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RNA viruses: genome structure and evolution 
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The explosive pace of sequencing of RNA viruses is leading to rapid 
advances in our understanding of the evolution of these viruses and of the 
ways in which their genomes are organized and expressed. New insights 
are coming not only from genomic nucleotide sequence comparisons, but 
also from direct sequencing of transcribed mRNAs and of RNAs that serve 

as intermediates in replication. 

Current Opinion in Genetics and Development 1991, 1:485--493 

Introduction 

During the past decade, advances in the technology of 
cloning and sequencing have made possible the very 
rapid acquisition of information about the organization 
of RNA virus genomes. At the current time, complete ge- 
nomic sequences exist for at least one representative of 
almost all the known RNA virus groups; this informa- 
tion has led to the elucidation of evolutionary relation- 
ships between many superficially diverse groups. It has 
often been found that overall strategies of replication, 
such as the relative location within a genome of genes 
of similar function, the presence or lack of subgenomic 
mRNAs, readthrough of termination codons for down- 
stream products, or use of an 'ambisense' transcription 
strategy, show that certain viruses are distantly related, 
even when no sequence homology remains [1]. In ad- 
dition, a number of short amino-acid-sequence elements 
have been recognized as indicators of the function of par- 
ticular proteins and it has been suggested that proteins 
sharing such motifs are also related by descent from com- 
mon ancestors. These indicators include the 'GDD motif, 
which is characteristic of RNA polymerases [2,3,4-], the 
'DEAD motif [5] and the 'G-x-x-GKS/T motif, which are 
characteristic of RNA helicases [5-7], and the sequence 
elements surrounding the amino acids in the active sites 
of viral-encoded proteases [8]. 

Even among well studied viruses known to be closely 
related, sequencing often clarifies their relationships. 
From sequence analysis, the genera of the Picornaviri- 
dae have been realigned [9] and the taxonomy of the 
Paramyxoviridae clarified (see discussion below). Se- 
quence comparisons have also been useful in epidemi- 
ological studies, both longitudinal studies to determine 
rates of change of a particular virus in nature, and com- 

parisons of geographic isolates to pinpoint the origins of 
epidemic viruses [10-12,13-]. 

One of the most exciting and unanticipated results of 
genome structure comparisons has been the discovery 
that plant virus counterparts exist for almost every ma- 
jor group of RNA-contalning animal viruses. In the case 
of the bunyaviruses, the plant and animal representatives 
are so closely related as to be placed within the same 
family, and an argument could be made that the plant 
tenuiviruses should be considered as belonging to the 
same genus as the animal uukuviruses and phleboviruses. 
In other cases, the plant and animal viruses are coun- 
terparts in the sense that they share genome organiza- 
tion and transcription strategies, and may share sequence 
homology in a number of proteins (even though each 
may possess unique genes required for replication in 
their respective hosts), but the plant and animal viri- 
ons may be quite different in morphology. The existence 
of such viruses indicates that plant and animal viruses 
have radiated from a small number of ancestral proto- 
typic viruses, and that the repertoire of successful repli- 
cation modes may be limited. These studies have also 
made it clear that recombination has played an impor- 
tant role in the evolution of RNA viruses, and that viruses 
can acquire the ability to jump across wide phylogenetic 
barriers, whether by recombination or adaptation, rather 
more easily than would have been suspected a decade 
ago. 

Because it is impossible to discuss all of the significant 
advances of the past year in a short review, we have se- 
lected three areas of particular interest. These include: 
a newly described mechanism used by the paramyx- 
oviruses to shift the translation frame that is useful for 
the classification of these viruses; updated information 
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on the replication strategy of coronaviruses; and addi- 
tional insights into plant virus counterparts of animal 
viruses. 

