiting high betweenness centrality, participation coefficient, and
within-module z-score. However, increasing evidence from neuroanatomical and predictive processing literature suggests
that topological properties of a brain network may also be impacted by topography, that is, anatomical (spatial) distribution.
More specifically, cortical limbic areas (agranular and dysgranular cortices), which occupy an anatomically central position,
have been proposed to be topologically central and well suited to initiate predictions in the cerebral cortex. We estimated
anatomical centrality and showed that it positively correlated with betweenness centrality, participation coefficient, and
communicability, analogously to degree. In contrast to degree, however, anatomical centrality negatively correlated with
within-module z-score. Our data suggest that degree centrality and anatomical centrality reflect distinct contributions to
cortical organization. Whereas degree would be more related to the amount of information integration performed by an
area, anatomical centrality would be more related to an area’s position in the predictive hierarchy. Highly anatomically
central areas may function as “high-level connectors,” integrating already highly integrated information across modules.
These results are consistent with a high-level, domain-general limbic workspace, integrated by highly anatomically central
cortical areas.
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Introduction
Novel approaches to brain organization and function consider
the brain as a complex network (Sporns 2011). Within these
approaches, the topological properties of brain networks have
been studied, highlighting the relevance of a set of densely
connected areas, known as “rich club hubs” (van den Heuvel and
Sporns 2011) or “core hubs” (Hagmann et al. 2008), which have
been proposed to function as the backbone of neural integration
(van den Heuvel et al. 2013). When these areas are damaged,
modularity in the brain increases dramatically (Crossley et al.
2014), making the brain less able to integrate information across
sensory modalities (de Reus and van den Heuvel 2014). These
hubs have been defined based on their topological properties
as those areas with the highest degree (number of connections)
within the brain (e.g., Collin et al. 2017). Degree has been shown
to relate to other topological centrality measures. More specif-
ically, high-degree nodes exhibit high betweenness centrality
(number of shortest paths) (van den Heuvel and Sporns 2011),
high participation coefficient (distribution of connections across
different modules), and high within-module z-score (number
of connections within module) (van den Heuvel and Sporns
2013). Within the cerebral cortex, although rich club hubs have
been extensively studied, the anatomical (spatial) distribution of
cortical areas, that is, “topography,” has received less attention.
However, classical (e.g., Sanides 1970) and more recent works
(e.g., Barbas and Rempel-Clower 1997; Beul et al. 2015, 2017;
Goulas et al. 2016, 2019; Huntenburg et al. 2017, 2018) highlight
the relevance of topography and its relationship with cortical
type (overall laminar structure) and cytoarchitecture for cortical
organization.

The present study is motivated by an increasing body of
literature (initially from the neuroanatomical domain and more
recently from predictive processing perspectives) that has sug-
gested a relationship between the anatomical (spatial) distri-
bution of cortical areas and their organization as a network.
This relationship is based on the systematic variation in the
degree of laminar differentiation across cortical areas. Areas
with a simple laminar elaboration (agranular and dysgranular
tissue, known as cortical limbic areas) form a ring at the core
of each hemisphere, defining its edge (edge = limbus). Gradients
of laminar differentiation irradiate from this core of cortical
limbic areas into isocortical areas (6 layers) with a progressively
better developed layer IV, reaching the highest degree of laminar
elaboration in primary exteroceptive sensory areas (reviewed
in Sanides 1970; Mesulam 1985, 1998; Barbas 2015; Pandya et
al. 2015; García-Cabezas et al. 2019). Thus, laminar elaboration
gradients follow a specific spatial distribution across the cere-
bral cortex, with cortical limbic areas occupying an anatomically
central position at the core of each hemisphere and laminar
differentiation progressively increasing as one moves away from
them into outer areas. As pointed out by Marshall and Magoun
(1998), in mammalian brains, six-layered cortex mushroomed
around limbic cortices as the phylogenetic scale moved forward.
Some authors use the term “intermedius” or “mesopallium” to
refer to agranular and dysgranular areas because they occupy
an intermediate position between allocortical areas (hippocam-
pal formation and olfactory areas) and six-layered cortex (see
García-Cabezas et al. 2019 for a recent review).

