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Abstract
Conflicts at various stages of cognition can cause interference effects on behavior. Two well-studied forms of cognitive
interference are stimulus–stimulus (e.g., Flanker), where the conflict arises from incongruence between the task-relevant
stimulus and simultaneously presented irrelevant stimulus information, and stimulus-response (e.g., Simon), where
interference is the result of an incompatibility between the spatial location of the task-relevant stimulus and a prepotent
motor mapping of the expected response. Despite substantial interest in the neural and behavioral underpinnings of
cognitive interference, it remains uncertain how differing sources of cognitive conflict might interact, and the spectrally
specific neural dynamics that index this phenomenon are poorly understood. Herein, we used an adapted version of the
multisource interference task and magnetoencephalography to investigate the spectral, temporal, and spatial dynamics of
conflict processing in healthy adults (N = 23). We found a double-dissociation such that, in isolation, stimulus–stimulus
interference was indexed by alpha (8–14 Hz), but not gamma-frequency (64–76 Hz) oscillations in the lateral occipital
regions, while stimulus–response interference was indexed by gamma oscillations in nearby cortices, but not by alpha
oscillations. Surprisingly, we also observed a superadditive effect of simultaneously presented interference types
(multisource) on task performance and gamma oscillations in superior parietal cortex.

Key words: double dissociation, magnetoencephalography, multisource interference task, neural oscillations,
superadditivity

Introduction
The presence of irrelevant and/or conflicting stimuli generally
has a negative impact on task performance, and these detri-
mental effects are broadly referred to as cognitive interference.
The effects of this interference on behavior are well documented
using a number of different paradigms and can be a result
of conflicts at either the stimulus perception (i.e., stimulus–
stimulus conflict) or response selection (i.e., stimulus–response
conflict) stage. For instance, the presence of task-irrelevant dis-
tractor stimuli flanking the target stimulus has been found to
interfere with efficient stimulus perception (Eriksen and Erik-
sen 1974), a phenomenon commonly referred to as the Eriksen

“Flanker” effect. In these experiments, the source of cognitive
interference (i.e., the flanking stimuli) is external, and partici-
pants must rely on selective attention processes to mitigate the

negative consequences of the distractors on performance. On
the other hand, the prepotent mapping of basic motor responses
has been found to interfere with task performance when the
mapped responses are in conflict with the (task-irrelevant) spa-
tial location of the target stimulus (Simon 1990); such interfer-
ence is commonly termed the “Simon” effect.

Over the past 20 years, there has been a strong and sustained
interest in identifying the neural circuitry that supports conflict
processing in the human brain, and a number of functional
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magnetic resonance imaging (fMRI) studies have documented
network activation in the frontal, parietal, and occipital cortices
(Peterson et al. 2002; van Veen and Carter 2002; Bush et al. 2003;
Liu et al. 2004; Frühholz et al. 2011). Specifically, the anterior
cingulate has been implicated as a so-called “conflict monitor,”
which signals other involved brain regions to the occurrence
of unexpected and/or interfering events (van Veen and Carter
2002). In contrast, dorsolateral prefrontal regions are known to
inhibit prepotent responses in the case of conflict (Aron et al.
2004, 2014) and adjust task-relevant behavior accordingly (Fox
et al. 2006; He et al. 2007; Hampshire et al. 2010; Verbruggen et al.
2010; Wiesman et al. 2017). Parietal regions, and in particular,
the superior parietal cortices are known to be essential in
the mapping of spatial saliency, and the integration of this
“map” with a task-relevant motor plan (Mountcastle et al. 1975;
Lynch et al. 1977; Posner et al. 1984; Corbetta et al. 1995; Colby
and Goldberg 1999; Desmurget et al. 1999; Yantis et al. 2002;
Buschman and Miller 2007; He et al. 2007; Van Der Werf et al.
2008; Capotosto et al. 2009; Bisley and Goldberg 2010). Finally,
more recent research has established that neural responses in
tertiary visual areas are influenced by cognitive interference
(McDermott et al. 2017; Janssens et al. 2018), signaling an
attentional enhancement of bottom-up information. Although
the spatial aspects of these networks are well known, far fewer
studies have focused on their spectrotemporal dynamics, and
even fewer have attempted to delineate the unique effects
of different sources of cognitive interference (e.g., Simon vs.
Flanker effects) on the neural dynamics.

Differing frequencies of oscillatory neural responses have
been found to be essential for the coding of particular cognitive
functions, including the mitigation of cognitive interference
(Hanslmayr et al. 2008; Wiesman and Wilson 2019; Wiesman
et al. 2019; Gulbinaite et al. 2017; McDermott et al. 2017; Janssens
et al. 2018), and these responses often occur on a subsecond
timescale. For instance, transient decreases in the power of
alpha-frequency oscillations in the posterior parietal-occipital
cortices have been previously found to index stimulus–stimulus
interference on a variety of cognitive tasks (West and Bell 1997;
Hanslmayr et al. 2008; Ergen et al. 2014; Nombela et al. 2014;
McDermott et al. 2017; Janssens et al. 2018; Suzuki et al. 2018).
Perhaps surprisingly, very few studies have investigated the
effect of cognitive interference on gamma-frequency oscilla-
tions, which have been extensively linked to the processing and
prioritizing of visual stimulus information (Gruber et al. 1999;
Shibata et al. 1999; Tallon-Baudry and Bertrand 1999; Bertrand
and Tallon-Baudry 2000; Başar et al. 2001; Busch et al. 2004; Tal-
lon-Baudry et al. 2005; Vidal et al. 2006; Womelsdorf et al. 2006;
Jensen et al. 2007, 2014; Siegel et al. 2007; Doesburg et al. 2008;
Edden et al. 2009; Koelewijn et al. 2013; Muthukumaraswamy
and Singh 2013; Landau et al. 2015; Marshall et al. 2015; Wiesman
et al. 2017, 2018a), as well as the integration of this stimu-
lus information with saliency mapping and motor planning
(Pesaran et al. 2002; Womelsdorf et al. 2006; Womelsdorf and
Fries 2006; Van Der Werf et al. 2008). Thus, it remains essential
to investigate the neural bases of differing subtypes of cogni-
tive interference using methodologies with sufficient temporal
precision to capture not only the rapid and transient nature
of these responses, but also their spectral dynamics (i.e., their
unique frequency composition). In a notable step toward this
goal, one group (Wang et al. 2014) used a combined Simon–
Stroop task and electroencephalography to tease apart the time
course and spectral dynamics of neural responses to stimulus–
stimulus and stimulus–response cognitive interference. They

showed that both alpha- and beta-band activities were critical
to the processing of cognitive interference, but were unable
to delineate the cortical origins of these frequency-dependent
effects and did not examine gamma-frequency activity.