Coding strategy of the V/P genes of the 
Paramyxoviridae: a new mechanism for 
translational frame-shifting 

Many viruses are known to increase the information 
content of  their genomes by translating their RNA in 
more than one reading frame. Differential splicing (for 
viruses that replicate in the nucleus), translation initia- 
tion at more than one start codon, and ribosomal frame 
shifting have been described. In the V/P gene of the 
paramyxovirus simian virus 5 (SV5), two non-templated 
nucleotides are added during transcription of mRNAs to 
shift the reading frame in some, but not all, transcripts 
[14]. Within the past year, reports of  similar mechanisms 
used by several other members  of the paramyxovirus 
family have been described. Not only is the addition 
of non-templated G residues to shift the reading frame 
found in many, but not all, of these viruses, but the de- 
tails differ among the different viruses and appear to be 
useful in the classification of the members  of  this family. 

All members of  the family Paramyxoviridae, in the or- 
der Mononegavirales, harbor a genome comprising sin- 
gle segment of negative polarity RNA (approximately 
10--12kb). The family contains three currently recog- 
nized genera: pneumovirus, paramyxovirus, and mor- 
billivirus. The genus paramyxovirus includes Newcas- 
tle disease virus (NDV), the type virus, Sendai virus, hu- 
man parainfluenza virus (PIV)-I, PIV-2, PIV-3, and PIV-4, 
mumps virus, and SV5, all of  which contain a neu- 
raminidase activity. The morbillivirus genus encompasses 
measles virus, rinderpest virus, and canine distemper 
virus, all of which are quite similar to paramyxoviruses 
but lack the neuraminidase activity. Pneumoviruses (res- 
piratory syncytial virus and pneumonia virus of mice) are 
distinct, and contain a number  of  extra genes in addition 
to the nucleocapsid (N), phosphoprotein (P), membrane 
protein (M), glycoprotein (G), fusion protein (F), and 
large polymerase protein (L) genes common to all mem- 
bers of the family. All of  the genes are monocistronic with 
the exception of the P (or  V/P) genes. 

Paramyxoviruses and morbiUiviruses, but not pneu- 
moviruses, increase the coding capacity of  the V/P gene 
by translating products from more than one reading 
frame. The details of the V/P gene strategy are illus- 
trated in figure 1. Two mechanisms are used: initia- 
tion of translation at two different AUGs, and the a d  
dition of non-templated G residues to shift the read- 
ing frame. In some cases all three reading frames 
are utilized and up to four protein products are pro- 
duced from the V/P gene. In measles [15], PIV-1 
[16.], PW-3 [17..], and Sendai viruses [18], a P protein 
of approximately 600 amino acids is translated from an 
mRNA that is a faithful complement of  the genome. In 

addition, a smaller protein (C) of about 200 amino acids 
is translated from the same mRNA by internal initiation at 
a methionine in a second reading frame. The V protein, 
which is amino-coterminal with P but contains a carboxy- 
terminal domain that is highly conserved and rich in cys- 
teine residues, is encoded by an mRNA that is formed 
when a single non-templated G residue is inserted into 
the mRNA during transcription. This shifts the frame to 
the third possible frame, resulting in a V protein of  about 
400 amino acids. Note that for PIV-3, an mRNA contain- 
ing two non-templated G residues is also produced and 
is translated into a fourth protein, the D protein. 

In PIV-2 [19o], Pry-4 [20,], sv5 [14], mumps [21"], 
and probably NDV, there is no single long open read- 
ing frame (ORF). Instead there are two significant ORFs 
which overlap in the middle of  the gene. Translation of 
the mRNA resulting from faithful copying of the genome 
gives rise to the V protein. In the case of PIV-2 and SV5, 
exacdy two non-templated G residues are inserted to shift 
the frame to the P protein frame; in PIV-4 the number of  
G's inserted is more variable, although the specific inser- 
tion of two gives the P protein. For mumps, insertion of 
two G's results in the mRNA for the P protein, whereas 
insertion of four G's gives the message for another prod- 
uct, the I protein (Fig. 1). All of the P proteins of  this 
latter group are 391-399 amino acids long. 