In the present paper, we explore the relationship between
topography (spatial distribution) and topology (network prop-
erties) in the human cerebral cortex, focusing on the relation-
ship between a measure of anatomical centrality (based on

the distance to the approximate center of the brain) and dif-
ferent topological measures (betweenness centrality, participa-
tion coefficient, within-module z-score, and communicability).
We hypothesized that anatomical centrality is a contributor
to topological centrality, distinct from degree. This hypothesis
emerged from recent work within the predictive processing
literature (Barrett and Simmons 2015; Chanes and Barrett 2016),
based on a solid neuroanatomical model relating corticocorti-
cal connections to the laminar differentiation gradients men-
tioned above (Barbas and Rempel-Clower 1997; see also Barbas
2015). This work proposed that cortical limbic regions, which
are anatomically central, are well suited to initiate predictive
signals that are confirmed or corrected by incoming sensory
information. Thus, cortical limbic areas occupy high levels in a
cortical predictive hierarchy in which lower levels correspond
to successively better-laminated areas (see also, “sensory-fugal”
processing, Mesulam 1998, 2012). Moreover, fundamental work
by Jones and Powell (1970) showed that the sequential connec-
tions from primary sensory to association to limbic areas reflect
the flow of sensory representations that become progressively
more integrated. Given their proposed high position in a pre-
dictive hierarchy and the highly integrated nature of the infor-
mation they process, we expected topographically (anatomically,
spatially) central areas to exhibit high topological centrality. A
better understanding of topological properties across the entire
cortex, taking into account anatomical features, may provide
insights into the neural substrate of predictive processing and
information integration (dimension reduction).

Materials and Methods
Connectome Reconstruction

Human connectome project (HCP) high-resolution diffusion-
weighted data (Van Essen 2013; S500-release, n = 487, males and
females mixed, age 22–35 years, imaging parameters: voxel size
1.25 mm isotropic, TR/TE 5520/89.5 ms, 270 diffusion directions
with diffusion weighting 1000, 2000, or 3000 s/mm2) were used to
reconstruct an average human connectome map. The diffusion-
weighted images were eddy current and susceptibility distor-
tion corrected, after which a voxel-wise diffusion profile was
reconstructed using generalized q-sampling and whole-brain
streamline tractography was performed (see de Reus and van
den Heuvel 2014, for details on HCP connectome reconstruction).

Parcellation and Group Average Connectome Formation

For each subject, a high-resolution T1-weighted image (voxel
size: 0.7 mm isotropic) was used for cortical segmentation and
parcellation with FreeSurfer (Fischl et al. 2004; version 5.3.0).
Each individual’s cortical surface (represented as vertex points)
was parcellated into 219 nonoverlapping regions (111 left, 108
right hemisphere) using a subdivision of the Desikan-Killiany
68-region cortical FreeSurfer atlas (Cammoun et al. 2012), after
which the parcellation was combined with the individual
whole-brain streamline tractography to form a 219 × 219
connectivity matrix, representing each pair of cortical regions
and their reconstructed white matter pathways. The strength of
corticocortical connections was quantified as the reconstructed
number of streamlines and computed as the number of stream-
lines touching both cortical regions. Finally, a weighted group-
level averaged connectome was formed by including those
connections consisting of at least 5 streamlines and observed
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Figure 1. Degree map. Cortical parcellation scheme included 219 nodes and was
based on a subdivision of the Desikan-Killiany 68 region cortical FreeSurfer atlas
(Cammoun et al. 2012). Degree equals the number of connections of each node.
We found high-degree nodes (e.g., the entire cingulate cortex, ventral prefrontal

cortex, supplementary motor area, precuneus, anterior insula, and some lateral
frontoparietal regions) to be consistent with previous literature (e.g., van den
Heuvel and Sporns 2013).

in at least 60% of all individuals (van den Heuvel and Sporns
2011). We conducted all subsequent analyses with alternative
thresholds (1 minimum streamline, 60% prevalence; 10 min-
imum streamlines, 60% prevalence; 5 minimum streamlines,
50% prevalence; 5 minimum streamlines, 70% prevalence;
also consistency-thresholded connectome, same density as 5
minimum streamlines, 60% prevalence; Roberts et al. 2017) and
found similar results (see Supplementary Texts S1−S5).