This study aims to fill two major gaps in the cognitive
neuroscience literature. First, how do neural responses to
stimulus–stimulus and stimulus–response subtypes of cognitive
interference differ in time, space, and frequency? Second,
how do these forms of cognitive interference affect high-
frequency neural activity in the gamma band? To answer
these questions, we utilize the unique spatial and temporal
precision of magnetoencephalography (MEG), combined with a
novel adaptation of the multisource interference task (MSIT;
Bush et al. 2003; Bush and Shin 2006) to characterize the
neural dynamics underlying divergent and convergent effects
of stimulus–stimulus (Flanker) and stimulus–response (Simon)
cognitive interference. Twenty-three healthy young adult
participants performed the task, and significant oscillatory
responses were imaged using a beamformer. Whole-brain
statistical comparisons were used to examine the effect of
interference condition on transient, frequency-specific neural
responses. Our hypotheses were twofold. First, based on earlier
research using flanker tasks (McDermott et al. 2017, 2019;
Janssens et al. 2018; Suzuki et al. 2018), we expected that
alpha-frequency oscillations in the lateral occipital cortex
would increase (i.e., stronger event-related desynchronization
responses) as a function of stimulus–stimulus interference.
Second, despite the lack of previous research into the effects of
cognitive interference on gamma oscillations, we hypothesized
that such high-frequency responses would scale with stimulus–
response interference in lateral occipital and superior parietal
cortex. This hypothesis was based on the existing literature
supporting the integral nature of posterior gamma oscillations
in the mapping of visual saliency and the synthesis of task-
relevant motor plans.

By focusing not only on the spatial origins of these dynamics,
but also on their temporal and spectral properties, we provide
novel evidence for a double dissociation of interference subtypes
in the lateral occipital cortices by oscillatory frequency. Specifi-
cally, as was hypothesized, we find that alpha-frequency oscilla-
tions in the right lateral occipital cortices preferentially support
the processing of Flanker interference effects, while gamma-
frequency oscillations in nearby regions preferentially process
Simon interference effects. Furthermore, and surprisingly, we
note a striking superadditive effect of cognitive interference
subtypes on performance (i.e., reaction time [RT] and accuracy).
After investigating this effect further, we find that gamma oscil-
latory responses in the left parieto-occipital cortices also index
this superadditivity and are significantly related to task perfor-
mance. Conceptually, superadditivity effects represent the inef-
ficient sharing of neural resources by competing cognitive pro-
cesses. For example, presenting an auditory and visual stimulus
together often elicits more neural spikes than presenting each in
isolation, and there are other classic examples in the neurophys-
iological literature (Holmes and Spence 2005). In sum, herein, we
find both divergent and convergent indexing of cognitive inter-
ference by distinct spatio-spectral patterns of neural activity.

Materials and Methods
Participants

Twenty-three healthy young adults were recruited for the study
(Mage = 26.09; age range: 20–33 years; 16 males; 21 right handed).
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Exclusion criteria included any medical illness affecting central
nervous system function, any neurological or psychiatric disor-
der, history of head trauma, current substance abuse, and any
nonremovable metal implants that would adversely affect MEG
data acquisition. All participants had normal or corrected-to-
normal vision. The Institutional Review Board at the University
of Nebraska Medical Center reviewed and approved this inves-
tigation. Written informed consent was obtained from each
participant following detailed description of the study, and all
study protocols conformed to the Declaration of Helsinki. All
participants completed the same experimental protocol.

MEG Experimental Paradigm and Behavioral Data
Analysis

We used a modified version of the MSIT (Bush et al. 2003; Bush
and Shin 2006) to engage cognitive interference networks (Fig. 1).
Each trial began with a central fixation presented for a randomly
varied interstimulus interval of 2000–2400 ms. The fixation was
then replaced by a vertically centered horizontal row of three
equally spaced integers between 0 and 3. These integer stimuli
were presented for 1500 ms. Two of these numbers were always
identical (task irrelevant) and the third different (task relevant).
Prior to beginning the experiment, participants were given a
right-handed five-finger button pad and instructed that the
index, middle, and ring finger locations represented the integers
1, 2, and 3, respectively. Participants were then instructed that
on each trial, they would be presented with a horizontal row of
three integers, and that the objective was to indicate the “odd-
number-out” by pressing the button corresponding to its numer-
ical identity (and not its spatial location). Speed and accuracy
were also stressed to the participant at this point. Left-handed
participants were required to use their right hand for this task,
and exploratory analyses found behavioral patterns in these
participants to be largely consistent with those exhibited by the
larger dataset. Using these stimuli, four interference conditions
were possible: (1) control (no interference; i.e., 1 0 0/0 2 0/0 0 3),
(2) Simon (stimulus–response interference; i.e., 0 1 0/0 0 1/2 0
0/0 0 2/0 3 0/3 0 0), (3) Flanker (stimulus–stimulus interference;
i.e., 1 2 2/1 3 3/1 2 1/3 2 3/1 1 3/2 2 3), and (4) multisource (both
stimulus–response and stimulus–stimulus interference; i.e., 2 1
2/3 1 3/2 2 1/3 3 1/2 1 1/2 3 3/1 1 2/3 3 2/1 3 1/2 3 2/3 1 1/3 2 2). Trial
types and responses were pseudorandomized over the course
of the experiment, such that no interference condition nor any
response was repeated more than twice in a row. Participants
completed 100 trials of each interference condition, for a grand
total of 400 trials, and a total recording time of ∼ 24 min. Custom
visual stimuli were programmed in Matlab (Mathworks, Inc.)
using “Psychophysics Toolbox Version 3” (Brainard 1997) and
back-projected onto a nonmagnetic screen. For each participant,
accuracy data were computed as a percentage (correct/total
trials). RT data were also extracted for each individual trial and
incorrect and no-response trials were removed. Initial analyses
suggested that no responses fell in time periods that were
either physiologically implausible (i.e., faster than 150 ms) nor
outside of the presentation of the target stimuli (i.e., slower than
1500 ms), and thus, no outliers were excluded at the single-trial
level on the basis of behavior. Importantly, exploratory analyses
confirmed that all of the significant behavioral effects reported
in this manuscript also survived using a standard single-trial
RT threshold of ±2.5 standard deviations (SDs) from the mean.
Measures of central tendency were then computed for single-
trial RT data for each participant and condition, including the

Figure 1. Experimental paradigm. Each trial began with a central fixation pre-
sented for a randomly varied interstimulus interval of 2000–2400 ms. After
this, the fixation was replaced by a vertically centered horizontal row of three

equally spaced integers between 0 and 3. The presentation of the integer stimuli
lasted for 1500 ms. Two of these integers were always identical (task irrelevant)
and the third was different (task relevant). Prior to beginning the experiment,
participants were given a five-finger button pad and instructed that the index,

middle, and ring finger locations represented the integers 1, 2, and 3, respectively.
Participants were then instructed that on each trial they would be presented
with a horizontal row of three integers, and that the objective was to indicate
the “odd-number-out” by pressing the button corresponding to its numerical

identity (and not its spatial location). Using these stimuli, four interference con-
ditions were possible: (1) control (no interference), (2) Simon (stimulus–response
interference), (3) Flanker (stimulus–stimulus interference), and (4) multisource.