The functions of all of  these proteins in virus replication 
have not yet been established, nevertheless it is fascinat- 
ing that in viruses that are so closely related and sim- 
ilar in many aspects of their replication, some should 
use one gene to translate only one protein, whereas up 
to four proteins are produced from a single gene in 
others. The disparity in use of the P protein among the 
Paramyxoviridae also suggests either that evolution to 
use multiple reading frames within a gene proceeds more 
rapidly than might have been predicted some time ago, 
or that the ancestral paramyxovirus used multiple reading 
frames, and that as the function of some of these transla- 
tion products became non-essential during evolutionary 
divergence some paramyxoviruses lost the ability to pro- 
duce them. 

Based on this information, there has been a suggestion 
to reclassify the Paramyxoviridae [20"]. The morbil- 
liviruses and pneumoviruses would remain unchanged, 
but the paramyxovirus genus would be split into two gen- 
era. One genus would contain PIV-1, PIV-3, and Sendal 
virus, and the second would contain PIV-2, PIV-4, SV5, 
mumps, and NDV. Notably, a recent analysis of  the 
aligned sequences of the L protein of  these various 
viruses led to precisely the same assignment [22--]. 

New aspects of coronavirus replication 

Many RNA viruses are known to produce subgenomic 
mRNAs. The plus-stranded togaviruses as well as a num- 
ber of plus-stranded plant viruses transcribe a sub- 
genornic mRNA for the structural protein(s), and all of 
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the minus-stranded viruses produce mRNAs that are less 
than genome length. These mRNAs lack a cL~-acting 
terminal element (either a sequence or a structure) es- 
sential for initiation of replication by the viral replicase, 
and thus cannot replicate in infected cells. The corona- 
viruses also produce up to seven different subgenomic 
mRNAs of genomic polarity. Sethna et  al. [23] reported 
the presence of minus-strand copies of  these mRNAs in 
coronavirus-infected cells and suggested that the sub- 
genomic RNAs could replicate. As discussed below, dur- 
ing the past year a number of groups have reported that 
coronavirus mRNAs are indeed actively replicated in in- 
fected cells. The Coronav i r idae  are plus-stranded RNA 
viruses with the largest known RNA genomes, more than 
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Fig. 1. Transcription and translation 
strategy of the V/P genes of the para- 
myxoviruses. In all cases the three types 
of shading represent the three possible 
open reading frames (ORFs) and the 
cysteine-rich domain is indicated by the 
asterisks. (a) For the morbillivirus group 
and the paramyxovirus group I the top 
two boxes are protein products trans- 
lated in different frames from an mRNA 
exactly complementary to the genomic 
RNA. The third ORF, accessed by the 
addition of a single non-templated nu- 
cleotide during RNA transcription, is 
shown with dark gray shading. For PIV- 
3 the addition of two non-templated 
nucleotides produces a protein with a 
carboxy-terminal domain in the same 
frame as the C protein. (b) For paramyx- 
ovirus group II the product of the ex- 
actly complementary mRNA is the V 
protein containing the cysteine-rich do- 
main (dark gray shading and asterisks) 
and the addition of the non-templated 
nucleotides shifts the frame to produce 
the P protein. References from which 
this information was obtained are cited 
in the text. 

27 kb. The genome organization of a typical coronavirus 
is illustrated in figure 2a (reviewed in [24] ). Almost 20 kb 
at the 5' end is devoted to two long ORFs encoding the 
RNA replicase. The replicase is translated from the ge- 
nomic RNA as two large potyproteins, with the larger, 
presumably produced by ribosomal frame-shifting, corm- 
sponding to the entire 20 kb region. These polyproteins 
are believed to be posttranslationally cleaved by two cys- 
teine proteases, which are encoded within them, into an 
unknown number  of  final products [25,26]. A nested set 
of  six or seven 3' coterminal subgenomic mR_NAs encode 
the virion proteins and a variable number  of  non-struc- 
tural components. The structural proteins include a nu- 
cleo capsid protein, N, that packages the RNA into a heli- 
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lost from some coronavirus-like viruses but not from 
others. All of  the shared characteristics suggest that the 
toroviruses and coronaviruses have diverged from a com- 
mon ancestor, but this argument will be considerably 
strengthened ff it is found that toroviruses, like corona- 
viruses, have independently replicating mRNAs. 