Graph Analysis

Analyzing the group average connectome map as a graph,
describing cortical regions as nodes and their interconnections
as edges, nodal degree was computed as the number of
edges of a node (Fig. 1). We computed, for each node, the
following measures related to network topology: 1) betweenness
centrality, the number of all shortest paths in the cerebral
cortex that go through a node (Freeman 1978); 2) participation
coefficient, the distribution of a node’s edges among different
modules (Guimerà and Amaral 2005); 3) within module z-score,
a node’s connectedness to other nodes in its module (Guimerà
and Amaral 2005); 4) communicability (de Reus and van den
Heuvel 2014; Betzel et al. 2016), which takes into account all
possible—not only the shortest—walks from a node to all other
nodes in the cortex, reflecting the extent to which a region
can compensate for the removal of another area (Betzel et al.
2016). Among these measures, participation coefficient and
within module z-score were calculated based on 8 structural
connectivity modules found by the Newman community
detection algorithm (Newman 2006) (see Supplementary Fig.
S1). All measures were computed using the Brain Connectivity
Toolbox (Rubinov and Sporns 2010).

Anatomical Centrality Estimation

To estimate anatomical centrality, we used the anterior
commissure as a proxy for the center point of the brain, since
it is approximately equidistant from the most distal points
of the cerebrum on the x-, y-, and z-axes (Fig. 2A). First, we
calculated the Euclidean distance between each vertex (MNI x,

Figure 2. We created a measure of anatomical centrality to index the laminar

differentiation gradient. (A) The anterior commissure (red dot), with MNI coor-
dinates (0, 0, 0), was used as a proxy for the center point of the brain since it
is approximately equidistant from the most distal points of the cerebrum. (B)
Anatomical centrality map. Anatomical centrality for each node was computed

as (maximal distance–node distance)/maximal distance, where maximal dis-
tance is the distance for the node with maximal distance from the anterior com-
missure. An anatomical centrality of 0 indicates minimal anatomical centrality
(at maximal distance from the anterior commissure) and 1 indicates maximal

centrality (at the anterior commissure).

y, z) and the anterior commissure (MNI 0, 0, 0): (

√
(x2 + y2 + z2)).

To facilitate regression analyses using 219-node-based graph
theory measures, we averaged the distances for all vertices
within a node to obtain a mean distance value for each of the 219
nodes. We then computed a normalized measure of anatomical
centrality for each node defined as (maximal distance–node
distance)/maximal distance, where maximal distance is the
distance for the node with maximal distance from the anterior
commissure, so that the anterior commissure would have an
anatomical centrality of 1 and the most distant node would have
an anatomical centrality of 0 (Fig. 2B). To verify that our anatomi-
cal centrality measure was related to cortical type, we compared
anatomical centrality across nodes with a known distinct
degree of laminar differentiation. Specifically, we compared
three classes of nodes: 1) cortical limbic areas (cingulate cortex,
posterior orbitofrontal cortex, ventral anterior insula, entorhinal
cortex, parahippocampal gyrus, and temporal pole; defined
following Mesulam 1985, noted as paralimbic areas), with a low
degree of laminar elaboration; 2) primary exteroceptive sensory
cortices (visual, auditory, and somatosensory; V1, A1, and S1),
with a high degree of laminar elaboration; 3) association areas
(rest of the areas), with an expected intermediate degree of
laminar elaboration (Fig. 3A). We also correlated our measure of
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Figure 3. Anatomical centrality across groups of areas with different cortical
types. (A) Limbic (agranular and dysgranular cortex), association, and primary

exteroceptive sensory cortices (visual, auditory, and somatosensory; V1, A1, and
S1). (B) Anatomical centrality of limbic, association, and primary exteroceptive
sensory cortices followed the expected decreasing pattern, consistent with an
increasing degree of laminar differentiation. ∗P < 0.05, ∗∗∗P < 0.001, two-tailed t-

test. Error bars indicate one standard error of the mean.