harmonic mean for statistical analysis, as well as the simple
mean for subsequent visualization and interpretation purposes.
Briefly, the harmonic mean was used rather than the simple
mean for statistical analysis, as this metric has been found to
be a less-biased indicator of population RT data (Baayen and
Milin 2010). Accuracy (in percent of trials answered correctly)
was also computed, and the condition-wise distributions of both
RT and accuracy data were tested for non-normality using the
Shapiro–Wilk test. These tests did not suggest non-normality
for any of the harmonic RT data (all P’s > 0.30), and thus a tradi-
tional repeated measures–analysis of variance (RM–ANOVA) was
appropriate to test for condition effects in these data. In contrast,
accuracy was non-normally distributed for all conditions (all
P’s < 0.01). Thus, a nonparametric equivalent of the traditional
RM–ANOVA, Friedman’s test, was used instead.

RT and accuracy were analyzed for a main effect of interfer-
ence condition using a four-way RM–ANOVA and Friedman’s
test, respectively, with interference condition as the only
(within-subjects) factor of interest. Behavioral analyses were
implemented in JASP (2018), an open-source statistical software.
The ANOVA for RT was tested for violations of sphericity
using Mauchly’s test, and corrected using Greenhouse–Geisser
correction. Friedman’s test does not assume sphericity nor
normality, and thus no such correction was necessary for the
accuracy data. Follow-up tests for conditional differences were
conducted using traditional paired-samples t-tests for the RT
data and Conover’s posthoc tests for the accuracy data, and were
corrected for multiple comparisons using the Holm–Bonferroni
method. We next performed targeted analysis to examine the
potential for superadditive effects of multisource cognitive
interference on behavior. To this end, we first computed the
“interference effect” of each interference condition within each
participant (i.e., the Flanker, Simon, and multisource conditions)
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by subtracting each behavioral metric in the control condition
from the same metric in each interference condition (e.g., Simon
RT–control RT). From this, we were left with participant-level
accuracy and RT values representing the difference in task
performance caused by each type of interference. Again, we
tested these models for normality prior to statistical testing
using the Shapiro–Wilk test and found that the accuracy data,
and not the harmonic RT data, exhibited significant deviations
from normality. Thus, to test for superadditivity, we computed
paired-samples’ t-tests for RT and Wilcoxon signed-rank tests
for accuracy, between the multisource interference condition
and the summed effects of interference from the Simon and
Flanker conditions, within each participant. Using these tests, a
rejection of the null hypothesis would indicate that the simul-
taneous presentation of two interference types (multisource)
affects task performance at a different magnitude than what
would be expected by an additive model (Simon + Flanker).

MEG Data Acquisition

All recordings were conducted in a one-layer magnetically
shielded room with active shielding engaged for environmental
noise compensation. Neuromagnetic responses were sampled
continuously at 1 kHz with an acquisition bandwidth of 0.1–
330 Hz using a 306-sensor Elekta MEG system (Helsinki, Finland)
equipped with 204 planar gradiometers and 102 magnetometers.
It is important to note that we only considered data from the
planar gradiometers for this study. Participants were monitored
during data acquisition via real-time audio–video feeds from
inside the shielded room. Each MEG dataset was individually
corrected for head motion and subjected to noise reduction
using the signal space separation method with a temporal
extension (Taulu and Simola 2006).

Structural MRI Processing and MEG Coregistration

Preceding MEG measurement, four coils were attached to the
participant’s head and localized, together with the three fiducial
points and scalp surface, using a 3D digitizer (Fastrak 3SF0002,
Polhemus Navigator Sciences). Once the participant was posi-
tioned for MEG recording, an electric current with a unique fre-
quency label (e.g., 322 Hz) was fed to each of the coils. The mag-
netic fields associated with these currents were then localized in
reference to the sensors throughout the recording session. Since
coil locations were also known in head coordinates, all MEG
measurements could be transformed into a common coordinate
system. With this coordinate system, each participant’s MEG
data were coregistered with individual structural T1-weighted
MRI data (N = 13), when available, or alternatively were fitted to
a template MRI (N = 10) using the scalp surface points, in BESA
MRI (Version 2.0) prior to source space analysis. Importantly,
these two approaches have been shown to yield very similar
results (Holliday et al. 2003). Furthermore, none of our key neural
metrics (i.e., the right occipital responses from the RM–ANOVAs
and the left superior parietal response from the superadditivity
analysis) significantly differed according to whether a template
or individual MRI was used (P > 0.15). All of our relevant statisti-
cal contrasts were also within subjects, which further mitigates
concerns about any of our results being driven by a systematic
bias between these methods. Structural MRI data were aligned
parallel to the anterior and posterior commissures and trans-
formed into standardized space. Following source analysis (i.e.,
beamforming), each participant’s 4.0 × 4.0 × 4.0-mm functional

images were also transformed into standardized space using
the transform that was previously applied to the structural MRI
volume and spatially resampled.

MEG Preprocessing, Time–Frequency Transformation,
and Sensor-Level Statistics

Cardiac and blink artifacts were identified in the raw recordings
using the MEG sensors with the best signal-to-noise ratio (SNR)
for the specific source of interference (i.e., near the orbits for
eye blinks/movements and near the inferior temporal cortices
for cardiac events) and removed from the data using signal
space projection (SSP), which was subsequently accounted for
during source reconstruction (Uusitalo and Ilmoniemi 1997). The
continuous magnetic time series was then divided into 1500-
ms epochs, with the baseline extending from -500 to 0 ms prior
to the onset of the probe stimuli. Epochs containing remain-
ing artifacts (after SSP) were rejected per participant using a
fixed threshold method, supplemented with visual inspection.
An average amplitude threshold of 1009.78 (SD = 169.18) fT and
an average gradient threshold of 226.81 (SD = 89.86) fT/s was
used to reject artifacts. Across the group, an average of 338.09
(SD = 11.15) trials per participant were used for further analysis.
The number of accepted trials did not differ across the four
cognitive interference conditions (P > 0.50), which was essential,
as our primary analyses consisted of statistical comparisons
between these conditions and could have been biased by con-
ditional differences in the SNR.