Plant viruses related to animal viruses 

One of the more interesting discoveries of  the past 
decade has been the finding that many plant viruses have 
animal virus counterparts (Table 1) to which they are re- 
lated to varying degrees. This is a topic that has received 
a great deal of attention in the last year, as more com- 
plete sequences of both plant and animal viruses have 
been determined. A recent volume of Seminars in Virol- 
ogy was devoted exclusively to this topic [33"]. 

The relationships between the animal picornaviruses 
and the plant comoviruses and between the animal 
togaviruses and the plant tobamoviruses, bromoviruses, 
and alfalfa mosaic virus were first described several 
years ago [34-37]. These relationships involve similar- 
ities in genome organization and clear amino-acid-se- 
quence homology in some, but not all, of the encoded 
proteins, suggesting quite strongly that the 'picorna-like 
plant viruses' and Picornaviridae are evolutionarily re- 
lated to one another as are 'Sindbis-like plant viruses' and 
Togaviridae. 

The genomes of Sindbis virus, the type alphavirus, family 
Togaviridae, and tobacco mosaic virus (TMV), are com- 
pared in figure 3. The relationship between Sindbis virus 
and TMV is straightforward. In each case the replicase 
genes are translated from the genomic RNA, readthrough 
of a termination codon is required to translate the RNA 
polymerase, and there are long stretches of clear amino 
acid sequence homology in three genes. The structural 
proteins are translated from a subgenomic mRNA and 
appear to be unrelated to one another. TMV is a rod- 
shaped virus, and Sindbis virus is enveloped. The recent 
demonstration that the nucleocapsid protein of  Sindbis 
virus is structurally related to chymotrypsin is an excit- 
ing development and suggests that this capsid may have 
been obtained by recombination from a cellular protease 
(Rossman, personal communication). The RNA replica- 
tion signals in the 3' non-translated region (NTR) are also 
different in the two viruses. The Sindbis virus 3' NTR con- 
tains a number  of sequence elements, including repeated 
sequences and a 19 nucleotide conserved element, that 
are believed to function as linear elements, and which ter- 
minate in a poly(A) tract. TMV contains a 3'terminal nu- 
cleotide sequence capable of forming a tertiary structure 
similar to that of tRNA that is recognized by an amino- 
acyl tRNA synthetase. These tRNA-like sequences in TMV 
and a number  of  other plant virus RNAs are thought 
to be important for RNA replication and are known to 
be essential for infectivity, because certain point muta- 
tions within the sequence are lethal [38]. Upstream of 
this structure are a number of  stem and loop elements 
in which certain bases in the loops can hydrogen bond 
with sequences adjacent to the stems, forming 'pseudo- 

Table 1. Similar single-strand RNA viruses infecting plants and animals. 

Animal viruses Plant viruses 

Genome type Virus family Morphology Example Virus group Morphology Example 

ssRNA-non-segmented 
plus-strand, smal l  Picornaviridae Icosahedral, poliovirus Comovirus Icosahedral, CMV 

non-enveloped non-enveloped 

Plus-strand, medium Togaviridae Icosahedral, S i n d b i s  Tobamovirus Helical, rod TMV 
enveloped Bromovirus Icosahedral BMV 