anatomical centrality with neuronal density and intracortical
myelin, two measures also related to laminar elaboration (for
a recent review, see García-Cabezas et al. 2019). For each node,
we computed neuronal density as a weighted sum based on
layer-specific neuron count and thickness data reported by von
Economo and Koskinas (1925) (Scholtens et al. 2016):

Total neuronal density

=
∑n

l=1
(
layer neuronal densityl × layer thicknessl

)
∑n

l=1
(
layer thicknessl

) , (1)

where l ranges from 1 to n, where n is the total number of
identified cortical layers (see Supplementary Fig. S2A). Myelin
content was assessed by T1w/T2w images (Glasser and Van

Essen 2011; Glasser et al. 2016), and we computed one myelin
estimate per node by averaging myelin estimates of all vertices
within the node (see Supplementary Fig. S2B). As a related
measure, we assessed whether mean BigBrain profile (or simply
BigBrain profile, referring to the averaged profile within each
node; Wei et al. 2018), reflecting a combination of cell size
and neuronal density computed based on the high-resolution
BigBrain histological volume (Amunts et al. 2013), is similarly
related to anatomical centrality (see Supplementary Fig. S2C).
Lastly, we correlated our anatomical centrality measure, as well
as neuronal density, myelin and BigBrain profile, with the topo-
logical measures explored to assess whether they are related to
topology.

Statistical Analyses

A summary of the descriptive statistics can be found in Table 1.
Residual plots indicated that the assumptions of normality,
linearity, and homoscedasticity were all satisfied. We first ran a
total of four hierarchical linear regression analyses, one for each
network topology measure (betweenness centrality, participa-
tion coefficient, within-module z-score, and communicability).
In each analysis, the measure was the dependent variable, while
degree and anatomical centrality were introduced as indepen-
dent variables. We computed the F statistic (F) and total variance
(total R2) of the regression model, as well as the standardized
regression coefficient (β) and t statistic (t) associated with each
independent variable. We also computed additional variance
explained by each independent variable when entered last in
the model (�R2). We obtained similar regression analysis results
when removing outliers that were more than 1.5 interquartile
ranges above or below the mean for all measures (Tukey 1977)
(see Supplementary Text S6 for changes in descriptive statis-
tics and regression tables). Lastly, we conducted a multivariate
multiple regression analysis to assess the effects of degree and
anatomical centrality on all four topology measures at the same
time.

Results
In agreement with previous reports (e.g., van den Heuvel and
Sporns 2011, 2013), nodes with high degree were found in
mid-to-posterior cingulate cortex, precuneus, retrosplenial
cortex, insula, intraparietal sulcus, and lateral occipitotemporal
cortex (Fig. 1). Anatomical centrality (Fig. 2) was related to
the degree of laminar elaboration. Anatomical centrality of
limbic, association, and primary sensory cortices (Fig. 3A)
followed the expected decreasing pattern [limbic > association:
t(193) = 7.92, P < 0.001; limbic > primary sensory: t(43) = 7.11,
P < 0.001; association > primary sensory: t(196) = 2.24, P < 0.03;
two-tailed t-test; Fig. 3B]. Anatomical centrality negatively cor-
related with neuronal density [r(217) = −0.33, P < 0.001], myelin
[r(217) = −0.15, P < 0.030], and BigBrain profile [r(211) = −0.19,
P < 0.004], showing that this measure is associated with other
measures related to laminar elaboration. However, whereas
degree and anatomical centrality significantly correlated with
all topological measures, neuronal density, myelin, and BigBrain
profile did not predict topology (see Supplementary Table S1).

Degree and anatomical centrality were not correlated
[bivariate correlation; r(217) = −0.01, P < 0.91, two-tailed]. Both
degree and anatomical centrality uniquely predicted network
topological properties (Fig. 4). More specifically, as expected,
higher degree was associated with higher centrality for all

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz171#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz171#supplementary-data
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Table 1 Summary of descriptive statistics for all variables involved in the study: degree, anatomical centrality, and four network topology
measures (betweenness centrality, participation coefficient, within-module z-score, and communicability)

Measure Minimum Maximum Mean Std. dev.