The artifact-free epochs (−500 to 1000 ms, with zero defined
as visual stimulus onset) were next transformed into the time–
frequency domain using complex demodulation (Kovach and
Gander 2016) with a time/frequency resolution of 2 Hz/25 ms
and a bandwidth of 4–100 Hz. The resulting spectral power
estimations per sensor were then averaged over trials to
generate time–frequency plots of mean spectral density. These
sensor-level data were normalized by each respective frequency
bin’s baseline power, which was calculated as the mean
power during the −500 to 0 ms of time period. The specific
time–frequency windows used for subsequent source imaging
were determined by statistical analysis of the sensor-level
spectrograms across all conditions and the entire array of
gradiometers. Each data point in the spectrogram was initially
evaluated using a mass univariate approach based on the
general linear model. To reduce the risk of false-positive results
while maintaining reasonable sensitivity, a two-stage procedure
was followed to control type 1 error. In the first stage, paired-
sample t-tests against baseline were conducted on each data
point and the output spectrogram of t-values was thresholded
at P < 0.05 to define time–frequency bins containing potentially
significant oscillatory deviations across all participants. In stage
two, the time–frequency bins that survived the threshold were
clustered with temporally and/or spectrally neighboring bins
that were also below the threshold (P < 0.05), and a cluster
value was derived by summing all of the t-values of all data
points in the cluster. Nonparametric permutation testing was
then used to derive a distribution of cluster values, and the
significance level of the observed clusters (from stage one) were
tested directly using this distribution (Ernst 2004; Maris and
Oostenveld 2007). For each comparison, 1000 permutations were
computed to build a distribution of cluster values. Based on
these analyses, the time–frequency windows that contained
significant oscillatory events across all participants were
subjected to a beamforming analysis. This approach was taken
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for two primary reasons: (1) by defining our time–frequency bins
using a data-driven method, we remove a level of subjectivity
from our analysis (and thus enhance replicability for future
studies) and (2) by only performing subsequent analyses on
time–frequency windows that exhibited a significant change
from prestimulus baseline periods, we enhance the SNR of our
data, thereby increasing the confidence in the robustness of our
measured neural responses. Importantly, the distribution of our
trial numbers ensures that this sensor-level selection analysis
can be reasonably assumed to be orthogonal to subsequent tests
for condition-wise differences and superadditivity, mitigating
any concerns regarding circularity (Kriegeskorte et al. 2009).

MEG Source Imaging

Cortical networks were imaged through an extension of the
linearly constrained minimum variance vector beamformer
known as dynamic imaging of coherent sources (Gross et al.
2001), which applies spatial filters to time–frequency sensor
data in order to calculate voxel-wise source power for the entire
brain volume. Imaging of oscillatory responses was performed
per condition, per participant for the statistically defined
time–frequency bins in the alpha (8–14 Hz; 300–600 ms), beta
(18–28 Hz; 350–750 ms), and gamma [(64–76 Hz; 150–400 ms)
and (68–80 Hz; 475–700 ms)] bands. Further information is
provided in the Results section. The single images were
derived from the cross-spectral densities of all combinations
of MEG gradiometers averaged over the time–frequency range
of interest, and the solution of the forward problem for each
location on a grid specified by input voxel space. Following
convention, we computed noise-normalized, source power per
voxel in each participant using active (i.e., task) and passive (i.e.,
baseline) periods of equal duration and bandwidth. Such images
are typically referred to as pseudo-t maps, with units (pseudo-
t) that reflect noise-normalized power differences (i.e., active
vs. passive) per voxel. This generated participant-level pseudo-
t maps for each time–frequency-specific response identified
in the sensor-level cluster-based permutation analysis. MEG
preprocessing and imaging used the Brain Electrical Source
Analysis (BESA version 6.1) software.

MEG Source Statistics

To initially investigate the spatial location of each frequency-
specific neural response to the task, we computed grand-
average maps per time–frequency response, collapsing across all
interference conditions. For this analysis, we imaged the data in
each participant using all trials within each statistically defined
time–frequency response window regardless of cognitive
interference condition, and averaged these participant-wise
maps to create one grand-averaged map per oscillatory response
for the entire group. These grand-average maps were used to
discern the nature of each response (e.g., motor vs. visual) and
target subsequent analyses toward responses originating from
nonmotor regions, as investigating somato-motor processing of
cognitive interference was not an aim of this study. For example,
we did not further investigate the beta or later gamma response
because the grand-average maps suggested exclusively somato-
motor processing in these time–frequency windows.

To examine interference-related differences in frequency-
specific neural activity, we conducted RM–ANOVAs in SPM12
for each time–frequency response of interest (alpha and early
gamma) using the voxel-wise data across the entire brain.

Significant clusters were identified using a relatively strict initial
threshold of P < 0.005, followed by a cluster-size correction of
k > 500 contiguous voxels, based on the theory of Gaussian
random fields (Poline et al. 1995; Worsley et al. 1996, 1999).
From the resulting significant clusters, pseudo-t values per
participant were extracted from the peak voxel (i.e., the
voxel with the highest value per cluster), and these were
used in posthoc testing. Of note, this method of extracting
representative data from the peak voxel, rather than the average
across a mask defined region or similar method, is not without
limitations. However, this approach does avoid some amount
of arbitrariness, as it identifies the data of interest without
selecting a mask a priori, and represents the most robust
effects. On the other hand, this approach requires a level of
extrapolation to infer that these data represent the same pattern
of effects across the significant cluster from which they were
extracted. Posthoc testing consisted of checks for sphericity
violations using Mauchly’s test, and if necessary computation
of Greenhouse–Geisser corrected P values. Importantly, none
of our significant tests became nonsignificant when applying
this correction. All posthoc t-tests were also corrected for
multiple comparisons using the Holm–Bonferroni method (i.e.,
corrected for the comparisons made within the respective
model—six posthoc tests per model), and the results of this
correction are indicated in Supplementary Figure 1. To also
qualitatively examine the temporal evolution of these responses
per condition, we computed virtual sensor data by applying
the sensor-weighting matrix derived through the forward
computation to the preprocessed signal vector, which yielded a
time series derived from the location of interest. These data were
then decomposed into the time–frequency domain, averaged
over the relevant frequency band of interest, and are displayed
in Supplementary Figures 2–4.

Finally, we computed whole-brain statistical maps inves-
tigating the potential for superadditivity of multisource
interference on the neural dynamics, similar to the comparisons
made to test for superadditivity in the behavioral metrics. For
this analysis, we first performed a voxel-wise subtraction of
the control condition map from each of the three interference
condition maps for each participant per time–frequency
component (i.e., alpha and early gamma). This produced
participant-level whole-brain interference effect maps for each
of the Simon, Flanker, and multisource conditions. We then
summed the voxel-wise values of the Simon and Flanker
interference effect maps to produce a whole-brain map (per
participant, per neural response), which represented the null
hypothesis of an additive model. To then test the potential
for superadditivity statistically, whole-brain paired-samples
t-tests were computed between the multisource interference
model maps and these additive-model maps. It is important to
note that these tests were performed one-tailed, since a two-
tailed test would also investigate significant subadditive effects,
and such an analysis was not justified by the behavioral data
and would be inherently difficult to interpret. Furthermore,
it should also be stressed that these tests for superadditivity
were motivated entirely posthoc after initial analysis of our
behavioral data, and that superadditivity analyses were not
an original hypothesis of this study. The end result of this
analysis was two spectrally defined (i.e., one alpha and one
gamma) whole-brain statistical maps showing the cortical
regions that exhibited a significantly larger interference effect
in the multisource condition than what would be expected
from the additive model (H1: multisource > Simon + Flanker).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz214#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz214#supplementary-data
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Table 1 Central tendency and variability of behavior by condition.