Minus-strand, small Rhabdoviridae Bullet-shaped, VSV Phytorhabdovirus Bullet-shaped, SYNV 
enveloped eveloped 

ssRNA--segmented 
minus-strand Bunyaviridae 

Phlebovirus Enveloped, Rift Valley Tospovirus 
helical 

Enveloped, TSWV 
helical 

nucleocapsid 
Uukuvirus Nucleocapsid Uukuniemi Tenuivirus Flexible rod RStV 

BMV, brome mosaic virus; CMV, cowpea mosaic virus; RSt V, rice stripe virus; SYNV, sonchus yellow net virus; TMV, tobacco 
mosaic virus; TSWV, tomato spotted wilt virus; VSV, vesicular stomatitis virus. 
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knots' [39]. Recently, it has been shown that the 3' NTR 
of TMV (containing both the tRNA and pseudoknot do- 
mains) can substitute functionally for a poly(A) tail in the 
expression of heterologous mRNAs in both plant and an- 
imal cells [40.°]. Some synergistic interaction with other 
viral elements is suggested by the fact that maximal ex- 
pression occurs in certain constructs in which the 5' NTR 
and 3' NTR of TMV flank the heterologous reporter gene 
[40".]. 

Members of at least five other groups of plant viruses be- 
long to the 'Sindbis-like superfamily', although in some 
cases the RNA genomes are divided into multiple inde~ 
pendent RNA segments, as in the case of bromoviruses 
and hordeiviruses (Fig. 3). Barley stripe mosaic virus 
(BSMV), a hordeivirus, has now been sequenced and 
found to have a number of interesting properties that il- 
lustrate the evolution of these viruses [41.]. In BSMV, the 
three domains of sequence similarity to Sindbis virus are 
encoded on separate gene segments. Remarkably, homo- 
logs to the helicase domain found in the Sindbis virus 
non-structural protein, nsP2, are present on BSMV RNA 
segments, although only one is required for RNA replica- 
tion [41-]. Two notable characteristics of hordeiviruses 
are: that the 3' N T ~  combine several motifs from 3' to 5', 
that is, a tRNA structure, a number of psuedoknots and 
finally a poly (A) tract adjacent to the end of the ORF 
(reviewed in [42]); and that a certain amount of plas- 
ticity is apparent in the polymerase, encoded on RNA 3. 

Three different forms of RNA 3 were originally identified 
in different strains of BSMV, although it has now been 
shown that all three can occur together in certain strains. 
Form IV contains a deletion in an essential polymerase 
domain, and is therefore defective and rapidly removed 
from the population. However, both Form III and Form 
II, which contain a tandem duplication of 350--370 nu- 
cleotides at the amino-temlinus of the ORF for the poly- 
merase, often occur [41.]. Comparable variation is not 
seen within the second ORF of RNA 3 which encodes 
a cysteine-rich polypeptide necessary for systemic infec- 
tion of plants. Thus, a remarkable series of recombina- 
tion events were involved in the production of the BSMV 
genome, and the virus may still be evolving toward an 
optimal organization. 

The discovery of plant viruses with segmented negative- 
strand genomes that are closely related to the animal 
viruses in the family Bunvaviridae is also of considerable 
interest for viral taxonomy. The Bunyaviridae have three 
genome segments of negative-strand RNA. The largest 
segment encodes the RNA replicase, the medium sized 
segment encodes the glycoproteins found in the viral en- 
velope, and the smallest segment encodes the nucleocap- 
sid protein. Five genera of Bunyaviridae have been de- 
scribed, which differ from one another in details of their 
genome organization and sequence, and in their vectors. 
Nairoviruses and hantaviruses translate a single polypep- 
tide from a single ORF in the small segment; bunyaviruses 
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translate two polypeptides from overlapping ORFs in the 
small segment by initiation at two different AUG codons; 
and phlebovirus and uukuvirus small segments have two 
non-overlapping ORFs that are read in opposite orienta- 
tions (i.e. one is translated from a genome sense mRNA 
and one from an antigenome sense mRNA) [43]. This 
strategy, termed 'ambisense', is also found in the bipartite 
Arenaviridae. Virions of Bunyaviridae with ambisense 
small segments contain small segment RNA of both po- 
larities (although not in equal concentrations), but their 
medium segment RNA is all negative strand. 