Degree 2.00 18.00 7.74 2.44
Anatomical centrality 0.00 0.65 0.30 0.14

Betweenness centrality 0.00 3700.61 471.17 625.24
Participation coefficient 0.00 0.74 0.23 0.22
Within-module z-score −1.77 2.99 0.00 0.98
Communicability 0.00 0.01 0.01 0.00

Figure 4. Degree and anatomical centrality separately contribute to network topological features: (A) betweenness centrality, (B) participation coefficient, (C) within-

module z-score, and (D) communicability. Both degree and anatomical centrality were positively associated with betweenness centrality, participation coefficient,
and communicability. Within-module z-score was positively associated with degree but negatively associated with anatomical centrality. Warmer color in mesh plot
indicates higher value on topological measure and cooler color indicates lower value on topological measure.

four measures [betweenness centrality: t(216) = 9.98, P < 0.001;
participation coefficient: t(216) = 4.16, P < 0.001; within-module
z-score: t(216) = 10.49, P < 0.001; communicability: t(216) = 15.77,
P < 0.001; Table 2]. Higher anatomical centrality was also
associated with higher betweenness centrality [t(216) = 3.60,
P < 0.001], participation coefficient [t(216) = 2.52, P < 0.01], and
communicability [t(216) = 8.34, P < 0.001] (Table 2). In contrast to
degree, however, higher anatomical centrality was associated
with lower within-module z-score [t(216) = −5.25, P < 0.001;
Table 2].

Together, participation coefficient (P) and within-module z-
scores (z) may be used to classify nodes according to their
patterns of connections within and across modules (Guimerà
and Amaral 2005): low z/low P (peripheral nodes), low z/high P
(nonhub connector nodes), high z/low P (provincial hubs), and
high z/high P (connector hubs). Our results indicated dissociable
impacts of degree and anatomical centrality on z/P ratio. Higher
degree was associated with higher z/higher P and therefore
resembled the connector hubs in their connectivity profile (van

den Heuvel and Sporns 2013). In other words, a node with a
higher degree tended to be more central within its own module
and participate in more modules. In contrast, higher anatomical
centrality was associated with lower z/higher P and therefore
rather resembled the nonhub connector nodes in their connec-
tivity profile. In other words, a node with higher anatomical
centrality tended to be less central within its own module but
participate in many modules. The differential contributions of
degree and anatomical centrality would yield different connec-
tivity profiles (illustrated in Fig. 5).

When both degree and anatomical centrality were entered
into the model, they accounted for 34% of the variance in
betweenness centrality, 10% of the variance in participation
coefficient, 39% of the variance in within-module z-score, and
59% of the variance in communicability (Table 2). Lastly, a multi-
variate multiple regression analysis (two predictors: degree and
anatomical centrality; four dependent variables: betweenness
centrality, participation coefficient, within-module z-score,
and communicability) showed that degree (F(4, 213) = 311.68,
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Table 2 Summary of hierarchical regression analyses. The table displays standardized regression coefficient (β), t statistic (t), and incremental
variance (�R2) associated with each independent variable, as well as the F statistic (F) and total variance (total R2) of the model. �R2 indicates
additional variance explained by respective independent variables when entered last in the model

β t �R2 F Total R2

Betweenness centrality
Degree 0.55 9.98∗∗∗ 0.30 56.03∗∗∗ 0.34
Anatomical centrality 0.20 3.60∗∗∗ 0.04
Participation coefficient
Degree 0.27 4.16∗∗∗ 0.07 11.77∗∗∗ 0.10
Anatomical centrality 0.16 2.52∗ 0.03
Within-module z-score
Degree 0.56 10.49∗∗∗ 0.31 69.24∗∗∗ 0.39
Anatomical centrality −0.28 −5.25∗∗∗ 0.08
Communicability
Degree 0.68 15.77∗∗∗ 0.47 158.12∗∗∗ 0.59
Anatomical centrality 0.36 8.34∗∗∗ 0.13

∗ P < 0.05.
∗∗ P < 0.01.
∗∗∗ P < 0.001.