Condition Mean (SD) Median (MAD)

RT (ms) Control 653.15 (111.10) 664.52 (70.10)
Simon 717.77 (120.89) 685.40 (73.49)
Flanker 770.26 (116.15) 782.42 (87.43)
Multisource 865.91 (121.85) 864.54 (107.85)

Accuracy
(% correct)

Control 98.42 (1.42) 98.98 (0.03)
Simon 95.86 (3.28) 96.97 (1.92)
Flanker 97.96 (2.13) 97.98 (1.02)
Multisource 93.68 (4.28) 95.83 (2.08)

MAD, median absolute deviation.

Once again, pseudo-t values per participant were extracted
from the peak voxel of each cluster in these maps for further
testing. These data were also tested for normality using the
Shapiro–Wilk method, and in cases where either of the variables
was significantly non-normal, a comparable nonparametric
test was used (e.g., a Spearman’s rank order coefficient rather
than a Pearson’s coefficient). To again account for multiple
comparisons, an initial significance threshold of P < 0.005 was
used for the identification of significant clusters in these whole-
brain statistical maps, accompanied with a cluster (k) threshold
of at least 500 contiguous voxels.

Results
Effects of Cognitive Interference on Task Performance

Overall, participants performed well on the task (Fig. 1), with
a mean accuracy of 96.49% (SD = 2.29%) and a mean RT of
749.97 ms (SD = 114.56 ms). Condition-wise behavioral data
can be found in Table 1. RM tests for conditional effects (Fig. 2)
revealed a significant effect of interference condition on both
accuracy (Friedman’s test; χ2(3, N = 23) = 43.57, P < 0.001) and
RT (RM–ANOVA; F(2.36,51.82) = 253.27, P < 0.001). Participants
were significantly slower to respond on the Simon (paired t-
test; t(22) = 9.69, P < 0.001), Flanker (paired t-test; t(22) = 15.68,
P < 0.001), and multisource (paired t-test; t(22) = 22.84, P < 0.001)
trials relative to the control trials. Furthermore, participants
were significantly slower in the multisource condition than
both the Simon (paired t-test; t(22) = 19.29, P < 0.001) and
Flanker (paired t-test; t(22) = 14.26, P < 0.001) conditions.
Participants also responded significantly slower on Flanker
than Simon trials (paired t-test; t(22) = 5.02, P < 0.001). The
results of the posthoc comparisons for accuracy were generally
similar to the RT results. Posthoc comparisons for accuracy
revealed that participants were significantly less accurate
in the Simon (Conover’s test; t(69) = −4.27, P < 0.001) and
multisource (Conover’s test; t(69) = −5.79, P < 0.001) conditions
than in the control condition. Furthermore, participants were
significantly less accurate in the multisource condition than in
the Flanker condition (Conover’s test; t(69) = −4.61, P < 0.001).
Finally, participants were less accurate in the Simon condition
than in the Flanker condition (Conover’s test; t(69) = −3.09,
P = 0.009). No significant differences in accuracy were found
between control and Flanker conditions nor between the
Simon and multisource conditions. All behavioral posthoc
results remained significant after correction for multiple
comparisons.

Upon visual inspection of these data, it became apparent
that a superadditive effect of MSIT performance was possible.
Indeed, statistical tests between the effect of multisource inter-
ference and the additive model (Simon interference + Flanker
interference) were significant for RT (paired t-test; t(22) = −5.32,
P < 0.001) and trending for accuracy (Wilcoxon signed-rank test;
Z(N = 23) = 82, P = 0.092), such that the concurrent presentation
of the two interference sources worsened the behavior, as com-
pared to their additive effects in isolation.

Spectral, Temporal, and Spatial Definitions of Neural
Responses to the Task

Before testing the MEG measures for a main effect of interfer-
ence condition, we first had to determine the time–frequency
windows containing major neural responses across the four
conditions. After transforming the data into time–frequency
space, we observed robust activity in the alpha, beta, and
gamma bands (Fig. 3). Specifically, an early desynchronization
in the alpha (8–14 Hz; 300–600 ms) band across parieto-occipital
sensors coincided temporally with a much higher frequency
synchronization in the gamma (64–76 Hz; 150–400 ms) band
in posterior occipital sensors. Occurring slightly later were
two responses in the beta (18–28 Hz; 350–750 ms) and gamma
(68–80 Hz, 475–700 ms) bands, both of which were centered
in the left somato-motor sensors. Source imaging of these
responses revealed that the early alpha and gamma responses
were originating bilaterally from lateral occipital and primary
visual regions, respectively. In contrast, the later beta and
gamma responses were both found to originate from the hand-
knob region of the precentral gyrus, implicating them in the
processing of the motor response. As investigating somato-
motor processing of cognitive conflict was not an aim of this
study, these responses were not examined in subsequent whole-
brain statistical analyses.

Alpha and Gamma Oscillations Index Divergent and
Superadditive Effects of Cognitive Interference

To examine the neural dynamics underlying the three types
of cognitive interference, we used the condition-specific
participant-level maps to compute whole-brain RM–ANOVAs
for the visual alpha and gamma responses. For these statis-
tical comparisons, the within-subjects factor of interference
condition was of interest. In the alpha range, a robust main
effect of condition was observed in the right lateral occipital
(F(3,66) = 7.06, P < 0.001) and right cerebellar (F(3,66) = 7.30,
P < 0.001) regions (Fig. 4). Posthoc testing revealed that alpha
activity in the right lateral occipital distinguished the control
and Simon conditions from the Flanker and multisource
conditions, such that the decrease from baseline was greater
than in the control condition for Flanker (t(22) = −3.89, P < 0.001)
and multisource (t(22) = −2.98, P = 0.007) interference, but not
for Simon (t(22) = −0.09, P = 0.926) interference. The magnitude
of the alpha decrease was also greater for Flanker interference
than for Simon interference (t(22) = −3.68, P = 0.001), and no
significant difference in the alpha response was observed
between Flanker and multisource interference (t(22) = 0.23,
P = 0.820). Finally, the alpha response was significantly larger for
multisource than for Simon interference (t(22) = −2.63, P = 0.015).
Importantly, all of these effects remained significant following
correction for multiple comparisons. Alpha activity in the right
cerebellum exhibited the same distinction between Simon and
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Figure 2. Behavioral results. Results from the behavioral analyses, with data for the main effect of interference condition presented on the left, and results from the

superadditivity analyses on the right. Plots display the individual data points, along with the median (horizontal line), mean (x), first and third quartile (box), and local
minima and maxima (whiskers). ∗P < 0.01, corrected.