The tospoviruses (for tomato spotted wilt virus), with 
a morphology very similar to bunyaviruses, have three 
genome segments of minusstrand RNA, an ambisense 
translation strategy for the s segment [44--], and have 
been classified as a genus of Bunyaviridae. The taxo- 
nomic position of rice stripe virus, the type tenuivirus, 
is less clear The virion is poorly defined and the in- 
fectious material seems to consist of long thin filaments 
(perhaps circular) containing the polymerase, which are 
reminiscent of bunyavirus nucleocapsids. The RNA con- 
sists of four segments, of which both segment 3, encod- 
ing the capsid protein, and segment 4, of unknown func 
tion, are ambisense [45",46.-]. The results of Kakutani 
et al. [46".] describe the first example of a virus with 
more than one ambisense segment. Unfortunately, no se- 
quence information is available on the medium or large 
segment RNAs, which would be expected to show the 
highest similarity to the comparable RNA segments of 
Bunyaviridae. 

At the 3' termini of the three Bunyaviridae RNA seg- 
ments there are short nucleotide sequences (10-12 
residues in length) that are conserved within a given 
genus and that are complementary to conserved se- 
quences at the 5' termini such that the RNAs can form 
panhandles. It has been suggested that these sequences 
are promoter elements for the initiation of RNA synthe- 
sis, and that in a mixed infection only Bunyaviridae 
with identical or nearly identical termini would be repli- 
cated by the same polymerase. This would imply that only 
members of the same genus can exchange genome seg- 
ments. Nine out of 10 of the terminal nucleotides are 
identical for phleboviruses and uukuviruses. In addition, 
sequence similarities have been found in the amino acid 
sequences of the N proteins and GI and G2 glycoproteins 
of these two genera. Surprisingly, the terminal sequence 
for the tenuiviruses is 90% identical to uukuviruses, sug- 
gesting that these two groups are very closely related, 
but  the termini of tospoviruses bear no relationship to 
the termini of any other bunyavirus. All of these charac- 
teristics lead us to suggest that, despite their ambisense 
strategy, the tospoviruses have diverged significantly from 
other Bunyaviridae, in contrast to tenuiviruses, which 
may be very closely related to Bunyaviridae, despite their 
distinct morphology. Furthermore, we propose that the 
viral phleboviruses and uukuviruses belong to a single 
genus. 

Conclusions 

During the past year, a number of interesting insights into 
the interrelationships among RNA viruses have been ob- 
tained. There appear to be many similarities among the 
replication strategies of seemingly diverse viruses; repre- 
sentatives of plant virus groups and animal virus families 
often share certain genes and features of genome organi- 
zation while differing in other aspects of their replication. 
As more viral genomic sequences are obtained, a clearer 
picture of the RNA virus phylogenetic tree emerges, and it 
appears that RNA viruses extant today have evolved from 
a small number of protoviruses. In addition to divergent 
evolution, RNA viruses also evolve by recombination and 
the acquisition of new genes either from other viruses or 
from their hosts. The net result of such a reshuffling of 
entire viral genes is a form of modular evolution, where 
segments of the genome are transferred as a module. 

In recent years, a number of new strategies of viral gene 
expression have been discovered. Because most RNA 
virus genomes are small, perhaps limited by the inherent 
error frequency caused by RNA replication without proof- 
reading, RNA viruses are quite efficient, and have evolved 
a range of mechanisms by which to expand the avail- 
able coding capacity and differentially regulate their gene 
products. These include translating more than one read- 
ing frame starting at different initiation sites, differential 
splicing of mRNAs during transcription, and production 
of multiple mRNAs in which the reading frame has been 
shifted by the insertion of non-templated nucleotides. 
Furthermore, in at least one system subgenomic mRNAs 
can replicate independently, and this replication may be 
an additional important mechanism for regulating the 
amounts of individual gene products. 
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