Figure 5. Schematic illustration of distinct contributions of degree (represented by node size; larger nodes have more connections; number inside the node indicates

the exact number of connections) and anatomical centrality (represented by node color; lighter color indicates higher anatomical centrality) to topological centrality
in a hypothetical graph. The graph is split into three modules (green, blue, and red background shading). Four specific nodes are highlighted with a dashed boundary
to schematically reflect connectivity profiles resulting from the combination of both contributions (degree and anatomical centrality). Node A has high degree and
high anatomical centrality, node B has low degree and high anatomical centrality, node C has high degree and low anatomical centrality, and node D has low degree

and low anatomical centrality. In general, nodes with more anatomical centrality and degree are more topologically central in the network.

P < 0.001) and anatomical centrality (F(4, 213) = 21.20, P < 0.001)
both significantly predicted all four topology measures, even
when controlling for any potential correlation between those
measures (size and significance of regression coefficients can
be found in Supplementary Table S2).

Discussion
In the present paper, we explored the contributions of degree
and anatomical centrality to topological properties of a human
cortex network. Our initial interest on anatomical centrality

emerged from classical observations that the structure of the
cerebral cortex varies systematically along spatially successive
areas (Sanides 1970; for reviews, see Barbas and Rempel-Clower
1997; Barbas 2015). We created a measure of anatomical central-
ity that may be considered a proxy for the laminar differentia-
tion gradient, where cortical limbic areas (with a simple laminar
structure) exhibit high anatomical centrality and association
and primary sensory areas (with progressively better-laminated
structure) exhibit progressively lower anatomical centrality. Our
results reveal that anatomical centrality is a relevant feature
for network topology, with topographically central (anatomically

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz171#supplementary-data
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central) areas being also topologically central. These results
stress the importance of taking into account anatomy as a
relevant feature to understand the brain as a complex brain
network (see also, e.g., Huntenburg et al. 2018). Our findings
are also consistent with a variety of hypotheses about brain
evolution. For example, evidence suggests that anatomically
central cortical areas have expanded over primate evolution
(e.g., Hill et al. 2010) in a way that has been linked to cogni-
tive functioning (e.g., Finlay and Uchiyama 2015) and recent
predictive processing perspectives highlight a key central role
of highly anatomically central (limbic) areas in guiding cortical
processing (Barrett and Simmons 2015; Chanes and Barrett 2016;
Hutchinson and Barrett 2019). More anatomically central (lim-
bic) cortical regions are responsible for maintaining allostasis
and energy regulation in the core systems of the body (e.g.,
Kleckner et al. 2017), considered to be a main driver of brain
evolution in general (e.g., Niven and Laughlin 2008) and primate
brain evolution in particular (e.g., Pontzer 2015). And the link
between anatomical centrality and cortical type is also consis-
tent with the dual origin hypothesis of brain evolution, which
proposes that each hemisphere of the cerebral cortex developed
in concentric circles of progressively better-laminated tissue
that folded in a mushroom-like shape, such that the degree of
laminar differentiation is seen to increase radially (Sanides 1970;
Pandya et al. 2015; García-Cabezas et al. 2019).

Our data suggest that degree and anatomical centrality
reflect distinct contributions to cortical organization, as the
two measures were not correlated among themselves and
they explained unique variance in all the topological features
explored. Degree and anatomical centrality both positively
predicted betweenness centrality, participation coefficient,
and communicability. However, while degree was positively
correlated with within-module z-score, anatomical centrality
was negatively correlated with this measure. In other words,
as degree increased, areas increasingly showed a connectivity
profile that resembled that of connector hubs (i.e., dense
connections both intermodule and intramodule; high z/high P);
on the other hand, as anatomical centrality increased, areas
increasingly showed high intermodule but low intramodule
connectivity (low z/high P). This suggests that areas with high
anatomical centrality (limbic) may be particularly well suited
to function as “high-level connectors,” integrating already
highly integrated (low dimensional) information across domains
(modules). This remarkable difference in connectivity profiles
is consistent with tract-tracing studies in nonhuman primates,
showing that limbic regions, in particular the cingulate cortex
and anterior insula, have more distributed cortical connections
(i.e., “participation” in different modules) compared with
better-laminated areas such as the somatosensory, motor, and
premotor cortices, which have more restricted connections
with local and adjacent areas (Morecraft et al. 2004, 2012, 2015).
This may help to explain why damage to limbic areas leads to
more fundamental disturbances in motility and motivation than
damage to more peripheral (less anatomically central) regions
(Giaccio 2006; see also Mesulam 1998). While degree may be
more closely related to the amount of information integrated
(number of areas that a given node is integrating information
from), anatomical centrality may be more closely related to the
position that a node occupies in the cortical predictive hierarchy.
Both the amount of information integration and the position
in the hierarchy lead to different connectivity profiles (Fig. 5)
and contribute to topological centrality, which suggests that a
more nuanced characterization of rich club (high degree) hubs