Flanker interference, with a similar pattern of significance (see
Supplementary Table 1 for comprehensive posthoc results).

A similar whole-brain RM–ANOVA for the visual gamma
response also revealed a robust main effect of interference
type in the right lateral occipital cortex (F(3,66) = 6.06, P = 0.001;
Fig. 5). In contrast to the alpha response in right lateral occipital
cortex, which distinguished control and Simon interference
from Flanker and multisource, the gamma response in the
same general region instead distinguished control and Flanker
interference from Simon and multisource interference. Posthoc
testing showed that the gamma increase from baseline was

greater than in the control condition for Simon (t(22) = 2.88,
P = 0.009) and multisource (t(22) = 2.86, P = 0.009) interference,
but not Flanker (t(22) = −0.13, P = 0.897) interference (Fig. 5).
The magnitude of this gamma increase was also greater for
Simon interference than for Flanker interference (t(22) = 3.33,
P = 0.003), and no significant difference in the gamma response
was observed between Simon and multisource interference
(t(22) = −0.21, P = 0.834). Finally, the gamma response was
significantly larger for multisource than for Flanker interference
(t(22) = 2.81, P = 0.01). Again, all of these effects remained
significant after correcting for multiple comparisons. For

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz214#supplementary-data
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Figure 3. Spectral, temporal, and spatial definitions of neural responses to the MSIT task. The MEG sensor spectrograms (left) display the time–frequency representations

of neural responses identified by cluster-based permutation analysis (see section Methods). Time (in ms) is denoted on the x-axis and frequency (in Hz) is denoted
on the y-axis, and the dashed white line at 0 ms indicates the onset of the integer stimuli. The color scale bar for percent change from baseline is displayed above
each plot. Each spectrogram represents group-averaged data from one gradiometer sensor that was representative of the neural responses in sensors over either

occipito-parietal (second and fourth from the top) or somato-motor (first and third from the top) regions. On the far right is the source-imaged representation of each
response, with the color scale bar to the right denoting response amplitude in pseudo-t units.

enhanced interpretation, peak-voxel time series visualizations
of these condition-wise effects are also available for the alpha
(Supplementary Figs 2 and 3) and gamma (Supplementary
Fig. 4) responses.

Motivated by the superadditive effect observed in the
behavioral data, we next performed a more targeted analysis
to examine the potential for superadditive effects of cognitive
interference subtypes on whole-brain oscillations. This analysis
(see section “Materials and Methods: MEG Source Imaging and
Statistics”) revealed a significant peak in the left superior
parietal cortex in the gamma band, as well as in the right
cerebellum (Fig. 6). Furthermore, the response superadditivity
in the left superior parietal cortex (multisource interference/ad-
ditive interference) covaried significantly with both measures of
task performance (Spearman rank-order correlations; accuracy:
r = −0.51, P = 0.014; RT: r = 0.52, P = 0.011), such that as response
superadditivity increased, task performance decreased. Similar
relationships with behavior were not present with response
superadditivity in the right cerebellum (Spearman rank-order
correlations; accuracy: r = −0.17, P = 0.443; RT: r = 0.24, P =
0.277). No significant superadditive effects were found in the
alpha band.

Discussion
By combining a novel adaptation of the MSIT, advanced source
imaging of MEG data, and whole-brain statistical analyses, we
identified the neural signatures of stimulus–stimulus and stim-
ulus–response cognitive interference and discerned oscillatory
responses in the posterior cortices that distinguish between

the two interference subtypes. Alpha-band power in the lateral
occipital cortices has repeatedly been linked to visual attention
and perception (Worden et al. 2000; Rihs et al. 2007; Capotosto
et al. 2009; Foxe and Snyder 2011; Handel et al. 2011; Rohenkohl
and Nobre 2011; Klimesch 2012; May et al. 2012; Herring et al.
2015; Marshall et al. 2015; Doesburg et al. 2016; Gulbinaite et al.
2017; McDermott et al. 2017; Wiesman et al. 2017, 2018b; Janssens
et al. 2018), and is thought to index a form of active cortical
inhibition (Kelly et al. 2006; van Dijk et al. 2008; Jensen and
Mazaheri 2010; Romei et al. 2010; Handel et al. 2011; Bonnefond
and Jensen 2012; Klimesch 2012; de Graaf et al. 2013; Jensen
et al. 2014; Spaak et al. 2014; Heinrichs-Graham and Wilson 2015;
Wiesman et al. 2016). Meanwhile, gamma-frequency activity in
occipital regions is also modulated by attention (Gruber et al.
1999; Shibata et al. 1999; Tallon-Baudry et al. 2005; Vidal et al.
2006; Jensen et al. 2007; Doesburg et al. 2008; Marshall et al.
2015), but these rhythms have been convincingly tied to more
fine-grained coding of stimulus features and object representa-
tion, such as complexity, size, and duration (Tallon-Baudry and
Bertrand 1999; Bertrand and Tallon-Baudry 2000; Posada et al.
2003; Busch et al. 2004; Muthukumaraswamy and Singh 2013).
Furthermore, visual and posterior parietal gamma activities has
been proposed as an early neural correlate of efficient visuo-
motor integration (Pesaran et al. 2002; Womelsdorf et al. 2006;
Womelsdorf and Fries 2006; Van Der Werf et al. 2008). At the
cell-circuit level, high-frequency gamma oscillations are known
to be the result of a dynamic balance between local excitatory
(e.g., glutamatergic pyramidal) and inhibitory (e.g., GABAergic
interneuron) cells (Edden et al. 2009; Muthukumaraswamy et al.
2009; Tiesinga and Sejnowski 2009; Gaetz et al. 2011; Uhlhaas

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz214#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz214#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz214#supplementary-data
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Figure 4. Main effects of interference on the posterior alpha response. Source-
level images (top) reflect the significant results of whole-brain RM–ANOVAs
testing for a main effect of interference condition on visual neural responses in

the alpha-frequency (8–14 Hz) band, with the color scale bar at the top denoting
voxel-wise significance. Below each image are the average response amplitude
values (in pseudo-t) for each interference condition, with error bars denoting
standard error of the mean (SEM). For both the right lateral occipital and right

cerebellar peak voxels, responses to Simon interference did not differ from the
control condition, and responses to Flanker interference did not differ from
multisource interference. Responses to Simon and Flanker interference also

significantly differed at both locations.

et al. 2011; Kujala et al. 2015; Wiesman 2015), with a long his-
tory of theories linking gamma activity to gamma-aminobutyric
acid (GABA)-mediated local interneuronal circuits (Buzsáki and
Wang 2012). In contrast, slower alpha-frequency rhythms are
thought to be resultant of distal drives from the lateral genicu-
late and other areas of the thalamus (Andersen and Andersson
1968; da Silva 1991; Bollimunta et al. 2011).

In light of these previous findings on the role of alpha and
gamma oscillations, the observed spectral double dissociation in
the right lateral occipital cortices between interference subtypes
provides critical insight. Essentially, stimulus–stimulus interfer-
ence, such as that elicited by our Flanker and multisource (where
both Flanker and Simon subtypes were present) interference
conditions, would be expected to require a greater degree of
active processing in higher order visual areas, since the source
of the interference is external (i.e., f lankers within the visual
field) and would need to be actively parsed and suppressed.
As discussed above, such external interference is likely miti-
gated by visual selective attention and related processes in the
extended visual cortices, and this processing is widely believed
to be indexed by decreases in alpha activity, which were robust
in the right lateral occipital cortices for both the Flanker and
multisource conditions. Conversely, in the control and Simon
interference conditions, the nontarget stimuli (always 0) are
not a source of interference, and thus less visual processing
of these stimuli is needed for accurate performance, which

Figure 5. Main effects of interference on the posterior gamma response. Similar
to Figure 3, the source-level image (top) represents the significant results of
whole-brain RM–ANOVAs testing for a main effect of interference condition on

neural responses in the gamma-frequency range (64–76 Hz), with the color scale
bar at top denoting voxel-wise significance. Below the image are the average
response amplitude values (in pseudo-t) for each interference condition, with
error bars denoting SEM. For the right lateral occipital peak voxel, responses to

Flanker interference did not differ from the control condition, and responses
to Simon interference did not differ from multisource interference. Responses
to Simon and Flanker interference also significantly differed at this location, as

did responses to Flanker and multisource interference.

again is consistent with the much weaker alpha response in
these two conditions relative to the Flanker and multisource.
On the other hand, both the Simon and multisource condi-
tions contain stimulus–response interference, whereby the pre-
potent motor responses (i.e., internal) are a primary source of
interference. Thus, the critical processes include identifying the
stimulus and rapid programming of the motor response. Such
fine-grain coding of stimulus features and visuo-motor integra-
tion has been linked in previous research to gamma oscillations
(Tallon-Baudry and Bertrand 1999; Bertrand and Tallon-Baudry
2000; Pesaran et al. 2002; Posada et al. 2003; Busch et al. 2004;
Womelsdorf et al. 2006; Womelsdorf and Fries 2006; Van Der
Werf et al. 2008; Muthukumaraswamy and Singh 2013). Once
again, our primary MEG findings are consistent with this pre-
vious research, as we observed robust gamma oscillations in
the right lateral occipital in the Simon and multisource, but not
the Flanker and control conditions. Furthermore, our behavioral
RT data also support the more rapid visual analyses and motor
programming in the Simon relative to the Flanker condition.

The observed spectral double dissociation of cognitive inter-
ference subtypes in the lateral occipital cortices is noteworthy
for at least two reasons. First, the vast majority of research
regarding cognitive interference has focused on brain regions
that are typically considered “higher order,” such as the pre-
frontal cortices (Hanslmayr et al. 2008; Zhu et al. 2010; Frühholz
et al. 2011) and anterior cingulate cortex (Bush et al. 2003;
Weissman et al. 2005; Hanslmayr et al. 2008; Frühholz et al. 2011;



1940 Cerebral Cortex, 2020, Vol. 30, No. 3

Figure 6. Superadditivity effects on the gamma response and relationships to
behavior. (Top left) Source-level images on the left represent whole-brain paired-

samples t-tests between the additive model (Flanker + Simon) and multisource
model in the gamma band, with the color scale bar below denoting voxel-
wise significance. (Top right) Box-and-whisker plot data demonstrating the
superadditivity effect on gamma activity at the left superior parietal peak voxel.

(Bottom) To examine the relationship between these neural indices and behav-
ior, response superadditivity ([multisource/additive] × 100) values were com-
puted for the superadditivity peaks, and these values were correlated with

metrics of task performance. These relationships are displayed at the bottom,
with RT (in ms) on the y-axis of the bottom left plot and accuracy (in % correct)
denoted on the y-axis of the far right plot. For both plots, response superadditiv-
ity (in %) is denoted on the x-axis, and lines of best-fit are overlaid on the plot

along with the correlation coefficient for each respective relationship.

Iannaccone et al. 2015). Thus, our findings are complementary to
this past research and to an emerging line of research suggesting
that cognitive interference has a robust effect at the level of late-
stage visual processing (Gulbinaite et al. 2017; McDermott et al.
2017; Janssens et al. 2018), although our data go further in being
the first to spectrally dissociate this late-stage visual processing
effect based on the type of interference that is taking place. Sec-
ond, a greater understanding of the spectral definitions of cogni-
tive interference will certainly lend itself to future investigations
on this topic. For example, the knowledge that lateral occipital
gamma activity indexes stimulus–response interference, while
alpha responses index stimulus–stimulus interference, could
provide a starting point for noninvasive manipulations of these
rhythms aimed at modulating human behavior. Rhythmic pat-
terns of transcranial magnetic and electrical stimulation have
already proven useful in a variety of contexts (Thut et al. 2011a,
2011b; Helfrich et al. 2014); however, to date no studies have
attempted to modulate occipital dynamics in a spectrally spe-
cific manner with the ultimate goal of enhancing/degrading the
impact of interference.

It should be noted that the spatial location of these effects
(i.e., the “alpha-Flanker” and “gamma-Simon” clusters) was not
perfectly overlapping, and in fact, the peak of the increased
alpha-frequency responses to Flanker interference was slightly

more lateral and superior than the pattern of gamma respon-
sivity to Simon interference. This is in line with previous
research as well; alpha-frequency activity is commonly found
in “later” lateral occipital cortices, while gamma-frequency
visual responses are commonly closer to “early” visual cortex.
Importantly, this potential spatial distinction is an early clue
that might also be useful in subsequent studies using spectrally-
and spatially targeted stimulation of visual regions.

Although we did hypothesize that cognitive interference sub-
types would exhibit unique effects on task performance and
spectrally specific neural responses, we were surprised to also
find a superadditive effect of multisource interference on these
metrics. In studies of cognitive interference, superadditivity rep-
resents the inefficient handling of distinct cognitive processes
by shared neural systems, and thus our behavioral data support
that the neural systems indexing differing subtypes of cognitive
interference overlap at least partially. Furthermore, we find that
this overlap appears to reside in the superior parietal cortices
spatially, and in the gamma-band spectrally. Previous findings
of superadditive effects on cognitive processing in general have
been in regard to different cognitive domains, including mem-
ory (Shimamura and Wickens 2009; Lwin et al. 2010), proba-
bility judgment (Macchi et al. 1999; Sloman et al. 2004), and
multisensory integration (Holmes and Spence 2005; Laurienti
et al. 2005), and so this finding was relatively unexpected. In
terms of the underlying neurophysiology, superadditivity is typ-
ically reported in the form of increased neuronal spiking within
a single cell or cell circuit (Holmes and Spence 2005); however,
future research will be necessary to understand how this might
relate to the frequency-specific increases in response to ampli-
tude observed here.