in terms of anatomical centrality may be relevant in order to
further understand cortical organization and identify potential
functional differences among them. For example, anatomically
peripheral rich club hubs, associated with high z and medium-
to-high P (e.g., Fig. 5, node C), would resemble connector hubs
(van den Heuvel and Sporns 2013), integrating large amounts of
low-level information both within and across modules, whereas
more anatomically central rich club hubs (e.g., Fig. 5, node A),
involving lower z and higher P, would exhibit a connectivity
profile closer to nonhub connector nodes and integrate higher-
level information across modules.

Our study presents some limitations, and our findings may
be extended in several ways. Our analyses were anchored
on a 219-node parcellation scheme. Some parcels within this
scheme included regions with different degrees of laminar
differentiation (e.g., orbitofrontal cortex). Future studies may
examine more fine-grained parcels that are more homogeneous
in cortical type (e.g., the orbitofrontal cortex could be further
divided into its posterior and anterior portions, as the degree of
laminar differentiation increases from posterior to anterior;
Beck 1949). Moreover, as mentioned above, our measure of
anatomical centrality, based on distance to the center of
the brain, is one proxy for the spatial distribution of the
laminar differentiation gradient, although it does not capture
the full complexity of such distribution (e.g., we observed an
intermediate anatomical centrality for primary somatosensory
cortex, which is known to have a high degree of laminar
elaboration). Other measures, such as neuronal density or
intracortical myelin, have also been related to the degree of
laminar differentiation, although they also present important
limitations in capturing cortical type (for a detailed discussion,
see García-Cabezas et al. 2019). The neuronal density map (see
Supplementary Fig. S2A) displays extremely high values in the
primary visual cortex and lacks differentiation between lateral
frontal cortex and cortical limbic areas, for example. In the
myelin map using T1w/T2w images (see Supplementary Fig.
S2B), some of the exceptions reported by Glasser and van Essen
(2011) can be observed, notably a relatively high myelin content
in known agranular/dysgranular areas, such as the posterior
cingulate/retrosplenial cortex or the posterior orbitofrontal
cortex. Moreover, unlike anatomical centrality, these two
measures were not predictive of topology (see Supplementary
Table S1). Whether this was a result of the limited ability of
the measures themselves (neuronal density and myelin) to
capture cortical type or rather reflected additional relevant
contributions to topology captured by our anatomical centrality
measure, other than cortical type, remains to be explored in
the future. Lastly, future studies may perform similar analyses
using tract-tracing data from macaques, which may contribute
to assess the impact of technical limitations of diffusion imaging
such as ambiguous fiber crossing, lack of directionality, and lack
of single tract precision (Shen et al. 2019).

The topological features exhibited by highly anatomically
central areas are consistent with their role as a high-level,
domain-general limbic workspace (Chanes and Barrett 2016),
which would initiate predictions that cascade to progressively
more specialized, better-laminated areas (Barrett and Simmons
2015; Chanes and Barrett 2016; Barrett 2017). Taken together,
our findings enhance our understanding of the neural bases
for how the brain can function predictively and implement
information integration across the cortex, and they provide a
relevant new feature to further characterize nodes, including
extensively studied rich club hubs.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz171#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz171#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz171#supplementary-data
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