Numerous studies have investigated potentially additive
effects of stimulus–stimulus and stimulus–response subtypes
on behavior, but the vast majority of them have found that
the combined interference effects were subadditive. Although
conflicting at first, our finding of superadditivity could be
attributed to a number of discrepancies in experimental design
and presentation. For instance, all previous studies known to
us implemented the spatial conflict component of stimulus–
response interference by presenting their entire stimulus set
to the left or the right of fixation. While this manipulation
certainly induces the intended interference effect in isolation,
when combined with stimulus–stimulus interference, this
presentation would almost certainly have influenced spatial
attention. Furthermore, this presentation style only allowed for
two potential responses susceptible to the stimulus–response
interference (i.e., left or right presentation interfering with the
right or left button press), and thus the stimulus–response
interference load would have been substantially lower than
in our design, where three potential responses were presented
at one of three spatial locations. Although perhaps unlikely,
it is possible that the greater interference load present in our
study was necessary to tax shared neural resources to the
point of exhibiting a negative effect on behavior. Finally, nearly
all previous studies appear to have utilized a block design
for presenting the different types of interfering stimuli, and
such blocked designs are known to significantly affect the
impact of cognitive interference on behavior (Stins et al. 2005).
Regardless of the precise experimental discrepancies that these
effects stem from, we found robust evidence of a superadditive
effect of stimulus–stimulus and stimulus–response cognitive
interference using an exceedingly simple adaptation of a well-
studied cognitive paradigm. Future studies should vary some of
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these experimental parameters to determine the critical players
in superadditivity.

Interestingly, the superadditivity effect was observed not
only in the task performance outcomes (i.e., RT and accuracy),
but also in gamma-range neural responses in left superior
parietal cortex and right cerebellum. The gamma-frequency
superadditivity effect in left superior parietal cortex covaried
robustly with RT and accuracy, signaling the task relevance of
this response. While neural responses implicated in selective
attention and cognitive control are often right lateralized
(Thiebaut de Schotten et al. 2011; Aron et al. 2014), the
recruitment of homologous cortices in the left hemisphere
has been widely supported as being indicative of increased
cognitive load (Reuter-Lorenz and Cappell 2008). Given this,
it is then not surprising that our observed superadditivity
effects were so tightly coupled to activity in the left superior
parietal lobule, as a more distributed network of cortical nodes
would be necessary to manage the increased disruption from
simultaneously presented sources of interference.

Despite our novel findings, this research is not without
its limitations. First, and perhaps most conspicuously, we did
not observe any significant conditional effects in the anterior
cingulate cortex, which has been reported in previous fMRI
studies of the MSIT (Bush et al. 2003; Bush and Shin 2006).
One potential explanation for this null finding is again the
differences in experiment presentation, and in particular, the
blocked design (Stins et al. 2005). Additionally, MEG is more
sensitive to superficial sources of neural activity, and so it
is possible that cingulate activity was present, but not as
easily resolved by our measurement and/or statistical methods.
Second, while this task design allows for extremely effective
balancing of visual stimuli across interference subtypes, it does
not allow for perfect balancing of the number of stimulus
sets within each condition. This equates to three stimulus
sets for the control condition, six stimulus sets for the Simon
and Flanker conditions, and twelve stimulus sets for the
multisource condition. While this certainly raises questions
of a confounding effect of novelty, our results do not appear to
reflect this potential effect. The induced amplitude in the alpha
and gamma bands was selectively increased in the Flanker
and Simon conditions, respectively, and these increases were
both present in the multisource condition. In the case of the
superadditivity effect in the left superior parietal cortices,
there was no significant difference in this response among the
control, Simon, and Flanker conditions—only between these
three conditions and the multisource condition. Thus, it appears
that these data did not follow the “novelty pattern” that would
be expected (i.e., control < Flanker = Simon < multisource). It
should also be noted that the correct response required was
evenly balanced across the four conditions (i.e., an equal ratio of
index, middle, and ring-finger responses). Third, exploratory
analyses investigating phase–phase and phase–amplitude
relationships between the lateral occipital and superior parietal
regions identified in this manuscript did not suggest significant
coupling. While it is potentially the case that no such coupling
exists, it is equally likely that limitations inherent to this
dataset precluded us from finding any connectivity that does
exist, and future studies should further examine this potential.
Finally, the potential involvement of motor responses (i.e.,
the beta desynchronization and gamma synchronization) in
these effects was not within the (already broad) scope of this
study. Future research should certainly focus on this aspect,
particularly in light of recent reports of interference effects

in the motor cortex (Gaetz et al. 2013; Heinrichs-Graham
et al. 2018). Despite these limitations, these findings are of
interest, as they shine new light on the spectral-, temporal, and
spatial-properties of cognitive interference in the human brain.
A number of patient populations suffer from an inability to
appropriately manage cognitive interference, including but
not limited to Alzheimer’s disease (Baddeley et al. 2001),
diabetes (Embury et al. 2018), human immunodeficiency virus
(HIV)-associated neurocognitive disorders (Lew et al. 2018),
schizophrenia (McGhie 1964), attention deficit (Bush et al. 2008),
and amyotrophic lateral sclerosis (Vieregge et al. 1999; Pinkhardt
et al. 2008). Hopefully, the findings from this study can be used
to further both basic research into the neural underpinnings of
these disorders, as well as translational research into potential
therapeutics (e.g., transcranial stimulation to enhance cognitive
performance).

Supplementary Material
Supplementary material is available at Cerebral Cortex online.

Funding
National Institutes of Health (grants R01-MH103220 to T.W.W.,
R01-MH116782 to T.W.W., R01-MH118013 to T.W.W., and F31-
AG055332 to A.I.W.); National Science Foundation (grant
#1539067 to T.W.W.); NASA Nebraska Space Grant (A.I.W.).

Notes
The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
Conflict of Interest: The authors declare no competing interests,
financial or otherwise.

References
Andersen P, Andersson SA. 1968. Physiological basis of the alpha

rhythm. New York: Plenum Publishing Corporation.
Aron AR, Robbins TW, Poldrack RA. 2004. Inhibition and the right

inferior frontal cortex. Trends Cogn Sci. 8(4):170–177.
Aron AR, Robbins TW, Poldrack RA. 2014. Inhibition and the

right inferior frontal cortex: one decade on. Trends Cogn Sci.
18(4):177–185.

Baayen RH, Milin P. 2010. Analyzing reaction times. Int J Psychol
Res. 3(2):12–28.

Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK. 2001.
Attentional control in alzheimer’s disease. Brain. 124(Pt 8):
1492–1508.
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